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Abstract

The problem of controlling linear systems subject to actuator nonlinearities is considered
in three parts: modelling of the combined system for control, analysing the stability and per-
formance properties of nonlinear systems, and implementation of controllers which (wholly
or partially) compensate for actuator nonlinearities.

We start with the analysis problem. A simple H,-norm based stability criterion for
sector [0, 1] nonlinearities is given, which additionally provides an Lo performance bound if
the nonlinearity is an ideal deadzone. We then derive a novel method for analysing the local
stability properties of systems with ideal deadzone nonlinearities, and generalise this result
to a class of deadzone-like nonlinearities. This method is shown to be simple to calculate,
and to highlight the important open-loop properties affecting the results.

The question of modelling nonlinear actuators is then considered, with particular em-
phasis on magnitude and/or rate limitations. We propose to model only the linear region of
the actuator’s behaviour, and to condition ( “precompensate”) the controller output so as to
remain within this region of linear operation by, for example, saturating the control signal.
The main advantages of such a scheme are that the nonlinear perturbation is measurable
(since it is implemented within the controller) and that complex actuator behaviours outside
the linear regime need not be modelled.

Finally, we consider applying anti-windup control schemes to systems with nonlinear
actuators and “precompensation” as described above. For stable plants with magnitude
and/or rate limitations we show that it is always possible to globally stabilise the system, and
for the common case of a magnitude limitation we give a synthesis method which guarantees
Lo performance. For unstable plants we show that global stability cannot be achieved, and
discuss synthesis to improve local stability.
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Chapter 1

Introduction and summary

This thesis is concerned with the problems of modelling, analysing and controlling sys-
tems comprising a linear time-invariant “plant” driven by a nonlinear “actuator”. Many
real systems may be assumed to be of this form, even though there may be no discernible
“actuators” in the system, and even in many cases if the “plant” is nonlinear, provided that
it is linear around some nominal operating point.

For example, a spacecraft can be assumed to comprise a mass (the “plant”) driven by an
impulsive force (the “actuator”). In this case it is clear that the actuator is nonlinear: the
rocket motor cannot supply an infinitely large impulse. It is equally clear that the plant is
linear: it follows Newton’s laws of motion ... or does it?

If we try to model the system with perfect fidelity, then we must accept that Newton’s
laws break down for speeds comparable to the speed of light. So, the plant is not really
linear! However, we can clearly ignore this nonlinearity, since the rocket motor probably has
insufficient fuel to reach such a high velocity, and hence for this spacecraft our assumption
of plant linearity and actuator nonlinearity is justified.

In general, the assumption of plant linearity is justified provided that the plant behaves
linearly within the limitations imposed by the actuator nonlinearity.

We approach the topic in three distinct sections, which respectively consider nonlinear
stability analysis, nonlinear actuators and anti-windup control.

Nonlinear stability analysis

The first part of the thesis (Chapter 3) is concerned with methods for determining the
stability (or otherwise) of systems comprising the feedback interconnection of a linear, time-
invariant transfer function and a nonlinear operator.

We consider both global and local results, ie results which hold for all signals in some
space (eg v € L) or only for some subset of that space (eg v € Lo such that ||v|, < ¢)
respectively.

It is worth taking a moment to consider exactly what is meant by a “local” result:

Consider a linear, time invariant transfer function G € H.. It is well known that for any
v € Ly and w = Gov

[wlly < 1G] llvll,
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This is a typical example of a global result': it holds for all v € £,. We say that [|G]|_ is
the gain of the operator G.
Now consider a nonlinear function (actually an ideal deadzone function) defined by

v(t)—1 ifo(t)>1
w(t) =40 if lv(t)] <1
v(t)+1 ifo(t) < —1

For this function it is quite easy to see that ||wl||, < ||v||, for any v € Ly; it is also clear
that ||wl|l, = 0if ||v|| < 1. In fact, there is a simple relationship which connects these two

results
holl, < 4 if [Jull < 1
w - .
22— @) ol ol > 1

This, then, is a local result: if v is in some restricted set (for example, if ||v]| < €) then the
“gain” of the operator (to use the term loosely) may be bounded (by zero if ¢ < 1 and by
1 — 1 otherwise)

The same concept can be extremely useful if the operator does not satisfy a global gain
bound: consider a nonlinear function defined by

w(t) = {v(t)}”

This function does not have a finite gain: for any v > 0 there exists v € L5 such that
|wl|ly, > 7 ||v|ly; however, the following local relationship does hold for all v € Lo with
bounded magnitude

lwlly < flvll 1ol

These two simple examples were dependent on the magnitude (L-norm) of the input
signal v; the local stability results we derive in Chapter 3 will relate the energy content
(Lo-norm) of the external input z and output w of a nonlinear system, and will take the
following form:

lwlly < Fe) llzll, if 2]l < e

where we give methods for (conservatively) estimating the nonlinear “gain” F(e) for values
of € in some range (which may be finite or infinite, depending on whether the nonlinear
system is stable.)

Our motivation is that bounding the energy content is a good way to model isolated
disturbances (such as wind gusts affecting an aircraft), although of course it is less good for
modelling persistent disturbances (such as noisy measurements.)

With the assumption of causality, all such results will also hold on truncated time intervals [0, 7], ie
[Hrwll, < |G|l [Hroll,

where Il denotes the truncation operator (which we define on page 14)



Nonlinear actuators

The second part of the thesis (Chapter 4) is concerned with the modelling and control of
systems with nonlinear actuators.

As stated earlier, we assume that the system comprises a linear plant and a nonlinear
actuator. We then assume that the actuator has two distinct regimes of operation: a linear
time-invariant behaviour for input signals in a nominal range, and a nonlinear behaviour
for other signals. This may be considered a vast over-simplification, but it is a common
assumption (and much more realistic than assuming, for example, perfect ideal saturation)

We then introduce the concept of modifying the control signal so that the actuator
remains in its nominal range of operation. This concept is not new — it is common practice
to saturate the control signal before applying it to the system (indeed, a Digital-to-Analogue
Converter does this implicitly!) — but the approach does not appear to have been discussed
widely in the anti-windup literature.

For a number of common actuator nonlinearities (including magnitude and/or rate limi-
tations) we provide a method of achieving this modification in a manner which is robust to
errors in estimating the parameters of the actuator nonlinearity.

Anti-windup control

The final part of the thesis (Chapter 5) is concerned with designing control systems which
(wholly or partially) compensate for actuator nonlinearities.

We assume that the system can be represented by linear time-invariant dynamics with an
input-additive nonlinear perturbation, and furthermore assume that a linear, time-invariant
controller for the nominal dynamics is provided a priori.

We then show how to parametrise families of linear, time-invariant anti-windup compen-
sators which recover the nominal linear behaviour if the nonlinearities are inactive for all
time.

Anti-windup compensator synthesis for a simple magnitude limitation (saturation) is
discussed in some detail; we state under what conditions the closed-loop system may be
stabilised, and give a synthesis method for this case which guarantees £, performance (in a
certain sense.)

In the case when the closed-loop system may not be stabilised, we discuss how to syn-
thesise an anti-windup controller to optimise local stability (in a certain sense.)

We then briefly discuss anti-windup synthesis for other actuator nonlinearities.
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1.1 Outline of the thesis

Chapter 2: Preliminaries

In Section 2.1 we briefly outline some essential standard information about spaces of
constants, signals, linear operators and nonlinear operators. Then in Section 2.2 we discuss
in some detail the properties of saturation and deadzone functions. Finally, in Section 2.3
we present a method for determining approximate solutions to mixed Ho-Ho problems.

Chapter 3: Stability analysis of nonlinear systems

In Section 3.1 we motivate and formulate our stability analysis problem, followed in
Section 3.2 by a discussion of a generalisation of the H,, norm which will play a large part
in the local stability analysis. Then, in Section 3.3 we collect a number of known results
relating to global stability analysis. In this section we also give a simple H,,-norm-based
stability criterion for [0, 1] sector-bounded nonlinearities, which is related to the well-known
Circle criterion.

In Section 3.4 we present a novel method for determining the local stability properties
of a simple system comprising a linear, time-invariant transfer function and a nonlinear
feedback. The method is derived initially for the ideal unity deadzone nonlinearity, and then
generalised to a large class of deadzone-like nonlinearities. This analysis is illustrated by a
number of examples.

Chapter 4: Systems with nonlinear actuators

In Section 4.1 we discuss how to model nonlinear actuators and introduce the idea of
a precompensator to ensure that the actuator remains in its nominal linear regime, then
in Section 4.2 we discuss sets of signals which do not violate specified magnitude or rate
constraints.

In Section 4.3 we then consider models and precompensators for some common actu-
ator nonlinearities, including magnitude and/or rate limitations. Having determined the
appropriate precompensator for each case we then show how the resulting interconnection is
suitable for anti-windup compensation.

Chapter 5: Anti-windup control

In Section 5.1 we discuss the concept of anti-windup compensation, and formulate the
problem of synthesising a compensator to guarantee stability in both a global and a local
sense. Section 5.2 then proposes a tractable parametrisation of all (useful) anti-windup
compensators, based on coprime factors and derived from the unified framework of Kothare
et al [KCMN94].

Finally, in Section 5.3 we combine many results from the preceeding chapters to give a
complete overview of the anti-windup control problem for each of the actuator nonlinearities
discussed in Chapter 4.

The question of synthesis in the case of an input magnitude limitation (saturation) is
discussed in some detail, and a method is proposed which guarantees both global stability
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and Ly performance (in a certain sense) for stable nominal plants. For unstable nominal
plants we discuss how to optimise local stability, in the sense of Section 3.4.

Synthesis for other limitations is briefly discussed, and it is shown that a (suboptimal, in
some sense) scheme exists which guarantees global stability in each case, provided that the
nominal plant is stable.

Chapter 6: Conclusions

The main contributions of the thesis are summarised, and some suggestions for future
work are made.
Appendix A: Design example

To illustrate the methods presented in the body of the thesis we give a design example
which demonstrates the synthesis and analysis of an anti-windup compensator for a simple
unstable plant.

1.2 List of symbols and definitions

General symbols & definitions (used throughout)

R, C The real and complex numbers respectively
Diag{ay, as,--- ,a,} The diagonal composition of ay,as,--- ,a,
L, and L,. Spaces of Lebesgue integrable signals, and their extensions
C The space of continuous signals
D, The space of right-differentiable signals
R, The space of proper real-rational transfer functions
[%’%] State-space representation of a member of R,
RHs The stable subspace of R,
RHs The strictly proper subspace of RH
[I; Equation 2.1 on page 14
Coprime factorisations Definition 2.1 on page 18
Q Equation 2.5 on page 18
Saturation functions Definitions 2.2 & 2.3 on pages 22 & 25
Sat, & Sat, Equations 2.8 & 2.15 on pages 23 & 25
Dzn, & Dzn, Equations 2.9 & 2.16 on pages 23 & 25
Sgn & Sgn  Equations 2.11 & 2.17 on pages 24 & 25
Ay Definition 2.4 on page 28
Well-posedness Definition 3.3 on page 54
Stability Definition 3.4 on page 54

Local stability

Definition 3.5 on page 55
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Symbols & definitions specific to Chapter 3 (Stability analysis)

Many of the following symbols are defined twice: once for the specific case of the deadzone
nonlinearity (in Section 3.4.1), and then later in a more general way (in Section 3.4.2) In
these cases, the equation number and page reference for the general definition are given first,
with the deadzone-specific case given in parentheses.

1
P
SqM7 Sq[upper] & Sq[lower]

Equation 3.12 on page 53
Equation 3.13 on page 53
Equations 3.1, 3.2 & 3.3 on pages 44, 45 & 45

g I Definition 3.1 on page 46

upper] [lower]

ViEcls upper] & Yyowey  Definition 3.2 on page 49

Alraps A upper & N, Equations 3.34 (3.19), 3.40 & 3.40 on pages 72 (59), 73 & 73

Alrcps Nappen & Allower] Equations 3.35 (3.20), 3.41 & 3.41 on pages 72 (59), 73 & 73
Ape,  Equation 3.50 (3.31) on page 83 (69)

Aras A[upper] & Apowe;  Equations 3.36 (3.21), 3.42 & 3.42 on pages 73 (60), 73 & 73
Zirets Zinoper & Ziowens  Equations 3.37 (3.22), 3.43 & 3.43 on pages 73 (64), 73 & 73
2 [upper} & 20 ey Equations 3.38 (3.24), 3.44 & 3.44 on pages 73 (65), 73 & 73
ZRe, 200 & Zo, BEquations 3.39 (3.23), 3.45 & 3.45 on pages 73 (64), 73 & 73

Symbols & definitions specific to Chapter 4 (Systems with nonlinear actuators)

PBin(s) LTI dynamics of plant
P.t(s) Nominal dynamics of limited-authority actuator
U... Output constraint space for limited-authority actuator
U, Nominal input space for limited-authority actuator
l:lnom Estimated subset of U o
Precompensator admissability Definition 4.1 on page 102
M, & P4 Equations 4.3 & 4.4 on page 103
Ry, & Mp  Equations 4.5 & 4.6 on page 103
M, . & M'yc  Equations 4.7 & 4.8 on page 104
Ry, & R'pe  BEquations 4.9 & 4.10 on page 106

Symbols & definitions specific to Chapter 5 (Anti-windup compensators)

Anti-windup stabilisation problem Problem 5.1 on page 135
Local anti-windup stabilisation problem Problem 5.2 on page 135



Chapter 2

Preliminaries

2.1 Spaces of constants, signals and operators

2.1.1 Scalars, vectors and matrices

Let R and C denote the real and complex numbers respectively. Intervals of real numbers
(possibly including the point at infinity) are denoted in the usual way! as [a, b], [a,b), (a,b]
and (a,b). The interval [0, c0), ie the non-negative reals, is denoted R.

v € R (or v € C) is then a constant scalar, v € R™ (or v € C™) a constant vector,
and A € R™" (or A € C™") a constant matriz. We will often omit the dimension if it is
essentially arbitary, or clear from context, and unless otherwise noted we shall observe the
convention of boldface for vectors and capital letters for matrices. We identify the individual
elements of v and A as:

U1 A A oo Ay,

Vg Agp Ay - Ay,
v = . = . . . .

