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1. Introduction

The accurate modelling of the time dynamics of discrete physical systems is integral across
the sciences. Such models often involve an approximation of both the system state space
as a continuous quantity and the evolution of the system as a deterministic quantity. In
systems with a small number of elements, such a model has limited validity, due to the
increasing effect of stochasticity in the dynamics, and the increasing granularity of the state
space. The Gillespie Algorithm provides a way of modelling these systems in such a way
that neither of the aforementioned approximations are necessary. However, this implies a
loss of determinism. In this essay, we consider to what extent we can forecast the evolution
of Gillespie Algorithm derived models of such systems, and determine behaviours that are
independent of inter-trial stochasticity.

Biochemical processes, and, in particular, gene regulatory networks, form a critical class of
systems that are amenable to stochastic modelling through the Gillespie Algorithm. Such
systems evolve through discrete reaction events, in which both the choice of reaction and
the time between reactions are random quantities. In gene regulatory network models,
there is no clear concept of mass conservation. In other words, the gain of one system
substrate does not necessarily imply the loss of others, and vice versa. This reflects the
fact the substrates of such systems are generally messenger RNA molecules, or proteins.
The rate of change of these factors may be a product of the state of the system, but the
actual production and degradation processes can be carried out by biological machinery
external to the system. The Circadian Rhythm Model described in [GOL03] exhibits this
property, as does our simplification of the model presented in Appendix B. For this reason,
we concentrate on the class of models in which each discrete system evolution takes the
form of a gain or loss of one substrate element.

The vast majority of the mathematical machinery we construct is unique to this essay, and
is introduced as it comes up, so as not to detract from the overall flow of the exposition.
In order that the reader does not get lost in a morass of definitions, we provide an index
of terminology, in Appendix D.

Shortly prior to submission of this essay, it was found that our definition of a time-stable
Gillespie Simulation is equivalent to that of an ergodic Markov Chain, and that many of
the results presented in Chapter 4 and onwards, have generalised counterparts in [FAY95].
However, the proofs of these results are in general unique to this exposition, having been
arrived at independently, and it is indicated if this is not the case. Reconstruction of the
mathematical apparatus and nomenclature to coincide with that presented in [FAY95], and
general Markov Chain theory, was not considered a worthwhile endeavour.



2. The Gillespie Algorithm

In this section, we construct some of the basic mathematical objects necessary for our
subsequent analysis, and provide the explicit form of the Gillespie Algorithm

Definition 2.1. Substrate State Space: We define the substrate state space, X, of a
physical system with n distinct substrate types, as the set of allowable substrate vectors. So
an element x ∈ X is an n-dimensional vector, with the value of xi denoting the quantity of
the ith substrate of the system. We define the mass of x to denote the sum of the numbers
of its substrate elements. In this essay, we consider physical systems where substrate levels
take positive integer values. Therefore, X ∼= Nn. 1 In particular we define, the ith basis
vector of X: ei, as follows:

eij = δij

Here, δ signifies the Kronecker delta function.

Definition 2.2. System State Space We define the system state space Y as the product
space X × R+. A system state y ∈ Y is of the form (x, t), with x ∈ X, t ∈ R+, and
describes the system having substrate levels corresponding to x, at time t.

Definition 2.3. Reaction State Space: We consider physical systems that evolve through
the occurrence of m separate reactions, r1...rm. We define the reaction state space Q of the
system as the discrete set consisting of these reactions. Each reaction can be considered
as a function mapping X to itself. This essay is chiefly concerned with systems where the
following assumptions apply:

(1) m = 2n
(2) ri(x) = x+ ei i ∈ {1, 2, ...n}
(3) ri+n(x) = x− ei i ∈ {1, 2, ...n}

Definition 2.4. Reaction Rate Vector Field: The reaction rate vector field, R, of a
physical system, is a function

R : Y 7→ Rm

The value Ri(y) denotes the rate of occurence of reaction ri in the system, given system
state y. Note that reaction rates can only take non-negative values, ie Ri(y) ≥ 0, ∀y ∈ Y .
In this essay, we will be dealing solely with physical systems whose reaction rate vector
fields are independent of time, and therefore purely a function of the current substrate
levels. Therefore, we will henceforth consider R as a function with effective domain X. In
other words, given y ∈ Y such that y = (x, t) we take R(y) = R(x), and use the two terms
interchangeably. In this essay, the following assumption applies:

(1) Ri(x) 6= 0 ∀i ∈ {1, ..., n}
(2) Ri(x) = 0 iff xi = 0, ∀i ∈ {n+ 1, ..., 2n}

1Here, we consider N to include 0



Definition 2.5. Gillespie Model: Define a Gillespie model as the pair (X,R) consisting
of a substrate state space, and reaction rate vector field. Note that any two physical systems
sharing the same Gillespie model have identical dynamics. In this sense, we can consider
a Gillespie model to uniquely define a physical system being modelled.

We are now in a position to define the Gillespie Algorithm, which generates a stochastic
trajectory of the system state of a Gillespie model in time. In the exposition of the algo-
rithm to come, the following notation is used:

Notation 2.6.

(1) λ(x) =

i=m∑
i=1

Ri(x) = ‖R(x)‖L1 (as every rate is by definition non-negative).

λ corresponds to the total reaction rate of the system.

(2) I is the iteration counter. On the ith iteration of the Gillespie Algorithm, I := i

Algorithm 2.7. Classical Gillespie Algorithm [WIL06]

(1) Initialisation: Set an initial system state y0 = (xt0 , t0), and calculate R(xt0). Set
I = 1

(2) Random Number Generation and Scaling: Calculate λ(xtI−1). Simulate a
realisation of the following random variables

uI ∼ U [0, 1] wI ∼ exp(1)

Define:

w̃I =
1

λ(xtI−1)
× wi ũI = uI × λ(xtI−1)

Note that w̃I ∼ exp
(
λ(xtI−1)

)
, and ũI ∼ U

[
0, λ(xtI−1)

)
(3) System Update: We define the set of intervals {ck}mi=1

ck =

k−1∑
i=1

Ri(xtI−1) +
[
0, Rk(xtI−1)

)
. Note that:

(a)
m⋃
i=1

ci =
[
0, λ(xtI−1)

)
(b) ci ∩ cj = ∅ ∀i, j



Therefore ũI is in exactly one of the set of intervals {ck}. Call this the jth interval.
Set

yI =
(
rj(xtI−1), tI + wI

)
(4) Reset: Store yI . Set I = I + 1. Return to step (2)

Explanation
The algorithm models each reaction as a poisson process, of rate equal to its respective
reaction rate. The sum of reactions is therefore a poisson process with rate equal to the
sum of the rates of the respective reactions. Waiting times between reactions are therefore
exponentially distributed, and given by the random variables of the form {w̃I}. After each
waiting time, we choose a reaction to simulate. The probability of choosing a reaction is
equal to its reaction rate as a proportion of the total reaction rate of the system.

Definition 2.8. Define a K step Gillespie Simulation on a Gillespie Model as the
sequence: {yi}i=Ki=0 , obtained by performing the Gillespie algorithm K times given an ini-
tial system state y0. A Gillespie simulation with no step number specified is assumed to
be an infinite sequence. Note that simulations are not well defined, due to the inherent
stochasticity of the algorithm.

Definition 2.9. Define the trajectory, x(t) : (t0, T ) → X, of a Gillespie Simulation
{yi}∞i=0 as follows:

x(t) = xti t ∈ [ti, ti+1)

Define the initial condition of a Gillespie trajectory as the state y0 = (x0, t0).
Here, T = limi→∞ti for an infinite Gillespie simulation, and T = tK in the obvious
(omitted) modification of the definition to accommodate a K-step Gillespie Simulation.

In essence, when we iteratively perform the Gillespie algorithm on a Gillespie Model with
initial conditions, we get a discrete set of vectors {yi}, which capture every single change
occurring in the system during application of the algorithm. This is the Gillespie simula-
tion. The trajectory continuously models the actual time evolution of the system, which
is unchanging except at the set of timepoints recorded by the Gillespie simulation.

Definition 2.10. Given a point x(t′) on a trajectory, we name t′ as the elapsed (ex-
ternal) time. We also define the internal time p of a point x(t′) on the trajectory as
follows:

p[x(t′)] = i : t′ ∈ [ti, ti+1)

Note that the space of internal times is isomorphic to N. The internal time corresponds to



the number of changes the system state has gone through. We denote the space of internal
times as T

Definition 2.11. Random Sequence Space:
Realisation of an infinitely long Gillespie simulation involves generation of the following
sequences of random variables:

{ui}∞i=1 : uj ∼ U [0, 1] ∀j ∈ N

{wi}∞i=1 : wj ∼ exp(1) ∀j ∈ N

We accordingly define the random sequence space Ω as follows:

Ω = U ×W
U = {u : u = {ui}∞i=1}; ui ∼ U [0, 1]

W = {w : w = {wi}∞i=1}; wi ∼ exp(1)

Proposition 2.12. A Gillespie Simulation (and thereby a trajectory) on a Gillespie Model
can be uniquely determined, given the pair: (x0, ω), where x0 ∈ X, and ω ∈ Ω.

