Line: 1 to 1  

Dhruva Venkita Raman  
Line: 13 to 13  
Background  
Changed:  
< <  I am a postdoc in the department, working with Tim O'Leary on the European Research Councilfunded FlexNeuro project (Flexible and robust nervous system function from reconfiguring networks). I completed my DPhil (equivalent to PhD) in the Control Group at the University of Oxford in 2017, under the supervision of Antonis Papachristodoulou and James Anderson. This was taken as part of the Systems Biology Doctoral Training Centre (http://www.sysbiodtc.ox.ac.uk), which also involved a year of taught courses in the broad field of Systems Biology. My DPhil was funded through a full EPSRC scholarship. I also have an MMath Degree (1st Class Hons.) from the University of Warwick (2012). This involved a year of taught courses in the broad field of Systems Biology, before I began my DPhil proper in October 2013.  
> >  I am a postdoc in the department, working with Tim O'Leary on the European Research Councilfunded FlexNeuro project (Flexible and robust nervous system function from reconfiguring networks). I completed my DPhil (equivalent to PhD) in the Control Group at the University of Oxford in 2017, under the supervision of Antonis Papachristodoulou and James Anderson. This was taken as part of the Systems Biology Doctoral Training Centre (http://www.sysbiodtc.ox.ac.uk), which also involved a year of taught courses in the broad field of Systems Biology. My DPhil was funded through a full EPSRC scholarship. I also have an MMath Degree (1st Class Hons.) from the University of Warwick (2012).  
Line: 34 to 34  
DVR ; James Anderson; Antonis Papachristodoulou. "A New Approach to Estimating the Robustness of Parameter Estimates to Measurement Noise". Proceedings of the American Control Conference 2016: 18201825.  
Changed:  
< <  DVR ; James Anderson; Antonis Papachristodoulou. "Delineating Parameter Unidentifiabilities in Complex Models." arXiv preprint arXiv:1607.07705 (2016).  
> >  DVR ; James Anderson; Antonis Papachristodoulou. "Delineating Parameter Unidentifiabilities in Complex Models." Phys. Rev. E; 95; 032314 (2017).  
Emilie Dufresne; Heather Harrington; DVR."The Geometry of Sloppiness." arXiv preprint arXiv:1608.05679 (2016). Dissertations 
Line: 1 to 1  

 
Changed:  
< < 
Dhruva Raman  
> > 
Dhruva Venkita Raman  
Changed:  
< <  Position: Research Assoicate  
> >  Position: Research Associate  
Office Location: BN486 Email: dvr23 [at] cam.ac.uk  
Deleted:  
< < 
 
Background  
Added:  
> > 
I am a postdoc in the department, working with Tim O'Leary on the European Research Councilfunded FlexNeuro project (Flexible and robust nervous system function from reconfiguring networks). I completed my DPhil (equivalent to PhD) in the Control Group at the University of Oxford in 2017, under the supervision of Antonis Papachristodoulou and James Anderson. This was taken as part of the Systems Biology Doctoral Training Centre (http://www.sysbiodtc.ox.ac.uk), which also involved a year of taught courses in the broad field of Systems Biology. My DPhil was funded through a full EPSRC scholarship. I also have an MMath Degree (1st Class Hons.) from the University of Warwick (2012). This involved a year of taught courses in the broad field of Systems Biology, before I began my DPhil proper in October 2013.
 
Research Interests  
Added:  
> > 
Let me begin by saying that I am easily interested in a variety of research topics, and am happy to talk to any potential collaborators or curious nonspecialists.
My highlevel interests lie in the construction and analysis of mathematical models of physical processes. Increasing computing power has allowed for the emergence of highly parameterised, nonlinear models of extremely complex systems. Extracting useful information from such models, however, remains a hard task for several reasons. One is model identifiability: in such models, the map from model behaviour to model parameter values is rarely unique. To take a simple example, the dynamics of a damped harmonic oscillator do not change if we multiply the mass, damping coefficient, and spring stiffness by a (nonzero) constant. In this case, model identifiability is restored, and mechanistic insight gained, by reparameterising the model in terms of its angular frequency and damping ratio. Even technically identifiable models are often practically unidentifiable, in that changing some combinations of parameters exerts a nearzero influence on model behaviour. For example, think of decreasing the timeconstant of a subsystem of chemical reactions that already equilibrates nearinstantaneously with respect to a larger system. I have worked on algorithms for finding less obvious unidentifiabilities (whether exact or practical) in largescale models that, as with the oscillator example, allow for restoration of identifiability, reduction in the number of model parameters, and provision of mechanistic insight. I have also worked on the dual, statistical problem of quantifying the uncertainty associated with parameter estimates made from noisy data. I am currently interested in models of neural circuits in the brain. There is increasing experimental evidence that such circuits continually rewire and change their physical parameters even while expressing the same behaviour. Insight into why this occurs, however, is currently lacking. Traditionally, computational models of such neural circuits have assumed a onetoone correspondence between a particular behaviour and the underlying neural circuit. I am building models that dispense with the previous assumption, in order to investigate what advantages are conferred by this counterintuitive behaviour.  
Publications  
Added:  
> > 
Valmorbida, Giorgio; DVR; James Anderson. "Bounds for Inputand StatetoOutput Properties of Uncertain Linear Systems." arXiv preprint arXiv:1505.05335 (2015).
DVR ; James Anderson; Antonis Papachristodoulou. "On the performance of nonlinear dynamical systems under parameter perturbation." Automatica 63 (2016): 265273. DVR ; James Anderson; Antonis Papachristodoulou. "A New Approach to Estimating the Robustness of Parameter Estimates to Measurement Noise". Proceedings of the American Control Conference 2016: 18201825. DVR ; James Anderson; Antonis Papachristodoulou. "Delineating Parameter Unidentifiabilities in Complex Models." arXiv preprint arXiv:1607.07705 (2016). Emilie Dufresne; Heather Harrington; DVR."The Geometry of Sloppiness." arXiv preprint arXiv:1608.05679 (2016). DissertationsDPhil Thesis: `On the Identifiability of Highly Parameterised Models of Physical Processes' (Link forthcoming) MMath Dissertation ( MMathessay.pdf): 'A Probabilistic Analysis of the Dynamics of Stochastic Equations determined by the Gillespie Algorithm' Undergraduate Dissertation ( BTEssay.pdf): 'The BanachTarski Paradox'
 
 
Added:  
> > 