Um Ami Ama o+ Apn

and will use the notation A = Diag{A;, As,---, A,} to mean

A 0 0

0 A 0
A= . :

0 0 A,

Note that we will occasionally write A = Diag{A;} as shorthand.
The trace of a square matrix is defined as

Trace(A) = All + A22 + A33 + et Ann

and is equal to the sum of the eigenvalues? of A.

1Some authors insist that a < b for the interval to be defined; we do not take this view, but simply assume
that if @ > b then the interval is empty.
2A scalar )\ is an eigenvalue of H if there exists some v such that Hv = \v.



We measure the size of scalars, vectors and matrices in the usual way as
lv] : = Vvt
[o]| : = Vvrv
]l = v/ Amax (A*A)

where A* denotes the complex conjugate transpose of A (note that for real A this is identical
to the transpose A”) and A, (A*A) denotes the largest eigenvalue of A*A.

2.1.2 Signals and signal spaces

The basic signal spaces considered in this thesis are the £, spaces (1 < p < 00), which are
Banach spaces® of equivalence classes* of Lebesgue measurable® signals defined on positive
time.

For 1 < p < oo, the elements of £, are those signals for which the pth power of the
absolute instantaneous value of the signal is Lebesgue integrable and finite. The norm on

Cp is then defined as
1
o0 p
oll, = ( / [ dt)

The elements of £, are those signals which are essentially bounded. The norm on L is
then defined as

[Vl == esssup [lv(¢)]
te[0,00)

We also use the so-called extended spaces £,. (1 < p < 00), for which we require the
truncation operator 11 defined for T" > 0 as

)= {5 e @

which allows us to define £,. (1 <p < o00) as

Ly = {v My € £, for all finite T > 0} (2.2)

3A Banach space is a complete normed vector space, ie one where every Cauchy sequence converges; a
Cauchy sequence v1, v, ... is one where, for any e > 0, there exists some integer N such that ||v,, — v,|| < e
for all n,m > N.

4Two signals v1, vs are said to be equivalent if they are equal almost everywhere.

A signal v(t) is Lebesgue measurable if all of its scalar components are Lebesgue measurable; a scalar
signal v;(t) is Lebesgue measurable if its inverse maps any Borel subset of R to another Borel subset of R; a
Borel set is one which is generated by any countable number of unions and/or intersections of intervals.
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Note that the norm on £, (for any 1 < p < 00) is a true norm on the equivalence classes,
but only a semi-norm on the signals which make up those equivalence classes. For example,
the nonzero signal

2 whent=2
v(t) = .
0 otherwise

has £,-norm of zero (for any 1 < p < 00), since it is in fact equivalent to the signal
o(t)=0 VI'>0.

Certain useful properties of the £, and L, spaces are collected in the following proposi-
tion (these are all standard analysis results; see eg Weir [Wei73)):

Proposition 2.1
o L, C Ly foreach 1 < p < oo
® Loe C Lo C Ly but Lo € Lo L Ly
o loranyve L, (1 <p<oo), the function f: R — R given by
J(T) - = [[Hp]],

is a monotone non-decreasing function, and for p = 2 it is also a continuous function.

Furthermore
lim f(T') =0 if p# o0
j L
T—o0 00 otherwise

o Given a signal v € Lo, a time Ty and a number ky > 0 such that |Unv|, = k1, then
for any number 0 < kg < ky there exists some time Ty such that

Mgy wl|y = ko
and furthermore

0 < |Hgvll, < ko forany0<T <T
k() S ||HT'U||2 S kl fO’f’ any TO S T S T1

Remark

1. In the remainder of the thesis we shall consider only signals in Lo, ; this choice includes
Lo, L. and L, the spaces of continuous signals, magnitude-limited signals and rate-
limited signals, and all combinations (intersections and unions) of these spaces.



2.1.3 Linear time-invariant operators

Let R*™ denote the space of rational proper transfer functions of size n by m. Given a
set of finite-dimensional linear time-invariant ordinary differential equations of the form

dx

o= Az + Bu; z(0) = xg
y=Cx+ Du

A

C|D
operator which maps uw € L3} to y € L3, may be represented by an element G' € R}*™ with
transfer function G(s) = D + C (sl — A)~!

G is said to be stable if all the eigenvalues of A have strictly negative real part (equiva-
lently, if they are in the open left half-plane) and unstable otherwise.

We use the standard notation RH.™ C Rj*™ for the space of stable real-rational
transfer functions of size n by m, and RH; ™ C RHL™ for the space of stable, strictly-
proper, real-rational transfer functions of size n by m. We denote the usual norms on these
spaces by .||, and |[|.||, respectively:

(which is often denoted by [ B ]), and with the assumption that xy = 0, then the

|Gl : = sup \/)\max )G (jw)) (2.3)

weRUoo

G, : = \/% /Oo Trace (G*(jw)G(jw)) dw (2.4)

The following induced norms from £ to £ and from L} to L. are standard (eg Zhou
et al [ZDGYI6)):

Proposition 2.2
If G € RHX™ then

IGoll _
vELT[|v]|470 vl =

If g(t) € L] and G(s) = [;° g(t)e*!dt then

1G]

sup = llg@®ll;
veLll,,||v]l . #0 ||U||oo
Remark

1. We will sometimes write ||G(s)||, to mean ||g(¢)||; where G(s) = [~ g(t)e™*" dt, assum-

ing that some such g € £; exists.
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The following Proposition gives the induced norm from £3' to L2, taking the £,-norm
in both its temporal and spatial senses; a proof is included for completeness, since although
the result is well-known it is often omitted from standard textbooks.

Proposition 2.3
Gy
G . .
If G=| .| with each G; € RH3*™, then
G
max || Gvl|

sup

= max [|Gi]|, < [|Gl,
VELT,||v]|57£0 vl ¢

PROOF OF PROPOSITION 2.3:
We show only the case for n = 1; the general multivariable case follows immediately.
The proof relies on the fact that £3" is an inner product space with inner product defined
as

<y > / e} y(r) dr

This inner product satisfies < x,y >= ||x||, ||y||, cos(d) where 0 is the “angle” between x
and y, and hence also < x, x >= ||z|]5.
Now assume that G € RHy*™, v € L3 and w = Gv. Then for any ¢ > 0

t
w(t) = / g(t — ryo(r) dr
0
where g(7) is the impulse response of G(s), and hence
w(t) =< g;,v >

where g; is a time-shifted, time-reversed transpose of g projected onto positive time, defined

by
() 0 for 7 <0
T) =
9t {gt —7)}" forT>0

It is now clear that

wp 20

= [lgill2 = [[Lgll,
veLT,|[v]|470 vl

holds for all ¢ > 0; tightness is shown by setting v = gj;.
Finally, recalling that ||w]|_, := sup |w(?)|
£>0

sup |w(t)|

>0 { [w(t)|

sup  ———— = sup Sup
verplivlzo 10lla 20 Leep oo 0]l

} = sup kgl = ligll, = G,
t>0

gives the desired result. n



Coprime factorisations

One useful, and tractable, way of looking at linear systems is in terms of coprime factori-
sations (we restrict attention to coprime factors which are real-rational — this is not strictly
necessary, but for real-rational linear systems there is little or no point in considering coprime
factors which are not themselves real-rational):

Definition 2.1 (Coprime factorisations)
My € RHZP and Ny € RHZ? are said to be right-coprime if there exist X, € RHZ™
and Y, € RHE™ such that

X, My+Y, Ny =1,
If, in addition, My is square and non-singular, and
P = NoM;!

for some P € R;™™, then NoMgt is said to be a right-coprime factorisation of P.

Similarly, M, € RHI™ and Ny € RHI™ are said to be left-coprime if there exist
X; € RHZY and Y, € RHI? such that

MoX; + NoY; = 1,
If. in addition, M, is square and non-singular, and
P = M;'N,
Jor some P € Ry*™, then Mo_ll% is said to be a left-coprime factorisation of P.

Remark

1. Right-coprime factorisations are unique up to right-multiplication by a unit in RH?”
(see eg. Vidyasagar [Vid85]). Let Q denote the set of units in RH:

Q={Q:Q.Q" e RM..} (2.5)
If P = NyM,* is a right-coprime factorisation, and Q € QP*?, then

P = {NoQ ' H{MQ '}

is also a right-coprime factorisation. Furthermore, all real-rational right-coprime fac-
torisations of P can be generated from any given right-coprime factorisation in this
way.

Similarly, left-coprime factorisations are unique up to left-multiplication by a unit in
RHL
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Hence, if P = NyM,* and C' =V, 'U, are right- and left-coprime factorisations of P
and C' respectively, normalised such that

VoMo + UgNy = I

then all such normalised coprime factorisations of P and C' are given by

o] =i e

where @) € Q.

Theorem 2.4 gives lower bounds on some typical norm minimisation problems related to
coprime factorisations. The results stated are for right-coprime factorisations, but by duality
are also applicable to left-coprime factorisations, with obvious modifications.

Theorem 2.4 If P € R, is a proper real-rational transfer function with open right half-plane
poles p;, and if P = NoMi ™t is any right-coprime factorisation of P, then

0 if PeERH
inf ||1 — MeQ*||°. = x 2.6
6121619 ” 0Q H°° {1 otherwise (2.6)
: _ 0 if P € RHx
inf |- M@ = J o 2.7)
QEQ:Q(00)=Mp(c0) 2> p; if P ¢ RHoo has no jw-azxis poles

Remark

1. If P has one or more jw-axis poles then it seems likely that these poles contribute zero
to the infimum in Equation 2.7, especially in light of the result by Ren et al. [RQC99]
which is referred to in the proof below, however it is not clear that their infimum holds
with the additional restriction that ) € RH .

PROOF OF THEOREM 2.4:

Taking Equation 2.6 first, it is clear that if P has no closed rhp poles, then we can take
Q = My, and hence achieve ||[I — MyQ™ ||, = 0. Otherwise, there will be an interpolation
constraint that My(p;)Q *(p;) = 0 at each closed rhp pole; hence ||I — My@Q || > 1. Since
this constraint does not affect the achievable infimum in any other way (eg Vinnicombe
[Vin00] Theorem 1.29) we conclude that the infimum is unity.



Moving on to Equation 2.7, it is again clear that if P has no closed rhp poles, then we
can achieve a zero norm with @ = M,. Otherwise, it is shown by Ren et al. [RQC99] that®

i _ -1012 _ o
e = MQT =23 S i P ¢ RH

This result gives a lower bound on the infimum, since we require also that @) € RH,,. We
now show that this infimum is achievable if P has no jw-axis poles: 0 Assume that P has

no jw-axis poles and that [ é lB; } is a stabilisable realisation of P. Then (by Zhou et al.

[ZDGI6], Theorem 13.34) a right-coprime factorisation P = NM_ ! exists where M, is an
all-pass factor given by

| A+ BF | B ) 1 | A|-B
Map[ A ]] with MaP[F I]

where F' = —B*X and X = X* > 0 is the solution to

A*'X +XA—-XBB*'X =0
Calculating the Hy-norm gives (by [ZDG96], Lemma 4.6)
‘ { A+ BF | B }

2
= Trace(B*L,B)

2

2
HI_Masz: Iy 0

where L, = L} > 0 is the observability Gramian, which is the solution to
(A+ BF)'L,+ L,(A+ BF)+ F'F =0
It is simple algebra to verify that L, = X solves this equation, and hence that
| — M,y||2 = Trace(B*L,B)
= Trace(—FB)
= Trace(A) — Trace(A + BF)

Now, since for any square matrix H, Trace(H) is equal to the sum of the eigenvalues of H,
we see that

|1 — M,y |2 = Trace(A) — Trace(A + BF)

= Zpi + Zpi

since the contribution from any stable poles of Ma_p1 is exactly cancelled out by an identical
negative contribution from the stable poles of M,, — otherwise M,, would not be an all-pass
transfer function.