Proof. Decompose ω into the pair of sequences (u,w). The proposition is equivalent to
stating that a Gillespie Simulation is deterministic, given (x0, u, w). All of the randomness
in the Gillespie algorithm is associated with the generation of the sequences: w and u.
Therefore, the result is trivial. We have purposely excluded the provision of an initial
elapsed timepoint t0 in the initial condition (x0, u, w), since it has no effect on the dynamics
of the Gillespie simulation: and merely serves to translate the simulation in time. �

For clarity, we outline an explicit, modified version of the algorithm, which runs determin-
istically, given a triple (x0, w, u), below.

Algorithm 2.13. Modified Gillespie Algorithm

(1) Initialisation: Generate an element ω ∈ Ω
Set initial system state and rates vectors: y0 and R(y0), and iteration counter I = 1

(2) Random Number Scaling: As in Algorithm 2.7

(3) System Update: As in Algorithm 2.7

(4) Return to Step 2



3. The Formulation of Gillespie Simulations as Random Dynamical Systems

Definition 3.1. Random Dynamical System [LUD98] A measurable random dynamical
system on the measurable space (X,B) over a metric dynamical system (Ω,F ,P, (θ(t))t∈T)
with time T is a mapping:

ϕ : T× Ω×X → X, (t, ω, x) 7→ ϕ(t, ω, x)

with the following properties:

(1) Measurability: ϕ is B(T)⊗ F⊗ B, B-measurable

(2) Cocycle Property: The mappings ϕ(t, ω) := ϕ(t, ω, ·) : X → X form a cocycle
over θ(·) ie they satisfy:

ϕ(0, ω) = idX ∀ω ∈ Ω (3.1)

ϕ(t+ s, ω) = ϕ(t, θ(s)ω) ◦ ϕ(s, ω) ∀s, t ∈ T ω ∈ Ω (3.2)

Here, we use ‘◦’ to denote composition, which canonically defines an action on the left of
the semigroup of self mappings, X → X.

Theorem 3.2. A Gillespie Simulation on a Gillespie Model can be formulated
as a Random Dynamical System

The proof of this theorem forms the crux of this chapter. We commence by defining the rel-
evant spaces and measured espoused in Definition 3.1. In this chapter, we take for granted
the assumptions of Definitions 2.3 and 2.4.

Definition 3.3. We define a σ-algebra, B, on the system state space Y . Recall that
Y ∼= Nn ×R+ (Definition 2.2). We take B to be the product of the Counting and Lebesgue
measures on these respective spaces. B is well defined, due to existence and uniqueness of
the product measure [RUD87].

Definition 3.4. We define (Ω,F ,V) to be the measurable space such that:

(1) Ω is defined as in 2.11

(2) F is the σ-algebra generated by sets of the form {(u,w) : (ui, wi) ∈ Ii × Ji ⊆
[0, 1] × R+}, where Ii and Ji are open intervals, for some i ∈ N. Since this is a
countable product of Borel σ-algebras (which are generated by open intervals) on
the support of each sequence element, we rest assured that it too is a σ-algebra
([RUD87]).



(3) V(A) =

∞∏
i=1

P ((ui, wi) ∈ Ai).

Here the probability measure, P , is that derived from the probability density func-
tions of ui and wi. V, as a countable product of probability measures, is itself a
probability measure [RUD87]

Definition 3.5. For a given Gillespie Model, we define the ‘flow’ map ϕ : T×Ω×Y 7→ Y ,
as follows:

ϕ
(
d, (u,w), y0

)
= (yd)

Here, yd is the system state obtained by conducting a d-step Gillespie Simulation on the
triple (y0, u, w), which we have previously shown to be deterministic (2.12). d ∈ T, the
space of internal times, which we have previously noted is isomorphic to N.

Note that 2.13 provides an explicit method of computation for the flow map.

Definition 3.6. We define a Borel σ-algebra on T : B(T), by giving T the discrete topology.

Note that every subset of T is measurable, due to countability of the space combined with
the fact that every discrete element of the space is measurable.

Theorem 3.7. The Flow map, ϕ, is measurable

Our plan of action is to decompose the flow map ϕ into the composition of two functions.
One transforms the sequence u of uniform random variables into a sequence of reaction
types, and the next converts the initial substrate vector to the final one using this reaction
sequence, while calculating the reaction timepoint. The measurability of both of these
functions then implies measurability of their composition, ϕ. Note that this decomposition
is employed for purely theoretical purposes. Applying it algorithmically would be compu-
tationally expensive

Definition 3.8. Consider a Gillespie simulation on a model with m reaction types, denoted
r1...rm. We define S as the space of reaction sequences.

s ∈ S ⇒ s = {si}∞i=1; si ∈ Q, ∀i

We define a measure on S in several stages: We first formalise the notion of distance
between two reaction sequences. Let ri, rj be two reactions. Then define

|ri − rj | = δij



Here, δij denotes the Kronecker Delta function. Now for arbitrary q, s ∈ S:

d(q, s) =
∞∑
i=1

|qi − si|
2i

Such metrics on a sequence space are common in fields such as Dynamical Systems, so we
neglect to prove that d does indeed define a metric, and refer the reader to, for example
[DEV92]. Now that we have a metric, and therefore an induced metrizable topology, on S,
we note the existence of a Borel σ-algebra B(S) generated by open sets in the topology. In
other words, B(S) is generated by balls B of arbitrary radius in S. Note the following:

B
(
s, 2−k

)
=
{
q ∈ S : {qi}ki=1 = {si}ki=1

}

Definition 3.9. We define the ‘reaction sequence generating’ function of a Gillespie Model
as follows:

ψ : T× Ω× Y 7→ (T×W × S × Y ),

ψ
(
d, (u,w), y

)
=
(
d,w, s, y

)
Here s is the sequence of reaction types occurring in a Gillespie simulation on the model
given initial conditions (x,w, u). Applying Algorithm 2.13 to this triple and storing only
the generated reaction sequence would explicitly compute the function. Note that this is
essentially a function mapping U to S: it acts as the identity function on other subspaces
of its domain, and they are included purely in order that it can transmit information to
functions it is composed with.

Definition 3.10. For a given Gillespie simulation, we define the function φ as follows

φ : T×W × S × Y 7→ Y,

φ
(
d,w, y0

)
= yd

Here, yd is the system state reached by performing a d-step Gillespie simulation on y0, with
the reaction sequence of the simulation specified by s, and the reaction timepoints by w.

The proofs of results leading to Theorem 3.7 are simplified by the following observations:

(1) ϕ(d, ω, y) = φ ◦ ψ(d, ω, y), so measurability of φ and ψ is a sufficient condition for
measurability of ϕ

(2) To prove measurability of a function f : X → Y , with (Y,B) a measurable space, it
is sufficient to prove measurability of of arbitrary elements of a generating set for
the σ-algebra B. Here we define a generating set of B to be a set that generates
the whole of B under σ-algebra operations. [RUD87]



(3) The σ-algebra that allows implementation of the Lebesgue measure on R+ is gener-
ated by open intervals. The σ-algebra required for implementation of the counting
measure on a countable space is generated by discrete elements of that space.
[RUD87]

(4) The σ-algebra B on Y is generated by the product of single elements of X, and
open intervals on R+. To prove measurability of a function f that maps onto Y ,
we therefore need only prove measurability of f−1(x,E), for an arbitrary element
x ∈ X, and an arbitrary interval E ∈ R+

Lemma 3.11. ψ is B(T)⊗F ⊗ B measurable
Not that this is equivalent to showing that ψ−1(d, ω,A, y) is B(T)⊗F ⊗B measurable, for
any discrete points d ∈ T, ω ∈ Ω, y ∈ Y , and open interval A ∈ S.

Proof. The restriction of the range of ψ to T × Ω × Y is the identity function, so it is
sufficient to prove that ψ−1(A, .) is measurable. Decomposing the product spaces Y and
Ω into their constituent factor spaces, we have:

ψ−1(A, .) = {x ∈ X, t ∈ R+, d ∈ T, u ∈ U,w ∈W such that ψ|S(d, u, w, x, t) = A}

= R+ ×W ×
⋃
x∈X

⋃
d∈T

{
u : ψ|S(d, u, x, .) = A

}
The second equality holds due to the fact that internal and elapsed time calculations are
independent of reaction sequence choice in the Gillespie Algorithm. Countability of X and
T imply that the above double union is countable. It remains to show measurability, for
fixed d ∈ T, x ∈ X, of: {

u ∈ U : ψ|S(d, u, x, .) = A
}

Any open set in S is a countable union of open balls, so we may assume without loss of
generality that A is an open ball. From 3.8, we see that

A =
{
q ∈ S : {qi}ki=1 = {si}ki=1

}
for some fixed sequence of reactions {si}ki=1.
We know that s1 = rj , for some j ∈ {1, ...,m}. For a Gillespie simulation with arbitrary
initial condition y0, the first reaction is rj if and only if u1 falls in some interval, of which
the size, and start/end points are determined by the computations in 2.13, and the current
state of the substrate vector. Let us denote this interval Is1 . If the jth reaction rate is 0,
then Is1 = ∅. We inductively define Isi similarly. Then

{u ∈ U : ψ|S(u, x, d, .) ∈ A} =

k∏
i=1

{u : ui ∈ Isi}

From Definition 3.4, we see that this is measurable, since, although we have not analysed
the dimensions of each individual Isi , we know each one represents either an interval or
the empty set. �



Lemma 3.12. φ is measurable
Note that this is equivalent to showing that φ−1(x,E) is B(T)⊗ F ⊗ B(S)⊗ B measurable
for any x ∈ X and interval E ⊆ R+, as (Y,B) is generated by sets of this form.

Proof.

φ−1(x,E) =
⋃
x′∈X

⋃
d∈T
{w ∈W, t ∈ R+, s ∈ S : φ

(
d, (x′, t), w, s

)
∈ (x,E)}

Each of these unions is countable due to the countability of X and T. Therefore, measura-
bility of the whole set is equivalent to that of each component element of the double union.

Note that we may assume t = 0, without loss of generality, in the above equality. Changing
the initial elapsed time value merely translates the final elapsed time value, so does not
affect measurability of the function.

Therefore, it remains to show measurability, for fixed d ∈ T and x′ ∈ X, of:

{w ∈W, s ∈ S : φ(d, (x′, 0), w, s) ∈ (x,E)} (3.3)

At the ith internal time (iteration) step, we calculate the increase in elapsed time by scaling
wi by a factor proportional to the total magnitude of the reaction rates. The form of the
scaling function, as shown in Algorithm 2.7, is as follows:

w̃i =
1

λ(xti)
× wi

Note that the map from wi to w̃i (defined separately for each i), is therefore continuous
over its domain (λ(xti) can only take positive values).
Let us introduce some new notation:

Gk,I = {w ∈W :

k∑
i=1

w̃i ∈ I} , k ∈ T, I ⊆ R+ (3.4)

Fk,x′ =
{
s ∈ S : φ

(
k, x′, s, .

)
= (x, .)

}
, k ∈ T, x′ ∈ X (3.5)

We observe that 3.3 describes the set Gd,E ×Fk,x′ . It remains to show each of these sets is
measurable.

We prove measurability of Gd,E by induction. First assume d = 1, and pick an arbitrary
interval I = (a, b) (with a or b possibly equal to ±∞):

G1,I = {w : ˜(w1 > a ∩ w̃1 < b)}

Continuity of each transformation wi 7→ w̃i shows that the set of w1 for which the above is
true is Borel-measurable. In particular, this property holds for I = E, as choice of interval
was arbitrary.



Now let us assume that Gk−1,I is measurable, for some k ∈ N, and any open interval
I = (a, b):

Gk,I =
⋃
q∈Q

{
Gk−1,(a−q,∞) ∩ {wk : wk ∈ (q,∞)

}⋂ ⋃
q∈Q

{
Gk−1,(−∞,b) ∩ {wk : wk ∈ (−∞, q)

}

We can see that this is a composition of countable unions and intersections applied to mea-
surable sets, and is therefore itself measurable, thus completing our induction argument.

We now prove measurability of Fk,x′ :

Pick s ∈ S. Note that the elements {si}∞i=k+1 of s are independent of whether s is in the

set Fk,x′ , which is solely a function of the values {si}ki=1. After all, the substrate vector

of a Gillespie simulation at the kth iteration step is independent of the reactions occurring
during subsequent iteration steps.

Now observe that, due to the fact that a given element sj ∈ s belongs to one of m possible

values, there are at most mk possible distinct sequences {si}ki=1. Thus there must be a
finite number (possibly zero) of distinct specifications on the set {si}ki=1 that uniquely
define any sequence starting with these values to belong to Fk,x′ . Recall from Definition
3.8 the following:

B
(
s, 2−k

)
=
{
q ∈ S : {qi}ki=1 = {si}ki=1

}
We see that Fk,x′ is consequently a finite union of open balls in S, which is measurable by
definition, with respect to B(S).

�

Corollary 3.13. Theorem 3.7 is true

Definition 3.14. We define the family of shift maps θ(s) : Ω→ Ω as follows:

θ(s)(u,w) = (u′, w′)

Here, (u′, w′) is the pair of sequences satisfying the property:

(u′i, w
′
i) = (ui+s, wi+s) ∀i ∈ N

Theorem 3.15. The Flow map, ϕ (Definition 3.5), satisfies the cocycle property over θ(.)
(Definition 3.1).

Proof. We consider the set of mappings ϕ(t, w) = ϕ(t, w, .) : Y → Y .

ϕ(0, w) = idY (3.6)

This requires no explanation. A cursory observation of the Gillespie algorithm shows that
a 0-step Gillespie simulation is equivalent to the identity mapping. It remains to show the
following:



ϕ(t+ s, ω) = ϕ(t, θ(s)ω) ◦ ϕ(s, ω) ∀s, t ∈ T ω ∈ Ω (3.7)

The LHS of Equation 3.7 defines a mapping from a system state y0 to the final value of its
t+s step Gillespie simulation, yt+s. The RHS defines the composition of a t step and and s
step mapping on y0. Since a Gillespie simulation proceeds algorithmically, with the results
of each iteration stage independent of previous Gillespie states, the RHS also defines a t+s
step mapping. Noting Proposition 2.12, we merely need show that the sequences ωL and
ωR used to perform the simulations on the LHS and RHS of Equation (3.7) respectively,
are identical.

From the definition of the flow map, ωL = ω, where ω is chosen in Equation (3.7).

On inspection, we see that:

(ωR)si=1 = (ω)si=1

(ωR)∞i=s+1 = θ(s)(ω)∞i=1 = (ω)∞i=s+1

So ωL = ωR, and we are done.
�

Corollary 3.16. The flow map ϕ defines a measurable Random Dynamical Sys-
tem

Definition 3.17. Generator of the flow We define the generating functions ζ(ω) of the
flow map as follows:

ζ(ω) = ϕ(1, ω) : Y 7→ Y

Current literature focuses on Random Dynamical Systems in which the generating func-
tion, as defined above, is an affine map, with respect to the random vector ω that it is
parameterised by. This is obviously not the case in our situation, which leaves us at a
dead end in terms of our current method of analysis, pending further research on less well-
behaved Random Dynamical Systems. This inclusion of this chapter was not just in the
hope that such research will be carried out, however. Many of the structures and functions
we have defined are subsequently used in other situations during the course of the essay.



4. Time Stability and its effect on Gillespie Simulation Dynamics

We now introduce a regulatory condition on a Gillespie Model that we name time stability,
which allows us to define a measure proportional to the limiting probability density of
a Gillespie simulation on its substrate state space. First we much attach a probability
measure to the space of Gillespie simulations in order that we can quantify simulation
properties in terms of their likelihood of occurrence.

Definition 4.1. Simulation State Space
We define the simulation state space of y, Oy, as the space of possible infinitely long
Gillespie simulations with initial system state y ∈ Y . We define the generic simulation
state space, O, as

O =
⋃
y∈Y

Oy

Recall (Proposition 2.12), that a simulation o ∈ Oy is determined completely by the element
ω ∈ Ω. Therefore we use the notation oy(ω) to indicate the Gillespie simulation in the
space Oy, determined by the random sequence element ω. It is important to recall that the
determination is not unique, so it is possible to have distinct elements ω1, ω2 ∈ Ω, such
that oy(ω1) = oy(ω2).

We define the k-Step simulation state space of y, Oky , as the space of possible k-step
Gillespie simulations with initial system state y.

We will often solely concern ourselves with the substrate vector associated to an element of
a simulation o ∈ Oy. The notation oi|X , signifies the substrate vector associated with oi,

the ith system state of a Gillespie simulation.

Definition 4.2. σ-algebra on Oy
We define a measure, Oy, on Oy as follows:

Oky consists of a set of sequences of system states, of length k. It is therefore isomorphic to
the product of k copies of the system state space Y . We have already defined a measure B
on Y (see Definition 3.3). We define Oky to be the product of k copies of B. We then take:

Oy =
∞⋂
i=1

Oiy

Oy, as a product of σ-algebras, is one itself [RUD87].