Finally, taking” @ := M ' M, gives [ —MyQ~" = I — M,;, and hence achieves the infimum
of Equation 2.7. .

6 Actually the left-coprime case is considered in that paper; however, since PT = My TNOT is a left-coprime
factorisation of PT, and both P and PT have the same poles, the result carries over immediately to the
right-coprime case.

"Note that this calculation involves an unstable pole/zero cancellation for each p;.
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2.1.4 Nonlinear and/or time-varying operators

In this thesis we will use the term nonlinear to mean “not necessarily linear and/or time-
invariant”. For such operators (here denoted by A : X — Y, for some spaces of signals X
and Y, and assumed to map the zero signal to itself) we can identify a number of different
concepts of “gain”; regardless of X and Y we take the underlying signal space to be Lo..
The definitions given are based on those of Willems [Wil71]:

e An operator A : X — Y has uniform instantaneous gain at time T given by the
supremum over all 6 > 0 of the greatest lower bound of all numbers M, satisfying the
following inequality for all v,w € X N Ly, and some number K, < co:

[y 45 = 1) (Av = Aw)|, < Ky [Ty (v = w)|, + My [Tz — Iz) (v — w)ll

e An operator A : X — Y has instantaneous gain at time T given by

I1 Av — A
. . [1y15(A0 — Aw)],

0>0 4y e XL || T (v—w) |, =0, |Tpy s (0—w) 20 |[Hrrs(v — w)]l;

e An operator A : X — Y is said to be Lipschitz if there exists a finite scalar k such
that for all v,w € X N L,

[Av — Awl|, < klv —w,
e An operator A : X — Y is said to have finite gain if

A
veXNL,—=AveYNLy, and sup 4” IUHQ

< 0
VEXNLy,||[v]|,7#0 [v][

in which case we denote this quantity by ||A].

A function A : X — Y is said to be in the sector [a, b] if for any v € X N Lo

/OOO ((Av)(t) — cw(t))*((Av)(t) —bo(t))dt <0



2.2 Saturation and deadzone functions

2.2.1 Definitions and properties

Saturation and deadzone functions will be important throughout this work. The basic
definition is standard:

Definition 2.2 (Saturation function)
An odd Lipschitz function o : R — R 1is said to be a saturation function if there exist
a>0,0<b<1andc>1 such that for any v € R

min {a,b[v| } < lo(v)] < clel

Figure 2.1: Saturation function

Remarks

1. Graphically, a saturation function lies in the shaded region of Figure 2.1.

2. Note that there is no loss of generality in choosing b < 1 < ¢, since any function
satisfying the condition in Definition 2.2 only for b < k& < ¢ (for some k& > 0) can be
made to satisfy the Definition by simple scaling.

Note also that the identity operator o(v) = v is included in this definition.



Clearly the ideal saturation function Sat, : R — R, for a > 0, defined as

a ifv>a
Sate(v) :==qv if v <a (2.8)

—a ifv<—a

satisfies Definition 2.2. This function is shown in Figure 2.2 (a).

(a) Ideal saturation function (b) Ideal deadzone function

Figure 2.2: Ideal saturation and ideal deadzone functions
The ideal deadzone function Dzn, : R — R, defined as

v—a ifv>a
Dzn,(v) :==140 if v <a (2.9)
v+a ifv<—a

is the natural complement of the ideal saturation function, in the sense that for any a > 0
and v € R

Sat,(v) + Dzng(v) = v (2.10)

This function is shown in Figure 2.2 (b). We will use Sat(.) and Dzn(.) to denote the unity
saturation and deadzone functions Sat;(.) and Dzn;(.), respectively.



The signum relation Sgn : R — R, defined as®

1 ifv>0
Sgn(v) =< €[-1,1] ifv=0
—1 itv<0

(2.11)

is closely related to the ideal deadzone function, in the sense that for any ¢ > 0 and v € R

Dzn, (v +aSgn(v)) =v

(2.12)

It is clear that the signum relation can be approximated by an ideal saturation function with

high gain, ie that for any a > 0
aSgn(v) ~ Sat,(kv)

for some k > 1, as shown in Figure 2.3.

(a) aSgn(v) (b) Satq(kv)

Figure 2.3: Signum relation and high-gain saturation function

It is easily verified that for any a > 0 and any v € R

Sat,(av) = aSat(v)
Dzn,(av) = a Dzn(v)

8Note that we do not use the alternative definition Sgn(v) = 0 if v = 0.



The multivariable equivalent of a saturation function is taken to be? as follows:

Definition 2.3 (Multivariable saturation function)
A function o : R" — R" is said to be a saturation function if it is decentralised, with
each component o; itself being a saturation function (as in Definition 2.2.)

Given a diagonal matrix A = Diag{ay, as, -+ ,a,}, A > 0, we denote by Sat 4 : R — R"
and Dzn, : R” — R” the component-wise multivariable saturation and deadzone functions,
ie

[Sat,, (v1)

Sat, (v2)

Sat,(v) : = (2.15)

Sat,, (v,)

[ Dzng, (v1)

Dzn(v) : — Dzn"f (v2) (2.16)

Dzn,, (vy,)

and if A = I we shall drop the subscript. Similarly, the component-wise multivariable signum
function Sgn : R” — R™ is given by

Sen(vy)

Segn(vg)

Sgn(v) : = (2.17)

Sgn(vy)

Analogous to Equations 2.10, 2.12, 2.13 and 2.14 we have that for any diagonal matrix
A >0 and any v € R"

Sat,(v) + Dzny(v) = v (2.18)
Dzny (v + ASgn(v)) = v (2.19)
Sat4(Av) = ASat(v) (2.20)
Dzn,(Av) = ADzn(v) (2.21)

9Note that this is not the only way to define a multivariable saturation function; however, the restriction
to decentralised functions clearly makes sense in most practical cases.



A couple of useful features about the ideal deadzone are summarised in the following
Lemma and its immediate Corollary:

Lemma 2.5
For any diagonal matriz A > 0 and any x,y € R"

[Dzn(z + y)|| < ||Dzna(x)|| + [yl
and hence for any v, w € L}
Dzns(v +w)l|, < [[Dzny(v)]; + |lwl,

Corollary 2.6
For any diagonal matriz A > 0 and any x,y € R"

[Dzn(ASgn(@) + y)| < [yl
and hence for any v, w € LY

[Dzn.4(ASgn(v) + w)], < [lw],

PROOF OF LEMMA 2.5:
We only show the static result for the scalar case, from which the two multivariable
results given follow immediately. Directly from the definition of Dzn we have that

((:v—a)—k(y) ifr>acandy >a—2x
0)+(zx—a+y) Hf-a<z<candy>a—z
(x+a)+(y—2a) fr<—aandy>a—2z
Dzn,(z +vy): =<0 if —a<z+y<a
(r—a)+(y+2a) ifr>aandy<—a—=x
0)+(x+a+y) f—a<z<acandy<—a-—z
(x+a)+ (y) ifr<-acandy< —a—=x

Examining these in turn
1 Dzn,(z +y) = Dzn,(z) +y
2y>a—z>0soy>y—(a—x) >0
Jy>a—x>2as0y>y—2a>0
4 Trivial!
byYy<—a—zr<—-2as0y<y+2a<0
6 y<—a—z<0soy<y+(at+z)<0

7 D, (z +y) = Dzng(z) + y
leads to the conclusion that |Dzn,(z + y)| < [Dzng(z)| + |y|. "



The following Lemma establishes a “nonlinear sector” result for the ideal unity deadzone
function, which will be central to the results presented in Section 3.4.1:

Lemma 2.7
For any v € L, and w(t) = Dzn(v(t)), and any T > 0

max ||| <1 = |llywl|,=0 (2.22)

max [, > 1 = [Mwl, < (1- b ) Mol (223)

max; ||l vs || o

Furthermore, for any 8 € (0,1)

1
| Hrwl, > B ||Hrv|, >0 = max T, > —— (2.24)

Remark

1. The first part of this Lemma is a slightly weaker version of a well-known result (eg
Hindi & Boyd [HB98]; Miyamoto & Vinnicombe [MV96a] and Kothare et al [KM95],
[KM99]) which states that if v is known to satisfy max ||v;|| . < r, then the deadzone

nonlinearity can be assumed to be in sector [0,1 — 2] instead of [0,1]. (A similar
deduction applies to the saturation nonlinearity.)

In one sense this Lemma is rather conservative, since it takes into account neither (a)
different saturation levels on each channel, nor (b) the individual ||IIrv;| . However,
it is difficult to see how an equivalent statement to Equation 2.24 could be formulated
for either of these cases.

Figure 2.4: Ideal deadzone function showing “nonlinear sector” bound



PROOF OF LEMMA 2.7:

Equations 2.22 and 2.23 are best understood with reference to Figure 2.4, which shows
the ideal scalar deadzone function of Equation 2.9; we show the result only for the scalar
(n = 1) case, since the multivariable case follows immediately.

If lu(t)| < 1forall t € [0,7] then clearly w(t) = 0 for all ¢ € [0, 7], from which Equation
2.22 follows immediately.

Similarly, if |v(t)] < r for all ¢ € [0, T, for some r > 1, then it is clear from the diagram
that [w(t)] < (1 — 1) |u(t)] for all t € [0,T7], from which Equation 2.23 follows immediately.

To obtain Equation 2.24, we first note that Equation 2.22 implies

Mzwll, >0 = [[Hzv] >1
We then substitute ||[Iywl|, > 8 ||IIrv]|, into the right-hand-side of Equation 2.23, giving
BlMzvlly < (1= o) Mol

from which we can eliminate ||II;v|, # 0 and rearrange to give Equation 2.24. ]

The following definition characterises those scalar nonlinearities for which a “nonlinear
sector” result similar to Lemma 2.7 holds:

Definition 2.4 (Ay)

Given a bijective function ¥ : (rg,00) — (B, /1) which has finite nonzero derivative
everywhere, for some scalars ro > 0 and 31 > By > 0, let Ay, be defined to be the family of
scalar nonlinearities such that for any A € Ay

o A: Lo, — Lo, is causal with finite gain and finite uniform instantaneous gain

o Foranyr >ry, anyv € Ly and w = Av

o]l <7 = llwlly <9(r) vl

Remarks

L. Note that ||All,,_,, < 81, and that by careful choice of 9, it should be possible to
achieve equality, or almost, in this relation.

2. One interpretation of these classes of functions is that they are a generalisation of the
ideal deadzone function Dzn(.), in the same way that the class of functions satisfying
Definition 2.2 are a generalisation of the ideal saturation function Sat(.).



The following Lemma, which is a generalisation of Lemma 2.7, will be central to the
results presented in Section 3.4.2:

Lemma 2.8
If A = Diag{Ay, Ao, -+, A} with A; € Ay for each i, for some suitable function
Y (ro,00) = (Bo, B1), then for any v € LY, and w = Av, and any T > 0

max [y < 7o = [[Hrwl], < G [Tro], (2.25)
max [|[rvl| . > ro = [[Mrw]l, < P(max [Tl ) [[Trvll (2.26)
Furthermore, for any 8 € (By, 51)

Tzwll, > B rv]l, > 0 = max ||z > 97 (8) (2.27)

Remark

1. This Lemma is again conservative, in the same sense as Lemma 2.7, and there are the
same difficulties formulating an equivalent statement to Equation 2.27 which takes into
account each of ||v;||, and the properties of A;.

PROOF OF LEMMA 2.8:

We again show only the scalar case:

Equations 2.25 and 2.26 are clear from Definition 2.4. To obtain Equation 2.27, we first
note that Equation 2.25 implies

Mzwlly, > Go [Trvfl, = [[Hrv]l, > 7o
We then substitute ||IIywl|, > B /17|, into the right-hand-side of Equation 2.26, giving
BlMzvll, < ¢([Hrvll) [[rv],

from which we can eliminate ||IIzv[], # 0 and invert to give Equation 2.27. "



We give two scalar examples, in order to illustrate these families of nonlinear functions:

Examples
1. Consider ¢ : (1,00) — (0,1) given by ¢(r) =1 — 1

This 1 is shown in Figure 2.5 (a). The set A, then contains (amongst others) all
memoryless, Lipschitz nonlinearities which lie in the shaded “sector” of Figure 2.5 (b).

One particular memoryless nonlinearity included in the set Ay is the (ideal, unity)
deadzone nonlinearity Dzn(.), shown in Figure 2.5 (c¢). We see that this nonlinearity
coincides with the boundary of the shaded area of Figure 2.5 (b); this suggests that the
relations given in Lemma 2.8 will be (relatively) non-conservative for this nonlinearity.

In fact, the set A, contains all ideal deadzone functions Dzn, with a > 1, as in
Figure 2.5 (d). However, each of these nonlinearities is well within the shaded area of
Figure 2.5 (b); this suggests that the relations given in Lemma 2.8 will be (relatively)
conservative for these nonlinearities, and become progressively worse for larger a.