Definition 4.3. We define the decomposition map Cy : Oy → F as follows:

Cy(o) = {ω ∈ Ω : ϕ(i, y, ω) = oi ∀i ∈ T}



(The construction of the Borel σ-algebra, F , is found in Definition 3.4)

The decomposition map is named as such due to the fact that it ‘decomposes’ a Gillespie
simulation into the set of possible random vector sequences that would have, when inputted
into the Gillespie algorithm, provided the original simulation as an output. It can be con-
sidered a ‘pseudo’-inverse of the flow map, whose non-injectivity prohibits a true inverse.

Lemma 4.4. The range of the decomposition map is indeed F , the Borel σ-algebra on Ω.

Proof. Pick o ∈ Oy. Let Ai be the set of ω ∈ Ω such that: ϕ(i, y, ω) = oi. Then we have:

(1) oi is measurable in (Y,B)
(2) Measurability of ϕ, the flow map implies Ai is measurable

Therefore, we have measurability of Cy(o) =
∞⋂
i=1

Ai �

We proceed to prove measurability of the Cy. We furthermore prove that the image of any
Oy-measurable set, under Cy, is F-measurable. This implies that the σ-algebra generated
by the pre-images of measurable sets in F , under the decomposition map, is precisely Oy.
Consequently, we can ‘transport’ our existing probability measure V (see Definition 3.4)
on the random sequence space, to a measure on Oy, through this bijective correspondence.

Lemma 4.5. Oy-measurability of the decomposition map

Proof. It is sufficient to prove measurability of the pre-image of any member of a generating
set of F . Recall that any element ω ∈ Ω can be expressed as a pair (u,w). We can see
from 3.4 that F is generated by sets of the form:

{(u,w) : ui ∈ J1, wi ∈ J2, i ∈ N}
where J1 ∈ [0, 1], J2 ∈ (0,∞), are open (or closed) intervals.

Pick an arbitrary set A ∈ F of this form:

A = {(u,w) : uk ∈ J1, wk ∈ J2, i}
for open intervals J1, J2 as previously described.

C−1
y (A) = {o : ∃(u,w) ∈ A : ϕ(i, y, u, w) = oi ∀i ∈ N} (4.1)

= {o : ok ∈ ϕ(k, y, u, w); uk ∈ J1, wk ∈ J2} (4.2)

= {o : (xk, tk) ∈ ϕ(k, y, u, w); uk ∈ J1, wk ∈ J2} (4.3)

Here we recall that o = {(xi, ti)}∞i=1

It is sufficient to show that the set of (xk, tk) satisfying the constraint of Equation 4.3 is
B-measurable, since Oy is the countable product of copies of B.
B is the product space of the σ-algebras generated by the counting measure on X, and the
Lebesgue measure on R+. Every subset of X is measurable with respect to the counting



measure, as it as a space of countable cardinality. So we need only prove that the set of
{tk} satisfying the constraint of 4.3 is Lebesgue measurable.

Referring to 2.7, we see that:

tk = w̃k +

k−1∑
i=1

w̃i

where w̃i = λiwi for some nonzero constant λi. Since the support of wi is (0,∞), and the

set {wi}k−1
i=1 is unconstrained in Equation 4.3, we can see that the support of

∑k−1
i=1 w̃i is

also (0,∞). Therefore the set of {tk} satisfying the constraints of Equation 4.3 is equivalent
to the following set:

{g + h : g ∈ J2, h ∈ (0,∞)}
This is an interval, so Lebesgue measurable. �

Lemma 4.6. The image of an Oy-measurable set under Cy is F-measurable

Proof. Oy is the product of countable copies of B, the σ-algebra on Y , the system state
space. Therefore, any O-measurable set A will be of the form:

A =
∞∏
i=1

Ai : Ai ∈ B ∀i

Now by definition:

Cy(A) =
∞⋂
i=1

{ω : ϕ(i, y, ω) ∈ Ai}

Each element of the intersection is F-measurable due to measurability of the flow map ϕ
(Theorem 3.7 ). Therefore, Cy(A) is F-measurable. �

Definition 4.7. Probability measure on Oy
We define the function P : Oy 7→ [0, 1] as follows:

P(o) = V(Cy(o))

The bijection under Cy of members of Oy and F , (Lemmas 4.5, 4.6), combined with the
fact the V is a probability measure, assures us that P is a probability measure.

We can now analyse the dynamics of Gillespie simulations probabilistically. In a biochem-
ical system of the type the Gillespie algorithm attempts to model, we inevitably observe
stability of the dynamics over time, despite their local stochasticity. We proceed to define
this idea rigorously, and demonstrate its consequences.



Definition 4.8. Time-Stable simulation state space
For a given x ∈ X, y ∈ Y , let

Axy =

{
o ∈ Oy :

∞⋂
n=1

( ∞⋃
m=n

{om : om|X = x}

)}
(4.4)

In other words, Axy is the set of simulations in Oy that return to the substrate vector x
infinitely often. We can see that Equation 4.4 is measurable. We define Oy to be time-stable
(with respect to x) if there exists x ∈ X such that

P(Axy) = 1

Lemma 4.9. Suppose Oy is time-stable with respect to some substrate vector x′ ∈ X. Then
Oy is time stable with respect to any x ∈ X. We may therefore alter our definition of time
stability to remove dependence on a given substrate vector x ∈ X.

Proof. For any o ∈ Ax′y, we have a subsequence {oni}∞i=1 of elements of o whose substrate
vector is equal to x′. Let Ki be the event that there exists j ∈ {ni, ....ni+1} such that
oj |X = x. We can see that {Ki} are independent, identically distributed random variables,
due to the following:

(1) The evolution of the substrate vector in the Gillespie algorithm is dependent only
on its current state (ie it is a Markov chain), due to independence of of sequence
elements of sequences in the random sequence space.

(2) The only system state Ki is dependent on is therefore oni , whose substrate vector
is x, for all i

The same reasoning assures us that the set of σ-algebras:
{
Oni
y ∩(Oni−1

y )c
}∞
i=1

are mutually
independent. We also see that

Ki ∈ Oni
y ∩ (Oni−1

y )c

Let

Gk = σ

( ∞⋃
k=i

{
Oni
y ∩ (Oni−1

y )c
})

Now let K be the event that, for any i ∈ N, with i > n1, there exists j ∈ N such that j > i
and oj = x, with j ≥ n1. Then

K = Axy =
∞⋂
i=1

 ∞⋃
j=ni

Kj

 ∈ ∞⋂
i=1

Gi

So Axy is a tail event with respect to the aforementioned set of σ-algebras, and, by Kol-
mogorov’s Zero-One Law [WIL91], has probability 0 or 1.
Now given o ∈ Ax′y, i ∈ N, we know that there exists j such that nj > i. In addition,
onj |X = x′ by definition. Due to the assumptions in Definition 2.3, we are assured that
there is a finite sequence of reactions that would take the substrate vector from x′ to x.



The probability of each of these reactions occurring is always strictly greater than zero,
regardless of the system state, again by assumption. Therefore the product of these posi-
tive probabilities, which gives the probability of the aforementioned sequence of reactions
occurring, is again greater than 0. This event would imply the occurrence of an element of
o with substrate vector x′, and index greater than nj . This is an event contained within
K, and therefore, Axy. This shows that P (Axy) > 0, so P (Axy) = 1. �

The previous lemma shows that, given a time stable simulation state space, any Gillespie
simulation will hit every substrate vector infinitely often with probability one. One would
think that this does not make sense in the context of a biological system. However, note
that the above proof gives no constraints on the time scale required to achieve such time
stability.

Corollary 4.10. Suppose there exists a time stable simulation state space, Oy on a Gille-
spie model (X,R). Then every simulation state space on (X,R) is time stable, regardless
of initial system state. This allows us to generalise the notion of time stability from a
property of a particular simulation state space to one of the whole Gillespie model.

Proof. Suppose Oy is time stable. Given arbitrary y′ = (x′, t′) ∈ Y , we are required to
show that Oy′ is time stable. Now we know from Lemma 4.9 that, on Oy, P(Ax′y) = 1.
Let

H = {o ∈ Oy : ∃k s.t. ok|X = x′}

Time stability ensures that P(H) = 1. Therefore P(H ∩ Ax′y) = 1. So any simulation
in Oy that hits x′, returns to hit x′ again infinitely often, with probability one. But this
is equivalent to saying that any simulation with initial substrate vector x′, returns to
hit x′ again infinitely often, with probability one, due to memorylessness of the Gillespie
algorithm. This implies that Oy′ is time stable. �

We proceed to prove the almost -sure existence of a limiting probability for elements of
a Gillespie simulation on a time stable model to take a given substrate state. This then
allows us to define a measure on the substrate state space proportional to the aforemen-
tioned limiting probability.

Definition 4.11. Given a time stable simulation space Oy, an arbitrary fixed x ∈ X, and
an element o ∈ Axy containing a subsequence {oni}∞i=1 with oni |X = x, we define

No
i = noi − noi−1; No

1 = no1

Note that these random variable No
i are independent and identically distributed (with respect

to both o and i), by a similar argument to that of the independence of {Ki} in Lemma 4.9.
So their distribution is solely a function of x, and not Oy. We take the random variable Nx

to be a representative random variable of the set. In other words it shares their distribution.
We term the distribution of Nx to be the return distribution of x.



Lemma 4.12. For a given time stable Gillespie model, if the mean of Nx′, µx′, is finite
for a given x′ ∈ X, then the mean of Nx is finite for every x ∈ X. We refer to such a
model as strongly time stable. Any time stable Gillespie model that does not satisfy this
property is weakly time stable

Proof. Let Cx′x be the random variable denoting the number of steps a Gillespie simulation
starting at x′ takes to reach x. Define Cxx′ similarly. Then we see that

E(Nx) ≤ E(Cx′x) + E(Cxx′) + E(Cx′x)

(1) E(Cxx′) <∞:
For a simulation o with subsequence {oni} of system states with substrate vector x′,
let A be the event that, for a given i, there exists k ∈ [ni, ni+1] such that ok|X = x,
with p its corresponding probability. Then

p× E(Nx′ |A) ≤ µx′

The reasoning is thus: Let us denote the probability space of Nx′ as (Ω,F , P ).
Then

µx′ =

∫
Ω
Nx′dP =

∫
A
Nx′dP +

∫
Ω/A

Nx′dP

All terms are positive due to non-negativity of the support ofNx′ . Now if
∫
AN

x′dP ≥
1
p × µx′ , we have:∫

A
Nx′dP ≥ p×

∫
A
µx′dP = p× 1

p
× µx′ ⊥

Now Cxx′ ≤ {Nx′ |A} by definition, so the result follows.

(2) E(Cx′x) <∞:

E(Cx′x) =
∞∑
i=1

i× pi

Here, pi is the probability that a Gillespie simulation with initial substrate vector x′

has a substrate vector x after i steps. Let k be the probability that the simulation
returns to x′ without hitting x. Then k < 1, by time stability of the model. We
also have ∑

i>n×µx′

pi < kn

Now take p̃ = supi<µx′ (pi). Then

E(Cx′x) ≤

( ∞∑
i=1

ki

)∑
i≤µx′

i× p̃

 <∞

�



Theorem 4.13. Let Oy be a simulation state space on a time stable Gillespie Model (X,R).
Fix an arbitrary x ∈ X, and, for a given o ∈ Oy, let

Bo,x
n =

{
1

n
×#{0 ≤ k < n : ok|X = x}

}
Suppose that the model is strongly time stable, so that Nx has finite mean, µ. Recall that
µ is independent of the initial state y of Oy. Then we claim that

P
({

o : liminfn→∞B
o,x
n = limsupn→∞B

o,x
n =

1

µ

})
= 1

In other words, the subset of Oy in which limn→∞B
o
n exists and equals 1

µ has probability
one.

Now suppose Nx has infinite mean. Then

P ({liminfn→∞Bo,x
n = 0}) = 1

Proof.
We deal with the case where Nx has finite mean first:
We are assured that Axy is a set of measure one, by definition. For every o ∈ Axy, there
exists {oni}∞i=1 with oni |X = x. Therefore, on this set, by the strong law of large numbers:

P

Axy⋂{
o : limi→∞

1

i

i∑
k=1

Nx
k = µ

}C = 0

This implies

P

({
o : limi→∞

1

i

i∑
k=1

Nx
k = µ

})
= 1

Now {
limj→∞B

o,x
j =

1

µ

}
=

{
lim
j→∞

1

j
noj = µ

}
=

{
limj→∞

1

j

j∑
i=1

No
i = µ

}
Thus proving the theorem.

The proof is more involved where Nx has infinite mean:
A sufficient condition for the claim is that

∀ε > 0 : P

o :

∞⋂
i=1

∞⋃
j=i

{Bo
j > ε}


 = 0 (4.5)

Now

{Bo
j > ε} = {nocj < εj} =

{ cj∑
i=1

No
i < εj

}



where cj = [εj] + 1, the value of εj rounded up to the nearest positive integer
Therefore (4.5) is equivalent to

∀ε > 0 : P

o : lim
i→∞

∞⋃
j=i

{ cj∑
k=1

No
k < εj

}
 = 0 (4.6)

We note that εj ≤ cj . Therefore (4.6) is implied by:

∀ε > 0 : P

o : lim
i→∞

∞⋃
j=i

{
1

cj

cj∑
k=1

No
k < 1

}
 = 0 (4.7)

Regardless of the value of cj , the random variable Ño
j,k = 1

cj
No
k will have infinite mean,

since this property is invariant under scaling. With our new notation, (4.7) is equivalent
to

∀ε > 0 : P

o : lim
i→∞

∞⋃
j=i

{ cj∑
k=1

Ño
k,j < 1

}
 = 0 (4.8)

A sufficient condition for the above is that there exists some value of j with Ño
k,j > 1,

with probability one. Such an occurrence is a tail event, by the same reasoning as given
in Lemma 4.9 regarding the set K. Therefore it has either probability 0 or 1. Since any
element Ño

k,j > 1 has infinite mean, there is a strictly positive probability that it will be
greater than one, ruling out the former option. We are done. �

Lemma 4.14. A Random variable with non-negative support must have defined mean,
whether finite or infinite.

Proof. The expected value of a random variable X on a probability space (Ω,F ,P) is
defined as the Lebesgue integral: ∫

Ω
XdP

This does not exist only when both the positive and negative components of the integral
both sum to infinity. However, if X has non-negative support, the above integral has no
negative component. �

Corollary 4.15. Any substrate vector on a time-stable Gillespie model must satisfy one
of the conditions of Theorem 4.13. So any time stable Gillespie model is either strongly or
weakly time stable.



Definition 4.16. Given a strongly time stable Gillespie Model, we we attach a measure
L : X → [0, 1] as follows [FAY95]:

L(x) =
1

µx
Here, µx is the mean value of Nx, the return distribution of x. Theorem 4.13 and Corollary
4.15 show us that it is defined for all x ∈ X. Since it is just a weighted form of the counting
measure, we neglect to prove that it does indeed define a measure. We name L the Limiting
Probability of X. Note that this is a probability measure. By Theorem 4.13:

P

(⋂
x∈X
{o : liminfn→∞B

o,x
n = limsupn→∞B

o,x
n }

)
= 1

Taking a simulation o from the above set, we have:

L(X) = P

(
{ lim
n→∞

⋃
x∈X

Bo,x
n }

)
= 1

5. A Time Stability Heuristic

Notation 5.1.

(1) We take d : X ×X 7→ R+ to be the L1 metric on X. So

d(x, x′) =

n∑
i=1

|xi − x′i|

(2) We take B(x, r) to define a closed ball with respect to the L1 metric. So

B(x, r) = {x′ ∈ X : d(x, x′) ≤ r}

Definition 5.2. Rests
Consider a Gillespie model (X,R), with A ⊂ X. Suppose we have a simulation o ∈ O,
with a finite string of elements: {oi}mi=k.

(1) ok|X /∈ A
(2) oi|X ∈ A ∀i = {k + 1, ...,m}
(3) om+1 /∈ A

Then we define the string {oi}mi=k+1 to be a rest of o in A, of length m− k.
Suppose we replace conditions (2) and (3) with:

(4) oi|X ∈ A ∀i > k

Then we refer to the string {oi}∞i=k+1 as an infinite rest of o in A.
Define x ∈ A as the substrate vector: ok|X . We refer to x as the entry point of the rest.



Lemma 5.3. Suppose we have two results of a subset A, with identical entry point x ∈
A. Then the random variables denoting resting length are independent and identically
distributed, with defined (possibly infinite) mean.

Proof. Independence and identical distribution are a consequence of the memorylessness
of the Gillespie Algorithm. The defined mean is a consequence of 4.14 �

Definition 5.4. Stable Mass Model
We define a Gillespie Model (X,R) to be of stable mass if there exists a subset N ⊂ X
of the form N = B(x, r) such that the following condition is satisfied for all Gillespie
simulations o:

∃ c ∈ (0.5, 1) : s.t. ok|X /∈ N ⇒ P
(
d(ok+1|X , N) < d(ok|X , N)

)
> c

Here, we assume that the reactions of the system satisfy the assumptions of Definition 2.3.