-10L, . H . . . . H . .
-10 -5 0 5 10 -10 -5 0 5 10

(c) Unity deadzone (d) Dzn,

Figure 2.5: Ay: Example 1



2. Consider ¥ : (0, 00) — (0, M + 1) given by (1) = { - ifr<M
. Consider ¢ : (0, 00) — (0, iven r) = P
sy M+ =M e s M
This 9 is shown (for M = 10) in Figure 2.6 (a). The set A, then contains (amongst
others) all memoryless, Lipschitz nonlinearities which lie in the shaded “sector” of

Figure 2.6 (b).

One particular memoryless nonlinearity included in the set A is the “saturated squar-
ing” function w(t) := {Saty (v(t))}Q, shown in Figure 2.6 (¢). We see that this
nonlinearity coincides, for the most part, with the boundary of the shaded area of
Figure 2.6 (b); this suggests that the relations given in Lemma 2.8 will be (relatively)
non-conservative for this nonlinearity.

In fact, A, also contains any ideal deadzone function Dzn, with a > i, as in Figure

2.6 (d). However, each of these is well within the shaded area of Figure 2.6 (b); this
suggests that the relations given in Lemma 2.8 will be (relatively) conservative for
these nonlinearities, and become progressively worse for larger a.

(a) ¥(r) (b) “Sector” interpretation

-10 -5 0 5 10 -10 -5 0 5 10

(c) “Saturated squarer” (d) Dzn,

Figure 2.6: Ay,: Example 2



2.3 Mixed Hy-H, problems

2.3.1 Approximate solutions using linear matrix inequalities

The problem of simulaneously optimising the Hs- and H,.-norms of two (possibly iden-
tical) transfer functions has been, and remains, a topic of some interest. Much of the early
work in this field (see, for example, Bernstein & Haddad [BH89]; Khargonekar & Rotea
[KRI1] and Zhou et al [ZGBDY4|) considered minimising an upper bound on the Hs-norm;
more recent methods using the true Ho-norm are given in Scherer [Sch95]; Sznaier [Szn94|;
Hassibi et al [HHK97|, [HK98| and Gahinet et al [GNLC95].

We consider the following version of the problem

1 G+H
QeRHm:ﬂ%TMQ||OO<7” +HE,

for some v > 0 and compatible L, M,G, H € RH,,, which is a relatively simple special
case, since the free variable ) enters affinely into both the objective and constraint transfer
functions.

Our approach in Theorem 2.9 will be, given a feasible initial guess @Q; (ie one satisfying
the Ho-constraint), to fix the denominator of () and to consider optimising over the nu-
merator. This approach is similar to that of Scherer [Sch95] in that it uses a finite basis
to approximate the whole of R'H.; the algorithm presented does not have the guaranteed
optimality properties of the algorithm described in [Sch95], but it has the advantage of being
simple and ready to implement.

It might appear that this formulation gives only an incremental improvement over the
initial guess @);, since the solution will share its denominator with ;. However, there is no
reason why ; should not have a number of “extra” states which are redundant in ¢); — for
example, if the initial guess in a scalar case were ); = 1, the actual state-space representation
chosen could be

(-5 1.0 0 0] ][0
—-10 0 1 0 0] |0
L [-100 0 1 0] [|Of | _ (s+1)P
@=11-5 000 1]|]0 T (s+ 1)
| -1 0 0 0 0] ]]0
1 0000 | 1]

which will permit the algorithm to search over all transfer functions with denominator (s+1)°.
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By choosing a sufficiently high-order denominator with suitable poles, one would hope
to obtain a solution which is close enough'’ to the true minimum for any practical purpose,
but note that it is well-known (eg Megretski [Meg94|) that optimal solutions to mixed-norm
problems over H,, can be irrational.

We show that our approximate problem has a convex LMI formulation, and hence that
the minimum value of the Ha-objective subject to the H.-constraint over this subset of RH
may be approached arbitrarily closely (and with reasonable computating time) provided that
a feasible initial guess Q; satisfying |L + MQ;||,, <~ and G + HQ; € R'H, is given.""

Theorem 2.9
Given positive integers u, Y2, Yoo: Yq, Lgs Thy Ti, Tm, and T4, a real number v > 0 and transfer
functions

G = é—z gz ] € RHE*", A, € R¥*%

"= -é—: gi ] € RHL ™ A, e R

M= -é—:g—Z} € RHU M Ay, €R™m  and
= é—ig—i] € RHY™; A, € Rfo*a

such that G+ HQ; € RHY™™ and ||L 4+ MQ;||, < 7. denote by v1,vs,- -+ ,v; the (possibly
empty) set of linearly independent vectors spanning the kernel of Dy, and let

V.= ['vl Vg - 'vj}
(4, 0 0 B, 0 0
{Ag B, By ] ||0 A, B.C,| |BuD,| |B.V| |0
Cs " 1lo o A, 0 0 I
| [c, ¢, DuC,
[[A, 0O 0 By 0 0
{Aoo Be Ex Fo] |0 A, B.C, B,.D,, B,V| |0
Cr Do "7l 0 A4, 0 0 I
G Cn DnCy|  [Di+ DpDy]

0Tn discrete-time we can closely approximate any stable (finite or infinite) impulse response with a suf-
ficiently long finite impulse response, and by application of the Mobius transformation we might expect
to closely approximate any continuous-time impulse response by a rational polynomial with a sufficiently
high-order denominator. While this is not true for general H, functions, it is shown by Scherer [Sch95] that
such fixed-order real-rational functions suffice for problems over R'H .

1Tf the initial guess does not satisfy the H.o-constraint then the algorithm is not certain to find a feasible
solution, although it will always find one if it exists.



An approximate solution to the mixed-norm minimisation problem

min |G+ HQ|,
QERHI™ .G+ HQ € RHY*™, L+ MQ € RHY="" and ||L + MQ)||, <~

is then given by the solution to the following convex LMI optimisation: minimise Trace(Q2)
over the LMI variables

X2 = Xg € R(x9+xh+$4)x(x9+xh+xq)

Qy = QQT c RY2xy2
X, = XT e R(xl+xm+mq)x(a}l+xm+xq)
00

B, € R¥*¢
A € RI*¢
subject to

Ay Xy + Xy AT By + E)A + Fy B, <0

By + ATE] + BI'FY —I ]

Q2 O2X2-
X0r x, | 7Y

AXoo + XA B+ EL A+ E B, Xt ]
BL +A"EL + BI'FL —1 DL + ATVTDT | <0

CoeXoo De + D, VA -
Xo>0

Denoting by X5, Q5 etc the optimal values of the LMI variables, the approximate solution
Q* is then given by

o | A
o=l

with corresponding G + HQ* and L + MQ* given by

B*
q

. [ Ax| Ba + ExA* + FoB;
L+MQ* = { CoT Du i DTN } (2.30)

and satisfying |G + HQ*||, = \/Trace(Q3) and |[|L + MQ*|| < 7.

The following Corollary, which is a special case of Theorem 2.9, considers a simpler
problem which is related to the norm minimisation results given in Theorem 2.4:
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Corollary 2.10
Given positive integers u, T, and x4, a real number v > 0 and transfer functions

. A + BF B uxXu, Tm XTm
My = [ o 7 ] eRH"; AeR

_ AQz‘ B% uXu, TgXTq
Qi_[qu 7 }ERHOC, A, €R

such that |1 — MoQil, <. let

|:A2 Bg F2:|

A+ BF Bqu} {B o}
Cs

= 0 A, 0 I
[-F —C,]

An approximate solution to the mized-norm minimisation problem

min ||[ - MOQHQ
Q € RHYE ™ : I — MpQ € RHE™™, I — MoQ € RHYX™ and ||I — MoQ|| o, <

is then given by the solution to the following convex LMI optimisation: minimise Trace(Q2)
over the LMI variables

X, = X2T € R@m+zg)x(@m+azq)

Q: = Q3 €R™
B, € R%*

subject to

|: QQ C’2)(2:| >0

X,CF X,
Ao Xy + XoAY By + B, XoCF
By + BI'FY I 0 [ <0
Oy X5 0 —~2 T
X5 >0

Denoting by X5, Q5 etc the optimal values of the LMI variables, the approximate solution
Q* and corresponding I — MyQ* are then given by

* Aq | By

@ - e
) A+ BF BC,]|[B
I_MOQ*:[éz}BQJFQBBq]: 0 Aqi]HBZ]

[_F _qu'} ‘ 0

and satisfy |1 — MoQ* ||, = +/Trace(Q3) and || I — MoQ* ||, < -



Remarks

1. This Corollary is clearly directly applicable to the coprime-factor results given in The-
orem 2.4. The main difference is that we do not (cannot!) restrict @ to be a unit in
RHs in Theorem 2.9. Nevertheless, in preliminary numerical tests the optimal Q* has
so far always been a unit in RH .2

2. One sensible starting point for using this result would be, given an unstable transfer

function P with stabilisable state-space realisation = [ é IB; } , to take

A+ BF|B
- [T

with I' = —B*X where X is the solution to

A X+ XA—-XBB*X =0
In this case ||I — MoQ;||,, = 2 and || — MyQ;], is the infimum given in Equation 2.7
of Theorem 2.4.

With a suitable choice of A, and C,, it should then be possible to set 1 < v < 2 and
solve for a better H,,-norm at the expense of an increase in Ho-norm. Repeating this
process should give a suitable compromise solution Q.

and Qi:[éqi ?}
qi

PROOF OF THEOREM 2.9:

This is a standard application of linear matrix inequalities. There are only two points of
any interest:

Firstly, how to determine suitable Q(o00): we are given @); such that G + HQ); is strictly
proper, ie

Dy + DyD, =0
If Q(o0) = Qq, then the requirement that G + HQ be strictly proper is equivalent to
Dyp(Dg — Dy,) = 0

ie that (D, — D,,) is in the kernel of D;,. Hence (D, — D,,) may be expressed as VA where
V' is a matrix containing the vectors spanning the kernel of D, and A is an arbitrary matrix
of suitable dimensions.

Secondly, we need to ensure that G + HQ and L + M@ are affine in the free variables
B, and A. This is clear from the expressions given in Equations 2.29 and 2.30. [

PROOF OF COROLLARY 2.10:
Immediate from Theorem 2.9. n

120ne possible theory as to why the numerical solution does not pick non-minimum-phase Q* is that such
choices do not offer any improvement in the minimum achievable. For the global infimum as v — oo this is
provable — see Theorem 2.4 — but in other cases it is not so clear.
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2.4 Summary and suggestions for further work

2.4.1 Summary

In this chapter we have

e Discussed spaces of constants, signals and operators relevant to the work presented in
the remainder of this thesis.

e Defined and discussed saturation and deadzone functions, highlighting some useful
properties of such functions, and proposing a class of “generalised deadzones” which
satisfy a nonlinear sector bound relationship.

e Given an algorithm for obtaining approximate solutions to fairly general Ho-H ., mixed
norm problems, using Linear Matrix Inequalities.

2.4.2 Suggestions for further work
Mixed Hy-H, problems

The algorithms given in Section 2.3 should be considered only as an incremental step
towards a general and robust method for solving such problems using Linear Matrix In-
equalities. Some preliminary, but by no means exhaustive, testing of the procedures given in
Theorem 2.9 and Corollary 2.10 has been undertaken, and the results have been promising;
nevertheless, there remain significant points which should be addressed, such as the effects
of

e common terms in the state-space matrices (eg if A, = Ay),
e non-minimum-phase zeros, and
e non-minimal realisations of G, H, L or M.

Furthermore, the conjecture that the infimum may be approached closely using a continuous-
time analogy of a sufficiently long Finite Impulse Response remains unproven. Moreover, it
is quite clear that the number of terms necessary to obtain a particular level of performance
will be dependent on the choice of denominator — no guidelines for choosing A,, (or Cy,)
can be given at the present time.






Chapter 3

Stability analysis of nonlinear systems

3.1 Introduction

3.1.1 Background and motivation

Stability analysis forms the foundation for almost the entire field of control engineering,
with applications ranging from space travel to financial modelling. We now know almost
everything there is to learn about the stability of linear, time-invariant differential (and
difference) equations — although there are outstanding questions relating to the synthesis
of LTI systems to perform in a pre-specified way.

In complete contrast, the analysis of nonlinear and/or time-varying systems remains
a popular research area for control engineers (and mathematicians, and economists, and
chemists...) Even the most benign-looking interconnections have yet to succumb to a com-
plete understanding, although new results continue to accumulate (almost on a weekly basis!)
Unfortunately, it is clear that the world around us is inherently nonlinear, and hence such
research is extremely valuable to both theoretical and practicing engineers.

Modelling of real systems for stability analysis

In order to render real-world problems at least marginally tractable, we often assume that
any system can be nominally modelled by linear, time-invariant differential (or difference)
equations, perturbed by some nonlinear element(s). These nominal LTI dynamics need not
be physically motivated; the important thing is that the real behaviour deviates from the
nominal behaviour by some small amount (at least during such observations as we may
make.)