Theorem 5.5. A Gillespie Model (X,R) of stable mass is also strongly time stable

Proof. We know that the set N is of the form B(x, r) by definition. Let y = (x, 0). For a
simulation o ∈ Oy, let us denote by Qo the expected resting length of o in X/N . We prove
this is finite in the next lemma. Assuming for now that it is indeed finite, we know that
there exists x ∈ N such that the expected resting time of o in X/x is finite, due to the fact
that N contains a finite number of substrate vectors. But this is equivalent to stating that
the expected value of the return distribution of x is finite, which implies that the Gillespie
model is strongly time stable. �

Lemma 5.6. The expected resting time of a simulation o in X/N exists and is finite in a
stable mass model, where o1|X ∈ N .

Proof. We know that the set N is of the form B(x, r) by definition. Let y = (x, 0). Then,
for a simulation o ∈ Oy, let us define the function:

f : Oy 7→ ZN ; f(o)k = d(ok|X , x)

Here, ZN is the sequence space on Z. We can see that f is measurable. Also;

f(o)k > r ⇔ ok|X /∈ N

Given a rest of o in X/N : {oi}j+mi=j , with unknown length m, we wish to find the expected
length m of the rest, assuming that it exists. This transforms to the problem: Given the
information that f(o)k = r + 1, what is the expected first return time of {f(o)i} to the



interval [0, r], assuming that it exists?
Define the random variables {Zi}mi=k as follows:

Zi =


1 f(o)i ≥ f(o)i=1

−1 f(o)i < f(o)i=1

1 i = k

Then Sj =
∑j

i=k Zi is a biased random walk starting at 1. The time of the first expected
hitting of Sj to the point 0 is always greater or equal to the expected value of m, as Sj is by
definition greater or equal to f(o)j − f(o)k. As i tends to infinity, Si will, with probability

one, eventually be smaller or equal to S̃i, where:

S̃j =

j∑
i=k

Z̃i; Z̃i =


1 with probability 1-c

−1 with probability c

1 if i = k

This is due to the fact that the probability of the event {Zi = −1} is always greater than
c, by the definition of mass stability. We now show that a first hitting time exists with
probability one for {S̃j}, which implies that it exists for {Sj} with probability one as well:
Calculation gives us the following:

E(S̃n) = 1 + (n− 1)(1− 2c)

V ar(S̃n) = 1 + (n− 1)(1− c)(1 + c)4c

Applying Chebyshev’s Inequality [WIL91], gives:

P

(
|S̃n − E(S̃n)| ≥ k ×

√
V ar(S̃n)

)
<

1

k2

Since E(Sn) decreases at a rate proportional to n (since 1 − 2c < 0), while
√
V ar(Sn)

increases at a rate proportional to the square root of n, one can see that {S̃n} will almost
surely hit 0 eventually, as n increases. So m exists with probability one.
It remains to show that the expected value of this first hitting time, for the sequence {S̃i},
is finite. This implies that the same is true for {Si}, which in turn shows that the expected
value of m is finite.
Let H be the random variable denoting the length of steps required for the random walk
S̃i to hit zero, and pi be the probability of the event {H = i} (which is only nonzero when
i is odd). Then

p2i+1 =

(
2i+ 1

i

)
ci+1(1− c)i

E(H) =
∞∑
i=0

ipi ≈
∞∑
i=1

(2i+ 1)

(
2i+ 1

2i

) 3
2

c(4c(1− c))i 1√
πn

(5.1)

Equation 5.1 uses Stirling’s approximation. We note that convergence of the approximation
is sufficient to prove that of the original summation, due to the sum of error terms being
bounded. Now 4c(1 − c) < 1, due to the fact that c ∈ (0.5, 1). The presence of this
exponentially decreasing term assures us that the sum converges. �



Example 5.7. Comparison of Time Stability of Random Walks
Pólya proved that a random walk on a one or two dimensional integer lattice will return
to its starting point with probability one, but that in higher dimensions, the probability of
return was strictly smaller than one. Also proven was that the expected return time of
the one and two dimensional random walks to their starting point was infinite [POL21].
Subsequent research estimated the probability of return on a three dimensional integer lattice
to be approximately 0.34 [GLA77]. In Appendix A, we have formulated Gillespie Models
equivalent to the one and three dimensional random walks, just described. With respect to
our terminology, the first is weakly time stable, while the second is not time stable at all.

We construct and prove strong time stability of a weakly constrained three dimensional
random walk Gillespie model, in Appendix A.4, using Theorem 5.5. The counterintuitive
physical interpretation is that an unbiased random walk will meet a given point on the Z3

lattice with probability less or equal to 0.35, while one in which a weak drift term towards the
origin is present outside of a ball around the origin, will meet every point with probability
one.

Example 5.8. A Circadian Model
Consider our Circadian Model described in Appendix B, and graphed in Figure 3. The
probability of a reaction of decreasing mass, given substrate vector x ∈ X is equal to:

10∑
i=1

Ri+10(x)

Ri(x) +Ri+10(x)

A sufficient condition for mass stability of the model around a set of the form B(0, r), for
some finite r, is that the above summation is always greater than some c > 0.5, when x
is outside of the set B(0, r). Upon algebraic manipulation, this reduces to the following
inequality being satisfied, for some Kr > 0, dependent on r:

(v2 − v3)x1 + v4x10 −
v1

1 + x4
10

> K
10∑
i=1

xi

This inequality is not satisfied mathematically on all but a set of finite mass, as would
be required for mass stability around a set of the form previously described. It fails due
to the fact that the ratio between the quantities

∑9
i=2 xi and x1, is unbounded. However,

incorporation of a bound in the Gillespie model, which would be physically realistic, given
that x1 levels drive the rate of production of {x2, ..., x9}, would imply mass stability of the
model.

Time Stability with respect to External Time
Time stability is defined with respect to internal time; the number of system state changes
a Gillespie undergoes. One easily observes that it is preserved under the transformation to
external time. What is not so clear, however, is whether strong time stability is invariant
under this transformation. In other words, does the (in)finiteness of the expected value of
the internal time return distributon determine that of its external counterpart?



Conjecture 5.9. There exist Gillespie models that are only weakly time stable, such that
the expected external time between a simulation hitting the same substrate vector is finite.

Reasoning Consider the Modified Random walk given in Appendix A.2. The dynam-
ics are the same as in the unmodified version with respect to internal timestep, and it
is therefore weakly time stable. However, the amount of elapsed time between reactions
decreases doubly exponentially as the mass of the system increases. It could therefore be
possible that the external expected return time between oscillations was finite. A sufficient
condition for this to be true would be that there existed an interval I = [−r, r], for some
r ∈ N, such that the expected elapsed resting time of Z/I was finite. A heuristic for the
proof would be to show the terms in the expansion of the expected value of this resting
time decreased fast enough as r increased, to allow the above to be true for some finite
value of r. This would then prove it to be true for any value of r.

Note that computer simulation may not be a useful tool in the determination of time sta-
bility. A seemingly time stable system might in fact have a critical substrate state, unlikely
to be reached after a computationally tractable length of time, which, when reached, has
a probability of irreversibly changing the dynamics of a simulation in such a way that
previously attained substrate states are no longer reached with probability one.

6. A Categorisation of the Concept of Oscillatory Dynamics on a
Gillespie Model

The notion of an oscillating system is well defined in the deterministic setting. One merely
need find a system state that is repeated after some defined time value, which we call the
period of the oscillation. Adding an external noise to a deterministic oscillation does not
complicate the definition unduly. The underlying trajectory would be unaffected by the
noise values in such a setting, and could easily be uncovered by spectral analysis. In a
Gillespie simulation, however, the path of the underlying trajectory will be determined by
past noise values, which makes determination of period, and, indeed, what constitutes an
oscillatory behaviour, ill defined. In this section we outline some possible means of arriving
to such a definition.

Proposition 6.1. Any strongly time stable Gillespie model oscillates in the sense that there
is an expected (finite) return time of a simulation on the model to any substrate vector it
has already reached.

For a proof of the above proposition, refer to Section 4. Strong time stability, however, is
not a sufficient condition for the existence of what we would empirically term an oscillatory
model. For instance, a random walk on a finite lattice will revisit every point infinitely
often, with a finite expected return time. We would however hardly characterise this as an
oscillatory system.