We then also make some suitable assumptions about the behaviour of the nonlinear
perturbation, for example, that it can be described by an unknown but sector-bounded
time-varying gain. Once again, these assumptions may or may not be physically motivated;
indeed, they may not even be correct if we have made too few observations...
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The final step in preparing our model for analysis is to determine suitable entry points for
external disturbances (since there will always be some unmodelled behaviour) and, equally
importantly, suitable exit points for the “outputs”. Putting all of this together gives an
interconnection similar to Figure 3.1 on page 42, which is the system which we will be
considering in this chapter.

Prior work on stability analysis

There has been so much prior work on analysing stability that to attempt to document
even a small fraction would be almost impossible. Instead, we focus on those results which
are most relevant to the work presented in the remainder of this chapter. State-space and
input-output methods and results are often treated separately:

e In a state-space setting, stability is usually interpreted as requiring that the system
states converge to the origin, starting from any arbitrary initial state x(0). (In the
linear time-invariant case this question is trivial: the “A” matrix should be Hurwitz
for stability.)

We do not, in fact, consider state-space systems in the remainder of this thesis, however

it is worth pointing out that certain input-output results have equivalent (or almost
equivalent) state-space interpretations.

e Many well-known nonlinear input-output stability results are essentially due to the
small-gain and passivity theorems (usually attributed to Zames [Zam66a|) By consid-
ering “multipliers” and loop transformations, these concepts have been extended far
beyond their original domain (see, for example, Kothare et al [KM99]; Boyd et al
[BGFBY4] or Balakrishnan [Bal95]) Such transformations usually require the problem
to be formulated as an LMI feasibility or optimisation problem, for which computa-
tionally efficient algorithms are now widely available.

It is interesting to note that some authors (eg the anti-windup work of Park & Choi [PC95];
Edwards & Postlethwaite [EP98] and Miyamoto & Vinnicombe [MV96b]) continue to base
synthesis results directly on the small-gain theorem, even for problems which may admit a
less conservative formulation using such multipliers and loop transformations. One likely
reason for this, given the modern emphasis on “optimality” in all things, is that (assuming

some fictional system which depends on a transfer function H(s) = [%’%}) a typical
small-gain result:

The system is stable if |H(s)||,, < 1.
is intuitively appealing compared to a typical LMI-based result:

The system is stable if there exists a matriv X = X* > 0 such that

ATX + XA XB C*
BTX —I D'| <0
C D -1



The former condition offers clear hints as to which H result in a stable system, but the
latter relies on an iterative computation to give an answer. A small change to the transfer
function H requires one to run the computation from scratch, even though it may be obvious
(from, for example, a Bode or Nyquist plot) that the change makes no significant difference
to the H,,-norm.

In many cases, particularly if synthesising a controller by a similar iterative process, the
computational method is acceptable and desirable; in others, the intuitive nature of the small
gain approach can help with understanding the underlying problem.

One other interesting approach, which is growing in popularity, is the use of so-called
Integral Quadratic Constraints (IQCs) pioneered by Megretski & Rantzer [MR97], [RM96]
etc. Based on work done in the 1960s, IQCs are an extremely general way of relating signals
to one another. Many well-known relationships (such as gain, sector bounds, passivity)
can be written in the IQC framework; this approach has also motivated a number of novel
relationships (see, for example, Megretski [Meg99])

Prior work on local stability analysis

Stability analysis in a local sense (ie for inital states or external inputs restricted in some
way) is a much smaller field than in the global sense. We again consider state-space and
input-output results separately:

e In a state-space setting the problem of local stability can be interpreted in a number
of ways. One common problem is to find the set of all admissable initial states a(0)
such that the state converges to zero. Even for a supposedly simple system — planar
LTI dynamics with saturated state feedback — this problem has proved exceedingly
intractable (see, for example Hu & Lin [HL99]; Alvarez et al [ASA93]) and remains a
topic of some interest.

There are also some synthesis methods which attempt to optimise such “regions of
attraction”, particularly those of Lin et al [LB98], [Lin97], [LS93]

e Local stability in an input-output context has not been considered widely, excepting
that practically all global results (for causal systems) hold on truncated time intervals.

One notable exception was a recent paper by Hindi and Boyd [HB98], which builds
on well-understood LMI methods of stability analysis. (see, for example, Boyd et al
[BGFB94|) The questions posed in this paper are broadly similar to those considered
in Section 3.4, however the methods utilised are completely different.
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Input-output stability

In the remainder of this chapter we will be considering only input-output stability of
continuous-time systems, and in particular those systems which can be written in the form
of a linear transfer matrix and a single nonlinear block.

z Yy
My My
My Mo

v

Figure 3.1: Interconnection for stability analysis

Consider the interconnection (shown in Figure 3.1)

y| _ | Mu M| |z
v M21 M22 w
w = Av

where it is assumed that M, Mo, My and My are linear, time-invariant transfer functions
of arbitrary (but compatible) sizes, and A is a causal nonlinear operator of compatible
size. As noted earlier, this interconnection is an appropriate model for many “real” physical
systems.

d;+ @ €1 A
+ _
aQ €2 O +dy

Figure 3.2: Interconnection for “absolute stability” problem

Note that this formulation includes the classical “absolute stability” problem (see eg
Willems [Wil71] and references therein) — shown in Figure 3.2 — as a special case, with
I G -G
. d, _|€é My M,
z—d,y—eandM M 0 I —1I
2 2 21 22 I G e



In the majority of cases the goal has been to determine sufficient conditions on the
elements of Figure 3.1 under which the interconnection is globally stable, which can be loosely
interpreted as:

e Global stability: do bounded inputs produce bounded outputs?

It is normal, although by no means universal, to consider signals bounded in Lo-norm (al-
ternatives include considering signals bounded in the £ - or £;-norms.)

Inevitably, there are interconnections for which all of the various conditions for global
stability fail. In these cases we consider a weaker question:

e Local stability: what is the largest class of bounded inputs (that we can determine)
such that all inputs in this class produce bounded outputs?

In the first instance, it is expected that one would consider classes of signals which form
“balls” in L,, ie with Lo-norm bounded by some given finite number. Restricting attention
to such classes should be more tractable, at the expense of possible conservatism.

z F__y_)@’v A w

L

Figure 3.3: Simple nonlinear feedback system

If we assume that

Mll M12
M21 M22

} € RH

ie, that the linear part of the interconnection is internally stable!, then we may simplify the
problem somewhat, by noting that z, w € L3 = y € L5. Hence we may temporarily ignore
y, and consider only the simpler interconnection (shown in Figure 3.3)

v=Fz—Guw
w = Av
where F' = My and G = —Ms,. (Note that we take a negative feedback, for commonality

with the “absolute stability” problem and the various well-known theorems associated with
it.)

IThis assumption is not strictly necessary for either local or global stability of the closed-loop, but such
an assumption does make sense:

If we are to consider the nonlinearity A as being a perturbation from some nominal linear behaviour, then
we will necessarily wish to consider the case w = 0. In this case, if either of My; or Ms; is unstable, then
(at least) one of v or y will be unbounded for arbitrarily small z.

Equally, if we consider z = 0, and if either of M1 or Mas is unstable, then (at least) one of v or y will be
unbounded for an arbitrarily small disturbance at w.
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3.2 Mathematical preliminaries

3.2.1 Generalised H,-norms

The results of Section 3.4 will rely on the following simple way to calculate the induced
norm of a partitioned R'H, transfer function with respect to the Lo-norms of the individual
elements of the input:

Given M € R'H, partitioned as [Ml My - Mn], and ¢ € RY, let
. . 9 n
San(@): =, I 0 & il 2 oot (3.1)

noting that each M; may be of any width, provided the partitioning works correctly.
Theorem 3.1

For any M € RH, partitioned as [M1 My --- Mn}, and ¢ € R}
sup  [[Mdlly = Sau ()
dilla<¢
where d = [df d} --- dﬂT is assumed to be of suitable dimension and partitioned com-

patibly with M .

PROOF OF THEOREM 3.1:
It is shown by D’Andrea in [D’A96] (as a special case of Theorem 3.6), that the following
two statements are equivalent:

I. The following supremum is satisfied

dy
¢ ¢ ¢ dz
sup |[[2an My - em] || <
lldill,<1 :
d, )
II. There exist scalars z1, x9,--- ,x, > 0 and y > 0 such that
r1+xo+-ta, <1
y<1 and
1
ﬁ] 10 e 0
0o —=I --- 0
1Lylén $2 ce. On V2
ﬁ[ VMI VMQ VM" : : : <l
1
0 0 \/ﬁj .
The relationship between the free variables (aq, as, - - , @) in Sq,, and the free variables
242 .
(1, g, -+, x, and y) in statement I is then x; = a%qﬁ%—{—a;ﬁ%ﬁz----’ra%(f)g foreachi € {1,2,--- ,n}

and y = 1. [
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Given M € R'H,, partitioned as [Ml My - Mn], and ¢ € RY, let
Sq[upper](d)) - Z ||MZ||OO ¢z (32)
i=1
Sponen (@) 1 = | D IMi]1%, &2 (3:3)
i=1

Lemma 3.2
For any M € RH, partitioned as [M1 My --- Mn} and ¢ € R}

Sq“oweﬂ(tb) < Sqp (@) < Sq[upper](¢)

where each inequality s tight, in the sense that

1. if M = [M1 My --- Mn} 1s such that
H [nz\%i A Hz\%ﬂm} HOO =Vn
then Sdu, (@) = Sd,pe (@) for all € R
2. if M = [M1 My - Mn} is such that
H [naﬁh Meim %] HOO =1

then SqM(¢) 7 Sq lower( ) fOT all d) E Ri

Remarks

1. The condition for the upper bound to be achieved is equivalent to the existence of a
single frequency at which My, My, --- , M, all achieve their individual H,.,-norms.

For example, this bound is achieved if M; = k;M; for all i € {2,---,n} and arbitrary
scalars ko, - -« , k.

The condition for the lower bound to be achieved requires at least that each of
My (jw), -, M,(jw) contributes exactly zero at any frequency w at which M; achieves
its Hao-norm, and similarly for each of My, - - - | M,,, which implies some (perhaps many)
Jw axis zeros.

For example, this bound is achieved if M (s) = [Z% %] for some ¢ > 0.
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PROOF OF LEMMA 3.2:

We assume throughout the proof that each M; and ¢; is nonzero: it may be readily
verified that if M; = 0 or ¢; = 0 then «; may take any value in (0, co) without affecting the
infimum, however in the proof which follows, «; will appear to be zero, infinity or undefined
in the cases M; =0, ¢; =0 or M; = 0 & ¢; = 0 respectively.

For the upper bound, note that

M My Mn 2
I = <Z

o
' lloo

SO

M;

g

OC) S (a262) ZHMH 2

=1

Sy () < inf
du(P) < Inf (2

1=

where we have minimised the expression under the square root by setting a; = a4/ %

for each ¢ € {2,---,n}, with o an arbitrary positive constant.
For the lower bound, note that

2
H[M My %}H? > max
aq a2 Qn oo — i

M;

o0

SO

M;

g

SAy (@) > inf (max

a;€(0,00) {

) (@) = || oI 6
] =1

where we have minimised the expression under the square root by setting a; = aq || M;||
for each ¢ € {2,---,n}, with o an arbitrary positive constant.
The conditions for tightness of the inequalities are then quite clear. [

We shall mainly be interested in the case n = 2, ie M = [F G}. For simplicity we
define shorthand versions of Sq,,, Sq,,., and Sq for nonzero F and G:

[upper]

Definition 3.1 (I q)y Diower a0d Tiypper)
Given nonzero F,G € RHo, M = [F G] and X € [0, 00), let

_ IFIZTY
F[F,G](A) T SQM (|: A\ = ael(I(%,foo) H [éF G] H ||F||2 + A2 (34)
P (V) — IFIZTN Z vl .
[upper]( ) quppe'r \ —+ || ||oo ( ] )

F -1
Ciar) = Sy (11| ) = /14 G 2 50

where S, Sq; and Sdy,,., are as defined in Equations 3.1, 3.2 and 3.5 respectively.

upper]
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Remark

1. Note that the functions I',,,e; and 'y, depend only on |G|, ie other properties
of the pair F, G have no effect (although clearly '\« is dependent on the interplay
between F'(jw) and G(jw))

This feature, which will significantly simplify notation in Section 3.4, comes at the
expense of slightly clumsy notation for the definition of I'j; 4, and also in the induced
norm result given in Corollary 3.3:

Corollary 3.3
For any nonzero F,G € RHo and A € [0, 00)

g [Fz+ Gl = T ()
2]l < [[Fl
Jwl(l, <A
Remark

1. One useful interpretation of this inequality (which may be deduced by simple rear-
rangement) is: for any w, z € L, such that || 2|, > 0

|Fz + Gwl|y < Tipgy (e ) | F| . |12l

£ oo 121l

PROOF OF COROLLARY 3.3:
Immediate from Theorem 3.1. n

Lemma 3.4
For any nonzero I',G € RH

e For any A € [0,00) and § >0
Lipa(A) < Tipg(A+0) <Tipg(A) + |Gl 0

o For each of Ui Uiippens a0 Tppgeqs T2 [0, 00) — [1,00) is bijective, with both T' and
I'~! continuous and strictly increasing.

e For any X € [0, 00)
Litowet (A) < Tiray(A) < Fuppen (A)
where each inequality is tight (in the sense of Lemma 3.2)

e [orany B € [1,00)
Fiume (8) STy (B) < T (6)

where each inequality is tight (in the sense of Lemma 3.2)
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PROOF OF LEMMA 3.4: )
First, consider {T'ne(A+ )}

{F[F,G](/\+5)}2: inf H[é

+ '(nf )H[éF GI|IZ {s@2x+ )}

ae (0,00

= {Dira(V} + G2, 62X +9)

which shows that I'g /(A4 0) > T'pg ().
Secondly, consider Iz g (A +0):

Lipe(A+9) = sup . |Fz + Gw],
2]l < 1F]l
Jwll, <A+6

= sup |Fz + (A + 6)Gwl,
I1zll, < IFIIo
Jw], <1
< sup {|IFz + A\Gw|, + [|6Gw]|, }
Izll, < IIFIS
Jw], <1
< sup  |[Fz+AGw|,+  sup  [[6Gw],
Il < 171, 2], < 17
||w||2 <1 ||w||2 <1
= sup ||FZ+Gw||2_|_ sup ||Gw||2
Izlly < [|Flo lwlly<s
Jwll, <A

=TiraA) + |G 0

which shows that I'ipo/(A 4+ 0) < T'ipg(A) + |G| 9.

Hence Iz is continuous and strictly increasing, which implies that it is bijective, and
furthermore that its inverse is continuous and strictly increasing. (That T'ppe; and [jge

share these properties follows trivially from Definition 3.1)
The inequalities then follow by Lemma 3.2 and monotonicity.
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Definition 3.2 (7ir.61y Yoower: a0d Viupper])
Given nonzero F,G € RHy and A € [0,00), let

A

A) = 3.7
’Y[F,G']( ) F[F,G]()\) ( )
)= —2 (35)
7u er] = s .
e F[uz)per]()‘)
GV ppp——— (3.9
/y[lmuer] [ F[lower] ()\) .

where ' g cy, Uiwppen a0d Uiyye are as in Definition 3.1.

Remark

1. Note that the functions Yyppe; and Yyowe depend only on |G|, ie other properties
of the pair F, G have no effect (although clearly 7z, is dependent on the interplay
between F'(jw) and G(jw))

Lemma 3.5
For any nonzero F,G € RH,

e For any A € [0,00) and § >0

J

Yirat(A +90) = Yipa(A) + (1 — |G| %F,G]()\))m

o
Pire(A)

- 0O(8%)

Vet A +0) < Yipa(A) +

o For each of Yiray: Viwpenr @A Yiowens 7 ¢ [0,00) — [1,00) is bijective, with both v and

v~ continuous and strictly increasing.

e For any A € [0, 00)

Viuppert (A) < Vr,61(A) < Vitowen (A)
where each inequality is tight (in the sense of Lemma 3.2)

e [or any 5 € [0, m)

’)/[;;}up'r] (/6) SA}/[;“,IG] (ﬂ) S /}/[;’}p?l‘] (ﬂ)

where each inequality is tight (in the sense of Lemma 3.2)
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PROOF OF LEMMA 3.5:
First recall from Lemma 3.4 that

0 < Iipe(A) < Dipg(A+0) < Dipg(A) + (|G 6

and hence that

A+0 A+06 A+
> >
Lirai(A) 7 Tira(A+0) 7 Tipg(A) + |G| 6
e
1 1 — |G|l Ve (N)
A — > A+0) > A x©
Yira(A) + T oo (V) Ve A+ 0) > Ypa(A) + TV - 1G]0

from which the first two inequalities follow easily.

Hence 7,p ¢ is continuous and strictly increasing, which implies that it is bijective, and
furthermore that its inverse is continuous and strictly increasing. (That Yuppen 20d Viower
share these properties follows trivially from Definition 3.2)

The inequalities then follow by Lemma 3.4 and monotonicity. [
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We end this discussion with some representative examples of the various functions defined
above:

Examples

We illustrate the behaviour of I'jz s and 7,z by setting G = ;% This immediately fixes
F[upper]7 F[lower]) 7[upper] a’nd ’Y[lower]:

F[upper]()‘) =1+A
F[lower]()\) =V 1 + )\2
A
'V[upper]()‘) = 1+—>\
A
Viower] (A) =

iR

By considering various F' such that ||F||_ = 1, we will see how I';; o depends on the inter-
action between F(jw) and G(jw). In Figure 3.4 we show I'zg (Vre) as a solid line and
L uppers Lower] (Viuppers Viower)) S dotted lines.

1. For F = *2.

s+2°

I Gl = v2

which implies (by Lemma 3.2) that I'zg = [ppen a0d Yiro) = Viuppens s shown in
Figure 3.4, (a) and (b) respectively.

_ *£s.
2. ForF—H—T

I Gl =1

which implies (by Lemma 3.2) that T'ygp = Tpoweg a0d Yira) = Vjowes @s shown in
Figure 3.4, (¢) and (d) respectively.

_ _d44s .
3. FOI’F—W.

F[lower] < F[F,G] < F[upper] aIld
7[upper] < ,Y[F,G] < ’Y[lower]

as shown in Figure 3.4, (e) and (f) respectively.

Although these examples utilise only very simple transfer functions, they nevertheless

demonstrate all of the important aspects of the functions I' x4, Yire and their upper and
lower bounds.
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T (A)
jliare) ()\)

10
3 _ 42 _ 42
(b) Vipe for F = 25 and G = =5
S S
& &
10%
S S
& &
10°

() Tip for F = i35 and G = 55 () e for F = 5557 and G = 55

Figure 3.4: Examples of generalised H,,-norms
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3.3 Global stability analysis

< F_+)@’U A w

L

Figure 3.5: Linear system with nonlinearity A
Consider the interconnection

v=Fz—-Guw (3.10)
w = Av (3.11)

shown in Figure 3.5. For integers m,n,p > 1 we make the following assumptions on the
elements of Figure 3.5:

1. z € L7 is a real-valued (vector or scalar) input

2. F € RHZ™ is a stable, proper real-rational transfer function

3. G € RHy 7 is a stable, strictly proper real-rational transfer function
4. A: LY — L5, is a causal operator which

e maps 0to 0 (ieif v(t) =0 Vt >0 then (Av)(t) =0 Vt>0)
e has finite Lo-L5 gain, denoted by ||A]|

e has finite uniform instantaneous gain (as defined earlier)

Given such F' and G, let

=Gl (3.12)
F G
D= % if I is strictly proper (3.13)
2

We shall claim, in light of the results of this chapter, that these two simple quantities (in
conjunction with information about the nonlinearity A) can be used to predict a number of
qualitative and quantitative properties of this interconnection. Firstly, however, we need to
ensure that Equations 3.10 and 3.11 describe a suitable and sensible interconnection.
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Well-posedness is a necessary property of any system which we wish to analyse - basically
it ensures that the equations have unique, well-defined and robust solutions, which must be
true for any physical process (and should be true of any model of such a process!) The
following definition is standard and taken from Willems [Wil71]:

Definition 3.3 (Well-posedness)
The interconnection of Equations 3.10 and 3.11 is said to be well-posed if

1. for any z € LY, there exist unique solutions v € LY, and w € L5,

2. on any finite interval [0, T) the solutions v and w depend on z in a causal and Lipschitz-
continuous way

3. the solutions v, w are insensitive to modelling errors, in a sense defined by Willems

[Wil71]

Remark

1. Note that well-posedness implies, for any 7" > 0, that if ||II;z|, = 0 then |[II;w|, =
| Hzv]|, = 0, since this is clearly a valid (and hence unique) solution (all three of F, G
and A map 0 to 0)

Proposition 3.6
The interconnection of Equations 3.10 and 3.11 is well-posed.

PROOF OF PROPOSITION 3.6:

By Willems ([Wil71]), the interconnection is well-posed if the product of the uniform
instantaneous gains of G and A is bounded away from unity at any time 7" € [0, 00).

But G is strictly proper, so has zero uniform instantaneous gain. The result then follows
provided A has finite uniform instantaneous gain at all times. [

We now define (global) stability in a standard way: “bounded inputs produce bounded
outputs”:

Definition 3.4 (Stability)
The interconnection of Equations 3.10 and 3.11 is said to be stable if for any z € LT

e veELYandwe LY

If the interconnection is not stable, it is said to be unstable.

As noted in the introduction, it will not always be possible to guarantee stability; with
these cases in mind we define a form of local stability: “inputs in some restricted set produce
bounded outputs”:
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Definition 3.5 (Local stability)
Given some set Z C LT, the interconnection of Equations 3.10 and 3.11 is said to be
locally stable with respect to Z if for any z € Z

e veLYandw e L

Remark

1. Note that our definition of stability is sometimes called “bounded-input bounded-
output” (BIBO) stability, to distinguish it from, for example “finite-gain” stability:
The interconnection of Equations 3.10 and 3.11 is said to be finite-gain stable if there
exist constants Ky, Ky < oo such that for any z € LT

o vl < Kylzlly and [lwll, < K2 =]
which is a slightly stronger concept than (BIBO) stability.
Also, note the equivalence between local stability with respect to L5 and (BIBO) sta-
bility.
The following Proposition, based on the well-known small gain theorem attributed to
Zames [Zam66a] gives a simple sufficient condition for stability of the interconnection, and

in addition, shows that there is finite gain from |2, to [|w|, & [|v]|, (and, if F'is strictly
proper, to [|v]|.):

Proposition 3.7 (Small-gain theorem)
The interconnection of Fquations 3.10 and 3.11 is stable if p||A|| < 1.
Furthermore, for any z € LY, and provided this condition is satisfied, then

N
< —T F .14
”“’”2—{1—u||A|| TR (3.14)

1
<KL — || F 1
||v”2_{1—u||AII}” o llzll (3.15)
maxnvnoos{1+pﬁ}nFn2nzn2 i F e RH, (3.16)

z = lA]

Remark

1. Note the equivalent statement implicit in Proposition 3.7:
If the interconnection of Equations 3.10 and 3.11 is unstable then u ||A] > 1.

2. Recalling our earlier comment about the usefulness of p and p, we see that (in con-
junction with [|A]|), we can use them to find a sufficient condition for stability of the
interconnection, and providing the condition is satisfied, to determine norm bounds on
v and w in terms of || F|| ||z, and [|F||, || 2],

In the remainder of this chapter we will state a number of gain results comparable to
Equations 3.14, 3.15 and 3.16, on both finite and infinite horizons, and for restricted
and unrestricted z.
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PROOF OF PROPOSITION 3.7:
The main statement is standard (eg Zames [Zam66a/); the norm bounds then follow by
Propositions 2.2 and 2.3 (and some simple rearrangement,) ]

There are a great many other tests for stability, which can be significantly less conservative
if some more information about A is given. One such test, which is a special case of “D-
scaling” (eg Zhou et al [ZDG96], chapter 11), is applicable when A has a diagonal structure:

Proposition 3.8 (Diagonally-structured small gain theorem)
The interconnection of Equations 3.10 and 3.11 is stable if A has a diagonal structure

Ay 0 0

0 A, 0
A= ,

0 0 - Ay

for some na > 1, and there exists a compatibly partitioned, strictly positive diagonal matrix
H = Diag{h1I, hol, -  hy, I} such that

HH_l Diag{ ||A1|| Iu ||A2|| Iv ) ||ATLA|| I}GHHOC <1

PROOF OF PROPOSITION 3.8:
Consider applying Proposition 3.7 to the equivalent interconnection

H 'DFz+ H 'DGHw

D =
w=H'AD'H%
where D = Diag { [|A1|| 1, [|As|| 1, -+, [|An,|| I} and |AD || = ||[H 'AD 'H| = 1. n

Another stability test, which is related to the well-known circle criterion, is applicable
when A is a square nonlinearity in sector [0, 1]:

Theorem 3.9

The interconnection of Equations 3.10 and 3.11 is stable if A is a square nonlinearity
in sector [0, 1] and there erists a diagonal matriz A = Diag{ay,aq,--- ,a,} with a; € (0,2)
for each i € {1,2,--- n}, such that

|A(G+1)-1I| <1
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Figure 3.6: Equivalent representation of Figure 3.5

PROOF OF THEOREM 3.9:

Consider the interconnection in Figure 3.6, which is equivalent to that in Figure 3.5.
The dotted lines outline two new operators, which we denote by G and A, so that the
interconnection may be represented as

&= AFz + Gw
w=AD
where it is simple to see that G is a linear transfer function:
G=AG+T1)-1

with G((co) = A — 1.
We assume that A is in sector [0, 1],

/w —vdt/ —v;))dt <0

and note that © = Av — (A — Iw. If we consider

/'w w—0)dt = /w —v)dt
:/0 ;(aiwi*(wi—vi))dt

it is clear that A is also in sector [0, 1] for any diagonal matrix A > 0.