The above proposition shows that the notion of eventual return to the same system state is
ill-suited to the stochastic setting. Let us therefore consider another property of determin-
istic oscillators. A sine wave could be considered the most basic oscillatory system. The



function:
f(x) = sin(x)

has a period of 2π. We could describe any point on this trajectory by its phase, which
would generally be defined as its value modulus 2π. An alternative definition of phase could
be given by constructing a bijective mapping between the phase as previously described,
and some other property of the trajectory. We do so by fixing a timestep α such that the
quantity f(t+ α)− f(t) is unique to the value of t, modulus 2π. One appropriate value of
α is one that corresponds to one quarter of the period. Figure 1 graphs f(t + α) against
f(t). We see that this results in a perfect circle. We can now define the phase of a point
f(t) by the angle of the point it corresponds to on the circle.

In a similar vein, a Gillespie simulation of the Circadian Model (Appendix B), part of
which is plotted in Figure 2, was realised computationally. An algorithm (omitted) was
created to determine an average period of oscillation, β, for the PER1 protein. We use the
word oscillation loosely here, as, since we have not yet constructed an exact definition. The
algorithm determined the average spacing between peaks, where multiple vacillations in
quick succession around a single local maximum were ignored. Let g(t) be the trajectory of
the Gillespie simulation. Figure 4 provides a graph of g(t+β) against g(t). We note that the
shape of the graph bears only a very superficial resemblance to the circle obtained under the
analogous transformation of the sine function (Figure 1). However, a shared property of the
graphs is the constant unidirectional change in angle with respect to a central point. This
corresponds to the ‘phase’ of each model increasing in the same direction with time. We
now construct a possible definition of a stochastic oscillator that is based on the existence
of this property.

Definition 6.2. Phase Function
Pick c ∈ Rn. We define the phase function of c as follows:

Qnc : Rn × Rn 7→ [0, 2π)n

(Qnc )i(a, b) = atan2
(
(ai − ci), (bi − ci)

)
i ∈ {1, ..., n}

Here, atan2 is a commonly used modification of the arctangent function. atan2(a, b) gives
the angle, in radians, between the positive x-axis and the vector from the origin to the
Cartesian co-ordinate (a, b). [MAT12].

Definition 6.3. Jump Function
Consider a Gillespie Model (X,R) together with a positive integer α. Pick an x ∈ X, and
take y = (x, 0) ∈ Y . Given o ∈ Oy, we take:

Jα,o : X 7→ X

Jα,o(x) = oα|X

Definition 6.4. Mapping to the Phase Space
Consider a Gillespie Model (X,R), where X ∼= Nn Pick a point c ∈ Rn/X, a positive



integer α ∈ N, and a Gillespie simulation o with o1|X = x. We define a mapping Tc,α from
X ×O(x,0) to [0, 2π)n as follows:

Tc,α(x, o) = Qnc
(
x, Jα,o(x)

)
We also define:

Hc,α(x) = E(T (x)) =

∫
o∈O(x,0)

Tc,α(x, o) dP

Our expected value is taken with respect to the probability measure espoused in Definition
4.7. We refer to Im(Hc,α) as the phase space with respect to the parameters of H.

The ith component of Tc,α(x, o), to put it plainly, calculates the difference in angle between
the two lines originating at ci, and respectively ending at xi and the position of xi after α
steps of the simulation o. E(T (xi)) gives the expected value of this angle over the proba-
bility space of simulations. We require that both lines are non-trivial (ie not a point), in
order for such an angle to exist. The constraint of c to Rn/X ensures this.

H, meanwhile, gives a family of mappings from the substrate vector space X to the phase
space [0, 2π)n, parameterised by the values c and α. Note that, since there are only a
countable number of elements in X, any H-mapping is necessarily non-surjective, and any
phase space is countable.

Definition 6.5. Generators on the Phase Space
Recall the flow map ϕ, from Definition 3.5. We define a family of mappings on the phase
space, parameterised by values c ∈ Rn/X, and α ∈ N, as follows:

Kc,α : Im(Hc,α) 7→ [0, 2π)n

Kc,α(h) =

(
E
(
Hc,α

(
ϕ|X(1, ω, y)

)
|Hc,α(y|X) = h

)
− h
)

mod 2π

Note that the expected value here is taken with respect to the probability measure V defined
on Ω in Definition 3.4.

Given that a system state is in a given phase, with respect to some c and α, the function
Kc,α outputs the expected value of the change in phase after one step of the Gillespie
Algorithm. In an oscillatory system, we would want the direction of this change in phase
to be invariant with respect to the original phase. In other words, we want K to be an
order preserving map. We give a rigorous definition of an order preserving map below:

Definition 6.6. Order Preserving Map
Suppose we pick three arbitrary vectors h1, h2, h3 ∈ K ⊂ [0, 2π)n, with the ith component of

the vector hj denoted hji . We define

f : K 7→ [0, 2π)n

to be an order preserving map if, for all i ∈ {1, ..., n}:

hj1i > hj2i > hj3i ⇒



(1) f(hj1i ) > f(hj2i ) > f(hj3i ) OR

(2) f(hj3i ) > f(hj1i ) > f(hj2i ) OR

(3) f(hj2i ) > f(hj3i ) > f(hj1i )

In other words, the order of the points on the canonical circle formed by identifying the
ends of the interval [0, 2π), is preserved.

Definition 6.7. Absolutely Oscillatory System
We define a strongly time-stable Gillespie Model (X,R) to be an absolutely oscillatory
system if there exists c ∈ Rn/X, and α ∈ N such that Kc,α is an order preserving map.
We name Kc,α a rotation map of the system. Note that it may not be unique.

Note that one could also define a relatively oscillating system by requiring Kc,α to be order
preserving on a restriction of its domain to a set of high limiting probability.

The obvious way to form a notion of the period of an absolutely oscillatory system would be
to find the average ‘rotation’ realised by the rotation map over its domain. This cannot be
done by iterating the rotation map infinitely, and finding the average rotation, a technique
often used in a dynamical systems setting (See ‘Poincare Rotation Number’, [DEV92]).
The reason is that the domain and range of the map are not equal. We instead proceed as
follows:

Definition 6.8. Measure on the Phase Space
Assume we have a strongly time stable Gillespie Model. Recall the Limiting probability
measure on X defined in 4.16. We can transport it to any phase space of the form Im(Hc,α)
as follows:

L(h) = L
(
{x ∈ X : Hc,α(x) = h}

)
Countability of both spaces makes measurability of the mapping trivial

Lemma 6.9. Suppose (X,R) is an absolutely oscillatory Gillespie model, with a rotation
map Kc,α. Let us turn the (countable) elements of the phase space into a sequence {hi}∞i=1.
Let us define

Sn =

n∑
i=1

Kc,α(hi)L(hi)

Then limn→∞Sn exists and is invariant with respect to permutations of the indexing of the
set {hi}

Proof.
∞∑
m

Sm ≤ 2π
∞∑
m

L(hm) ≤ 2π



Therefore {Sn} is a Cauchy sequence and convergent. Since every term in the summation
is non-negative, it is also absolutely convergent, and the limit is therefore independent of
the indexing of {hi}. �

Definition 6.10. Period of the Rotation Map of an Absolutely Oscillatory Sys-
tem
Given a rotation map Kc,α, and taking Sn as in Lemma 6.9, we define the period of the
rotation map , βc,α of an oscillator as

limn→∞Sn

Lemma 6.11.
Suppose Kc,α is a rotation map. For a simulation o, let

S̃ok =
1

k

k∑
i=2

(
Hc,α(oi)−Hc,α(oi−1)

)
Then

P({o : limk→∞S̃
o
k = βc,α}) = 1

Proof. Given a subsequence {oni} such that Hc,α(oni |X) = hj , we are assured, by the strong
law of large numbers, that

limk→∞
1

k

k∑
ni=2

(
Hc,α(oni)−Hc,α(oni−1)

)
= Kc,α(hj)

with probability one. The result is then a consequence of Theorem 4.13.
�

Conjecture 6.12. Any two rotation maps of an absolutely oscillatory Gillespie Model have
the same period

Reasoning
Given two rotation maps Kc,α and Kc′,α′ , we would expect, by the strong law of large
numbers, that ;

P
({

o ∈ Oy :
(
limk→∞

1

k

k∑
i=1

Kc,α(oi|X) = βc,α
)⋂(

limk→∞
1

k

k∑
i=1

Kc′,α′(oi|X) = βc′,α′
)})

= 1

for any initial system state y ∈ Y . If βc,α and βc′,α′ were different, then the above set of
simulations would ‘wrap around’ the points c and c′ at different rates, in the respective
phase spaces. This would be equivalent to the limiting rate of oscillation of a simulation
being different with respect to two different viewing points on the substrate state space,
which would only be possible if both viewing points were not ‘centred’ inside the expected
oscillation trajectory. However, the placing of the points c and c′ are both necessarily
‘centred’ in such a way, in order for Kc,α and Kc′,α′ to define rotation maps.