For well-posedness of this new representation, however, we require that ||A — I < 1, ie
that a; € (0,2) for each ¢ € {1,2,--- ,n}. The stability condition is then immediate, by
Proposition 3.7. [
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The following Corollary shows that, if the nonlinearity is an ideal unity deadzone, we can
also bound the size of [|wl|,:

Corollary 3.10

The interconnection of Fquations 3.10 and 3.11 with A = Dzn s stable if there exists
a diagonal matriz A = Diag{ay, as,- - ,a,} with a; € (0,2) for each i € {1,2,--- ,n}, such
that

|A(G+1I)—1I| <1
Furthermore, in this case, for any z € L}

Joll, < 1]
4G+ D —T].

IDzn(£z)||

PROOF OF COROLLARY 3.10:
Applying the same loop transformation used in the proof of Theorem 3.9, we find that

A = Dzn A
By Lemma 2.5 we can then deduce that

lwlly < [Dzna(AFz)|l, + [[AG + 1) = 1| [[wll,
[Dzn4(AFz)]l,
= AG ) = Tl

provided that the stability condition of Theorem 3.9 is satisfied. But
Dzn,(AFz) = ADzn(Fz)

and so the bound follows immediately. N
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3.4 Local stability analysis

3.4.1 Ideal deadzone nonlinearity

z F —+>@—v» Dzn w

Figure 3.7: Linear system with unity deadzone nonlinearity

We consider the interconnection of Section 3.3, in the case that the nonlinearity A is the
ideal unity? deadzone function of Equation 2.9, ie

v=Fz—-Guw (3.17)
w(t) = Dzn(v(t)) (3.18)

with p =n, ie v,w € L}..
We make one extra assumption in addition to those in Section 3.3:

5. Fis strictly proper.?

and recall that we defined p:= ||G||, and p := 1Pl Il 3y, the previous section.

1F1;
There are two main results in this section, which apply to both stable and unstable
interconnections: firstly (Theorem 3.11) that it is possible to obtain a lower bound on

the local nonlinear “gain” from ||IIyz||, to each of ||[IIywll,, |[rv]|, & max |[IIpv;| ., and
2

secondly (Theorem 3.16 & Corollary 3.19) that these local results are guaranteed to be
applicable to a wider range of ||II;z||, than the “nominal” (and obvious) local result

Mrwlly =0 if |z, < 7

provided either that g < 1 (which, of course, implies global stability) or p < 1.
Firstly, however, we need a few definitions: let

Ay 2 =0 (3.19)
—1 .
v 1) ifpu<1
Mgy © = rall) (3.20)
00 ifp>1

where 7, ¢ is as in Definition 3.2.

2The assumption of unity saturation level entails no significant loss of generality.

30ne unfortunate effect of this assumption is that the “absolute stability” problem of Figure 3.2 (and,
indeed, any other interconnection with biproper F) is excluded from the local analysis method. This may
sometimes be rectified by considering, for example, a sequence F, = TlssF and letting € — 0. There are
more comments on this topic in the summary at the end of this chapter.



= D Y A

Y A

Then let
Apg = {)\ € (0,00) : Y (A) € (0, 1)}
- ()‘?F,c]a )\[1F,G’])
so that A € Ajpe; <= Yra(N) € (0,1) &= —L1—+ € (1,00)
Theorem 3.11
For any A € Apgy, any T > 0 and z € L5 such that

1 1
£ {1 + ,0/\}{1 - W[F,G](A)}

Mrz], <

(3.21)

then on the interval [0, T] the unique solutions v, w € L3, to Equations 3.17 and 3.18 satisfy

MTrwlly < {A}[Fll 117 2],

Mzvlly, < {Tina(N)}IF L 1Tzl

1
max [[Hzvil, < {1+ pA}IF |, 2]l ( <

Remark

1. We clarify this result with a simple scalar example: take F' =

Equations 3.17 and 3.18, for which Apq = (0, 00).
Taking A\ = 2, for example, the Theorem then states that

1- ’Y[F,G]()\)>

+4s and G — 2.2 in

(s+2)

[Mzwlly, < 2|zl
If ||IIyz||, < 1 then o], < 2.6]| ez,
Mrvfl < LG[[TTrz,

s+2

This relationship between ||IIpz||, and |[II;w||, may be shown graphically as in Figure

3.8 (a): at no time 7" > 0 may the point given by

[1rz(ly  [Trwl],]

be within the shaded region, ie that area to the left of — L =1
& 10 {1403 {1-7p 0 } =D

and above the line with gradient A || F|| (= 2).
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[ITzz]|, ITIzz]], 1Tz,
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Figure 3.8: Graphical interpretation of Theorem 3.11 (shown for F' = (:*25)2 and G = ﬁzz)

Noting that this “forbidden region” is defined by its corner point, and that the Theorem
gives one such region for each A € Ay, we plot the continuous curve defined by the
union of all of these corner points, ie

1 1 [E2III9) 1
11l {1+p>\}{1—7[F,c](>\)} [ {1+p>\}{1—7[p,c](>\)}

as shown in Figure 3.8 (b). We shall refer to this curve as the “characteristic bounding
curve” | since it contains all the information which can be obtained from Theorem 3.11
(relating |[Tizw]l, to |17z,

Finally, the overall “forbidden region” (ie the union over all A € Az ¢ of the individual
forbidden regions) is shown in Figure 3.8 (c¢). It may be seen that this region can be
determined from only the lower half of the “characteristic bounding curve”, ie that
portion of the curve which is increasing in the z-direction.

Figures 3.8 (b) or (¢) may then be used to determine (conservatively) the local stability
properties of the interconnection, in the sense that the following quantities may be read
off the plot:

(a) A lower bound on the largest permissible ||II1z||, which guarantees that Iyw € Lo

(b) An upper bound on the nonlinear “gain” from ||llrz|, to ||Ilrw]||,, as a function
of |[lrz||, (provided that ||Ilyz]||, is no greater than the largest permitted value
determined in (a))

Similar graphical interpretations hold for the relationships between |[Ilyz||, & [[IIrv]|,
and between |[II;z||, & |[IIrv]| ..
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Proof of Theorem 3.11 will require the following Lemma:

Lemma 3.12

For any z € L5, and T > 0 with |llrz|, # 0 there exists some Ty € (0,1 such that the

unique solutions v, w € Ly, to Fquations 3.17 and 3.18 satisfy

IMz,z]l, #0 and
HHTow”z =0

PROOF OF LEMMA 3.12:

We use proof by contradiction: assume that there exists some z € L) and T' > 0 with

|rz||, # 0 such that for all Ty € (0, T either

Mpzll, =0 (= [lgwl,=0) or
[T, w|, # 0O ( = ||l 2|, # 0)

ie ||II1,2||, and ||y, w||, are either both zero or both non-zero.
There exists (by Proposition 2.1) some T; € (0,T] such that

0 < [Tz 2[l, < (= Mzwll, > 0)

_1
2|71,
and similarly some 75 € (0,7 such that
0<|Mpwl, < g (= [Mznz[l, > 0)

so letting T := min{7}, 7>} we see immediately that

0 < Mg z2(, < m and 0 < [[Hzwll, < m
Hence by Proposition 2.3

max [[Hgyvifl o < [|Fl; [Tz 2|y + |Gl [Trpw]l,

<1

But this implies (by Lemma 2.7) that ||IIzw]|, = 0, contradicting our assumption. Hence

the Lemma is true.
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We can now prove Theorem 3.11:
PROOF OF THEOREM 3.11:

Consider the first inequality: it is clear that ||lI;z|, = 0 = |[Il;yw||, = 0, so assume

that ||IIrz||, # 0 and
Mrawlly > A F[l [Trz],
By Lemma 3.12 there exists some T € (0, 7] such that ||IIr, 2|, # 0 and
[Hpw|[, =0
so by Proposition 2.1 there exists some 77 € (1, 7] such that ||II1, z||, # 0 and
Mz awlly = A Fl [Tz, 2]

By Corollary 3.3 we have that

10l < Do) 1Pl Mzl = 25 g, e
Mz wlly = Ve (A) [Tz,
so by Lemma 2.7
max Mg v, >+
’ * T = yea(A)

By Proposition 2.3 we have that

max [|Thr vill o < [y [z 2[ly + |G ll; [Ty
= { 1Pl + Gl 1 Fll A} 1117, 2]
= {1+ pA}IIF], 111, 2]
so we have shown that |[II;w|, > X || F||, |[IIrz|, implies

1
Z||2 > {1 —i—P)\}{l — ’Y[F,G](/\>}

1E]ly [Trz]ly = | £l [Tz

which is equivalent to the first inequality. The bounds on ||lI;v||, and max |[II;v;|| follow

immediately by Corollary 3.3 and Propositions 2.2 and 2.3.



o MY Y e A

In the remainder of the section we state a number of results which are all essentially
derived from Theorem 3.11; for clarity of presentation we make the following definitions: for
A€ A let

1
Zira(A) : = (3.22)
R o)
and, since the largest such value will clearly be informative, let
Z[Ozf,)tc] t= sup  Zpa(A) (3.23)

)\GA[F,G]

Corollary 3.13 gives a straightforward infinite-horizon interpretation of Theorem 3.11,
and Corollary 3.14 gives the “best” such result:

Corollary 3.13
For any A\ € Agq the interconnection of Equations 3.17 and 3.18 is locally stable with
respect to the set

={z: ]z, < ||F|| Zira(N)}

Furthermore for any z € Zypg(\) the solutions v, w € LY to Equations 3.17 and 3.18
satisfy

lwlly < {A} 1Ml 1121,
vlly < {Tira (M)} 1F] 121,

1
max [|v;|| ., < 11+ pAg || F], ||z <<7>
il < {1+ AL IFL el (< =

PROOF OF COROLLARY 3.13:
Directly from Theorem 3.11. [

Corollary 3.14
The interconnection of Equations 3.17 and 3.18 is locally stable with respect to the set

¢ ¢
?G] {Z ||z||2 |14}|| Z(;«?G]
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Remark

1. Returning to Figure 3.8 (c), we see that this corresponds to the point
rz], [Trw],]

remaining under the shaded region for all 7" > 0.

opt

As mentioned in the Remarks following Theorem 3. 11 a useful way to determine Z g,

is to read it from the “characteristic bounding curve” (Figure 3.8 (b))

PROOF OF COROLLARY 3.14:
Directly from Corollary 3.13 and the definition of Z‘ftc] [

The limiting case as A N\, 0 in Corollary 3.13 is interesting, as it corresponds to the
deadzone nonlinearity being inactive, ie w = 0. Let

Zyo i =1m Zpo(N) =1 (3.24)

AN0

Corollary 3.15
The interconnection of Fquations 3.17 and 3.18 is locally stable with respect to the set

[FG ={z:zl, < ||F||2 [FG}

Furthermore, for any z € ZFG] the solutions v,w € LY to Fquations 3.17 and 3.18
satisfy
Jw][, =0
[vlly < 1Fl [12]];

max [[ull.e < [Fll; 20, ( <1)

Remarks

1. This result is not really surprising - in fact it is exactly what one would expect. How-
ever, the equivalent result in the general case (Corollary 3.25) will not be so obvious!

2. It is clear from this result that ZFg, > Z3)., is desirable, since otherwise there will be
nothing more to gain from Corollarles 3.13 or 3.14.

If the interconnection can be shown to be stable (ie, in the case p < 1), then this
inequality will be trivially satisfied; otherwise (ie, in the case p > 1) we shall show in
Corollary 3.19 that p < 1 is a sufficient condition to guarantee that ZOpt > Z0

PROOF OF COROLLARY 3.15:
Directly from Corollary 3.13 by considering A ~\ 0. [
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We now consider the cases p < 1 and g > 1 separately:

Case (a): p < 1, stability is assured

If 4 < 1 then we know already (by Proposition 3.7) that the interconnection must be
stable. The same deduction may be made from Corollary 3.13:

Theorem 3.16
If u <1 then

opt __
Zipe = 00

and the interconnection of Equations 3.17 and 3.18 is therefore stable.
Furthermore, for any z € LY the solutions v,w € LY to Equations 3.17 and 3.18 satisfy

lwlly < {Yima (D} IF ] 121, (3.25)
lvlly < {Yme W} IF ] 121, (3.26)
max [[vill, < {1+ Py (D} IF], [121, (3.27)

Moreover, ;' (1) is bounded above and below by

/}/[l_oi)er](l) S’Y[;‘}G](]') S fy[;]}per](l)
where each of these inequalities is tight (in the sense of Lemma 3.2) and

_ 1 _ 1
’y[lolwer] (1) - 72 V[uplper] (1) =7

1—pu L—p
Hence the inequalities in Equations 3.25, 3.26 and 3.27 are no weaker than, and may be
significantly stronger than, Equations 3.14, 3.15 and 3.16 in Proposition 3.7.

Remark

1. This result gives only the global gain bounds; it may still be useful sometimes to
calculate the local gain bounds of Corollary 3.13 in order to see how the performance
varies with [/ z][,.