Appendix A. Random Walk Models

A.1. One Dimensional Random Walk.
The following Gillespie Model (X,R) recreates a random walk on the integer lattice:

(1) X ∼= Z
(2) Reactions r1, r2 satisfy assumptions of 2.3
(3) R1(x) = R2(x) = 0.5

A.2. Modified One Dimensional Random Walk.
The following Gillespie Model (X,R) recreates a random walk on the integer lattice:

(1) X ∼= Z
(2) Reactions r1, r2 satisfy assumptions of 2.3
(3) R1(x) = R2(x) = 0.5(exp(exp(

∑n
i=1 xi)))

A.3. Three Dimensional Random Walk.
The following Gillespie Model (X,R) recreates a random walk on the three dimensional
integer lattice:

(1) X ∼= Z3

(2) Reactions r1, r2, ..., r6 satisfy assumptions of 2.3
(3) Ri(x) = 1

6 ∀i ∈ {1, 2, ..., 6}

A.4. Three Dimensional Weakly Constrained Random Walk. The following Gille-
spie Model (X,R) recreates a weakly constrained random walk on the three dimensional
integer lattice:

(1) X ∼= Z3

(2) Reactions r1, r2, ..., r6 satisfy assumptions of 2.3
(3) For some r ∈ N, d ∈ (0.5, 1), we have:

Ri(x) =


1
6 x ∈ B(0, r)

1−d
3 x /∈ B(0, r), i ∈ {1, 2, 3}

d
3 x /∈ B(0, r), i ∈ {4, 5, 6}

Lemma A.1. The Three Dimensional Weakly Constrained Random Walk Model is strongly
time stable

Proof. By Theorem 5.5, it is sufficient to prove that the model is of stable mass. But this
is obvious upon observation of the definition of stable mass; for any Gillespie simulation
o ∈ O, we have:

ok|X /∈ N ⇒ P
(
d(ok+1|X , N) < d(ok|X , N)

)
= 3

(
d

3

)
= d > c

for some c > 0.5.
�



Appendix B. The Circadian Model

The existence of the circadian clock, nearly universal to animal species, is hypothesised
to derive from a complex autoregulatory gene network, which undergoes one complete os-
cillation over an approximately 24 hour period [GOLO3]. The expression of the protein
PER1 are understood to be involved in this process. Goldbeter et al. [GOL03] propose
a 30 parameter model of the dynamics of PER1 expression levels, which they then realise
through the Gillespie Algorithm. We simplified this model, while aiming to reflect the
overall dynamics of the process. A summary of the simplified processes affecting PER1
regulation is described below, and derived from [MOR08] (in which an alternative simpli-
fied model is suggested):

(1) The presence of PER1 MRNA in the cell ribosome instigates translation of a pro-
tein we shall term IP1 (‘Intermediate Protein 1’). This is essentially a completely
de-phosphorylated version of the PER1 protein.

(2) IP1 undergoes several stages of phosphorylation, at a constant rate that we shall
term the protein forward rate, into IP2, IP3, etc.

(3) The final product realised after complete phosphorylation is the PER1 protein.
The presence of PER1, which acts as a transcription factor, inhibits transcription
of the PER1 MRNA.

Note that both the PER1 protein and PER1 MRNA in this process degrade constantly at
a rate proportional to their overall level in the cell.

Upon computational experimentation, I determined that at least 8 intermediate phospho-
rylation stages were required to induce an obviously oscillatory Gillespie Algorithm reali-
sation of the model. The Gillespie Model (X,R) used is described below, and a graphical
simulation is provided (Figure 3):

CONSTANTS: (Experimentally derived in [GOLO3])

(1) Ω (Scaling constant, setting size of the system)
(2) v1 = 30Ω (MRNA transcription rate)
(3) v2 = 36 (MRNA degradation rate)
(4) v3 = 2 (MRNA translation rate)
(5) v4 = 0.5 (Transcription Factor degradation rate)
(6) λ = 1.666667 (Phosphorylation rate)

SUBSTRATES:
X1 describes the quantity of PER1 MRNA in the ribosome.
X2, ..., X9 describe the quantities of the intermediate proteins in the nucleus.
X10 describes the quantity of the PER1 protein in the nucleus.

X = (X1, X2, ..., X10) ∼= N10

REACTIONS



The reactions of the system, {r1, r2, ...r20}, follow the assumptions of Definition 2.3. The
reaction rate function, R, is as follows:

R1(x) =
v1

1 + x4
10

R11(x) = v2 × x1

R2(x) = v3 × x1 Ri(x) = λ× xi−10 i ∈ {12, ..., 19}
Ri(x) = λ× xi−1 i ∈ {3, 4, ...10} R20(x) = v4 × x10

Appendix C. Deterministic Analogues

Definition C.1. Deterministic Analogue
Consider a Gillespie Model (X,R), with n substrate and m reaction types. Recall that
X ∼= Nn.
We define the deterministic analogue of the Gillespie Model (X,R) to be a pair (Rn, R̃),
satisfying the properties:

(1) R̃ : Rn → Rm
(2) R̃(x) = R(x) ∀x ∈ Rn ∩X
(3) Given any initial value problem of the form:

x′(t) = R̃(x(t)) (x0, t0) ∈
(
Rn ∩X,R+

)
We have: xi(t) ≥ 0 ∀t > 0, i ∈ 1...n

We say R̃ is an extension of R to Rn. It is not unique.
We define the deterministic analogue of a Gillespie trajectory, with initial substrate vector
x0 and elapsed time t0, to be a solution of the Initial Value Problem:

x′(t) = R̃(x(t))

Definition C.1 gives the sense that choosing an appropriate deterministic analogue to a
Gillespie Model presents a problem. In practice, most Gillespie Models are derived from
pre-existing deterministic analogues, rather than vice versa, sidestepping the problem. In
any case, a computationally practicable Gillespie model is likely to have a closed-form
expression for the reaction rate vector field, which will admit an obvious continuous exten-
sion, as can be seen in, for example, the Circadian Model described in Appendix B.

Conjecture C.2. Given any Gillespie Model (X,R), there exists a deterministic analogue

(Rn, R̃) such that R̃ is both continuous and infinitely differentiable.

A proof of the conjecture is outside the scope of the essay. Suffice to say that, given n
points in Rn, it is possible to construct a degree n polynomial passing through each of
them. Similarly, given a countable, nowhere-dense, subset of Rn, it is possible to construct
a power series function, which is by definition continuous and infinitely differentiable, that
passes through each point.



Appendix D. Index of Terminology

Substrate State Space: Definition 2.1
System State Space: Definition 2.2
Reaction State Space: Definition 2.3
Reaction Rate Vector Field: Definition 2.4
Gillespie Model: Definition 2.5
Classical Gillespie Algorithm: Algorithm 2.7
Gillespie Simulation: Definition 2.8
Trajectory of Gillespie Simulation: Definition 2.9
Random Sequence Space: Definition 2.11
Modified Gillespie Algorithm: Algorithm 2.13
Random Dynamical System: Definition 3.1
Flow Map: Definition 3.5
Simulation State Space: Definition 4.1
Decomposition Map: Definition 4.3
Time Stability: Definition 4.8
Return Distribution: Definition 4.11
Time Stability: Strong, Weak: Lemma 4.12
Limiting Probability: Definition 4.16
Rests: Finite, Infinite: Definition 5.2
Stable Mass Model: Definition 5.4
Phase Function: Definition 6.2
Jump Function: Definition 6.3
Phase Space: Definition 6.4
Order Preserving Map: Definition 6.6
Absolutely Oscillatory System, Rotation Map: Definition 6.7
Period of Rotation Map: Definition 6.10



Appendix E. Figures

Figure 1. Plot of sin(x) against sin(x+ α); α = 0.5π

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

x = sin(x), y = sin(0.5 π + x)

Figure 2. A trajectory of the Deterministic Analogue to the Circadian
Model described in Appendix B
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Figure 3. A Gillespie trajectory of the Circadian Model described in Ap-
pendix B , with scale parameter Ω = 1
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Figure 4. Plot of g(t+β) against g(t). Here, g(t) is the Gillespie trajectory
of PER1 protein in a Gillespie simulation of the Circadian model. β = 9.8



Appendix F. A list of definitions and results that have analogues in
Markov Chain Theory

Strongly and weakly time stable Gillespie Models correspond to positive recurrent and
recurrent ergodic Markov Chains [FAY95]. The construction of these objects involves
Lemma 4.9 and Corollary 4.10, which have analogues in [FAY95].

The formulation of Lemma 4.12 was motivated by a similar result in [FAY95].

Theorem 4.13 corresponds to the Ergodic Theorem for Markov Chains [FAY95]

The idea of Definition 4.16 was motivated by an identical result in [FAY95]

All of the proofs of the above results were arrived at completely independently of [FAY95],
and do not bear a resemblance to their existing counterparts
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