PROOF OF THEOREM 3.16:
Directly from Corollary 3.13 by considering A 'y[;’lc](l), and noting that p < 1 implies
(1) < 0. .
e
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Case (b): u > 1, stability may be assured if ¢ = 1, and is not assured if ;> 1
Define, for A € (0, c0)

1

{14221 = Y0a (V) }
1

{1 + p)\}{l - ’Y[Upper](A)}

and let Zo2,, and Zo2 | be defined analogously to Equation 3.23. Note that by Lemma 3.5

[lower] [upper]

Z[lower]()\) L= (328)

(3.29)

Z[upper] (A) L=

t t t
Z?x[;per < ZC;PG’] < Z[(l)(l))wer (330)
where each of these inequalities is tight (in the sense of Lemma 3.2)
If = 1 then it is possible, although not certain, that we can guarantee stability:

Theorem 3.17
If =1 then

and

Hence it is possible that Z[",ﬁfi;] in Corollary 3.14 is the whole of L', in which case the
interconnection of Equations 3.17 and 3.18 is stable.

Remarks

1. Note that this is only BIBO stability: it is not possible to state finite gain results
similar to Theorem 3.11. The reason for this is that the result comes from considering
A — oo in Corollary 3.13.

2. So, by Lemma 3.4, the interconnection is stable if ||G|| ., =1 and H [—HFIT\ G} H =1

PROOF OF THEOREM 3.17:

In the case = 11t is possible to find Z;> ., by standard methods; we cannot find Z
but we can show that Z,.;(A) — oo as A — oo.

Then, by Equation 3.30, we see that Zy, = Zgh,, = oo is possible, in which case the

interconnection would (by Corollary 3.14) be locally stable with respect to £3'. But, by
Definitions 3.4 and 3.5, local stability with respect to L' is equivalent to stability. N

opt

[lower] »
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If 1 > 1 then we cannot guarantee stability:

Theorem 3.18

If > 1 then
2
/(=1 +Vi=p o
. Viovimt) €W <1
Zﬂiier] (\/m+\/ﬁ ( ) ) pr
! otherwise
and

otherwise

T B , L
Zovt — {E [u(uLl)H)\/uLl’ u—l] C(L,00) ifp< T
1

opt

Hence it is not possible that Z s in Corollary 3.14 is the whole of L5, so we cannot
gquarantee stability of the interconnection of Equations 3.17 and 3.18.

Remarks

1.

Note that ;1 > 1 does not imply that the interconnection is unstable, merely that in
this case the largest local stability region identified by this method is strictly smaller
than the whole of L7’

Note also that Z™ % for any g > 1 and p < 1, ie that reducing p to unity cannot

upper

t
increase Z{h, past 4

fower; €N be made arbitrarily large by making p close
to unity (provided always that p < \/"2—1, which ceases to be a problem as p — 1)
2

However, the lower bound for Z°P

Hence, as yu — 1, we see that Z; Opt ; is bounded below by a number which is slightly less
than %, and bounded above by a number which is arbitrarily large. Recall that both
of these bounds are tight (in the sense of Lemma 3.2, ie for each bound there exist F'
and G achieving equality.) This suggests that we cannot make any stronger deductions

without more analysis.
If, however, it is possible to manipulate F' such that H [ﬁ ﬁ] H = 1, then
Zw tc — 7 will be achieved, and hence (provided both F and G can be manipulated

[lower]
to this extent — sometimes F' and/or G will be fixed a priori), it is possible to obtain
semi-global stability, in the sense that the interconnection will be locally stable with

respect to an arbitrarily large subset of L£3".
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PROOF OF THEOREM 3.18:
In the case p > 1 We cannot solve for Z;°

and show that if p >
e

analytically; we can, however, find Z:""

[lower [upper]

then there are no A such that 7. ;(A) > L.

For p < we can only find upper and lower bounds for Zpby, . The lower bound
1/ [l.2—1
comes from simply considering a particular value of A in Z,ei:
2 1( - ) - &
Tt (= 1) 4 py /i — 1
Noting that for all A € Ap g
1 < 1 - 1
{1 + p)\} {1 - r}/[lower]()\)} 1 - ,Y[IOWQT]()\) ]‘ - i
gives the upper bound. N
If 1 < ZPg < oo then let
A, = argmax Zp ¢ (\) (3.31)
)\EA[F G]

(which is guaranteed to exist, since the function is continuous and does not achieve its
supremum at an endpoint)

Corollary 3.19
If u > 1 and 1 < ZOpt] < 00 then the interconnection of FEquations 3.17 and 3.18 is
locally stable with respect to the set

Z?tc] {Z ||Z||2 ||F||2Z(;«?é]}

Furthermore, for any z € Z[FG the solutions v, w € LY satisfy

lwll, < {A%a} 1Pl (1211,
lvlly < {Tira(MFe) } I1F1 121

1
max o], < {1+ pAZL Y I 121, (< )
¢ e ? ? 1— V[F,G](A[giz])

Moreover

then it is certain that ZOpt = ZOpt

\/F [lower]

e if > 1 then it is certain that Z”Fptcl < Zof,fer] < 00

e ifu>1andp> =1

o if p>1 and p <1 then it is certain that 1 < 7%, < 7%,

[upper]
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Remarks

L IfZ7 g] = 1 then Corollary 3.15 gives the best result available, and the possibility that
Z tG] = 00 has already been discussed in Theorem 3.17.

2. The conditions stated in the final paragraph of this result may be quite conservative.
However, they are based on achievable inequalities, and hence are, in some way, the
best possible given the basic information p and p only.

PROOF OF COROLLARY 3.19:
Simply putting together results from Corollary 3.14, Theorem 3.17 and Theorem 3.18. n

This concludes the local stability analysis in the scalar deadzone case; a more general
class of scalar nonlinearities is considered in the following section. An illustrative scalar
example now follows:

Example

1. We consider the interconnection of Equations 3.17 and 3.18 with F = (i—‘g”) and

G = k:;%, for various values of k.

By Corollary 3.15, we deduce immediately that w = 0 if z is such that

121, < ||F1||2 = 0.7071

independently of k. We now consider the cases k < 1, £ > 1 and k = 1 separately:

k <1 For any k < 1 the interconnection is stable: three representative “characteristic
bounding curves” (see Theorem 3.11, Figure 3.8 and the associated remarks) are
shown in Figure 3.9 (a), (b) and (c) for £k = 0.8, k = 0.9 and k£ = 0.99

We see that as k approaches zero, these bounding curves lose their curvature near
the origin, as may be seen in the enlargements in Figure 3.9 (d), (e) and (f).

k> 1 For any k£ > 1, we cannot show stability: three representative “characteristic
bounding curves” are shown in Figure 3.9 (g), (h) and (i) for £ = 1.01, k£ = 1.1
and k= 1.2

We see that as k& approaches 1, the bounding curves extend further to the right,
ie the interconnection is locally stable with respect to progressively larger | z||,.

k =1 For the case when k is exactly unity, the algorithm used to generate the graphical
plot runs into numerical difficulties. It is not clear whether this case is in fact
BIBO stable or not.
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Figure 3.9: Local stability analysis: Example 1
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3.4.2 A general class of nonlinearities

z F_+)@’U A w

L

Figure 3.10: Linear system with diagonal nonlinearity A

We now consider the general interconnection (shown in Figure 3.10)

v=Fz—-Gw (3.32)
w = Av (3.33)

where the diagonal nonlinearity A = Diag{A;, Ay, --- , A, } satisfies A; € A, (see Definition
2.4) for each i and some suitable 9 : (1, 00) — (B0, 51)-
We make two extra assumptions in addition to those in Section 3.3:

5. Fis strictly proper

6. Mﬁo <1

recalling that p = ||G|, and p := (EaIsyciiby

11l
Assumption 6 is desirable, as it indicates that the “loop gain” ||Al ||G|| is less than one

for sufficiently small max ||v;||_, and it will in fact be needed in the proof of the local stability

results.

There are two main results in this section, which are analogous to those in the previous
section: firstly (Theorem 3.20) that it is possible to obtain a lower bound on the local
nonlinear “gain” from ||II;z||, to each of |l w||,, |[IIv], & max ||II;v;], and secondly

3

(Theorems 3.26 & 3.29) that these local results are guaranteed to be applicable to a wider
range of |[IIrz||, than a “nominal” result? provided either that S < 1 (which, of course,
implies global stability) or that p satisfies a simple sufficient condition which is given in
terms of p and the properties of 1.

As in Section 3.4.1, let

0 if 180 = 0
Nea P =9 . (3.34)
Yk (Bo) if uBy € (0,1)
1 if 1
)\[1F’G] . W[F,G](ﬁl) 1 B € (0,1) (3.35)
o0 if ppy > 1

where 7, ¢ is as in Definition 3.2.

4which may be obtained using small gain arguments, given that the “gain” of A is no greater than 3, if
max [|v; || < 7o.
2
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Then let
A = {A € (0,00) : (V) € (B, 1)} (3.36)
= ()\([)F,G]? )\[IF,G])

For A € Aige we then define

1/1_1 ('Y[F,G]()\))

Zipa(A) + = RETYS (3.37)
and also 20 = lim Zpe(\) = —0 3.38
[F,G] A\A?F,G] [F,G]( ) {1+p)\?ﬂc]} ( )
ZPe o= sup Zpa(N) (3.39)
AEAF,q)

In addition, we will utilise the functions e, and Yyppe; (discussed in Section 3.2.1) to
provide some upper and lower bounds for the functions and constants defined in Equations
3.34 to 3.39.

For o being either (upper OT flower], let

0 if =0
A =47 it o (3.40)
’7@ (ﬂﬂ) if MBO € (07 1)
St if € (0,1
00 if B >1
where Vipper a0 Yyowe; are as in Definition 3.2. Then let
Ao ={)€(0,00): 7)) € (. 5) (3.42)
= (Ags A)

so that A € Ay <= 10(A) € (By, 1) = ¢! (’y@(/\)) € (rg,0)
For A € A, we then define

,1 )\
Zo(\) : = v (0e(N) (3.43)

{1+ pA}

. To
d als 7%= lim Zo(\) = ————— 3.44
T M (e o
ZP" = sup Zo(\) (3.45)
A€Ao

Remark

1. Note that all of the functions and constants indexed by [upper Or fower; depend only on
w and p, unlike those indexed by (), which depend on the interaction of F' and G in

[F(jw) G(jw)].
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Theorem 3.20
For any X\ € Mgy, any T > 0 and z € Lo, such that

2|, < ||F|| Zir.y(A)
then on the interval [0, T] the unique solutions v, w € L3, to Equations 3.32 and 3.33 satisfy
Mzawlly < {A}IF]l 1Tz 2],
TTzvlly < {Tire (A} 1F] T2l
max [yl . < {1+ pA} IF ) T2l (< 97 (V)

Furthermore, if ufy = 0 and/or uB; > 1 then®

0< Z[(lpper] < Z0 rc) < Litower (A) < 00 for \ € ()\([)ZDW], )\0 -
0 < Z?LPPET < ZFG ()\) < Zlower ()\) < o0 fOT )\ E ()\[OFG )\OuppeT]]
O < Z“PPE”‘ ()\) S Z[Fac]()\) < Zlu'we'r <)\) < o0 for )\ e ()\([)uppe'r Alluwer])

0 < Zuppert(A) < Zipey(A) < 00 for X e [\ /\[1F o)

[lower] ?
0 < Zuppe’r (A) < oo fOT )\ E [>\[1FG Aupper])

where every non-strict inequality is tight (in the sense of Lemma 3.2)

Remark

1. We clarify this result with the same simple example as in Section 3.4.1: take F' = %

and G = ﬂ 2 in Equations 3.32 and 3.33, and let ¢ : (1,00) — (0,1) be given by

1
e 1 _—
vy =11
In this case Ay = (0,00) for © being each of (r.ci, fower] OF [uppen.

Taking \ = 2, for example, the Theorem then states that

[Trwl, < 2|rz|,
If [Tlpz]], < 1 then Mool < 2.6 Tz,
Mo < 1.6z,

This relationship between ||II7z||, and ||II;w]||, may be shown graphically as in Figure
3.11 (a): at no time 7" > 0 may the point given by

Tz, [Hrwll,]
be within the shaded region, ie that area to the left of 7= F” Zip.)(A) (= 11in this example)
and above the line with gradient A [|F|| (= 2 in the example).

5These five inequalities simply imply that the three “characteristic bounding curves” indexed by (uppes],
(r.¢) and power] are nested, ie one inside the other.

The equivalent statement in the case 0 < ufy < uB1 < 1 is omitted for reasons of comprehensibility, since
the three intervals Apoyers Arre and Ap,.e; may intersect, or not, in any possible combination, subject only
to the inequalities given in items 1 and 2 of Lemma 3.22 (which simply state that the endpoints of these
intervals are ordered)
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Figure 3.11: Graphical interpretation of Theorem 3.20 (shown for F' = (5%25)2 and G = ﬁzz)

Noting that this “forbidden region” is defined by its corner point, and that the Theorem
gives one such region for each A € A, we plot the continuous curve defined by the
union of all of these corner points, ie

= Ziwa () HF““’AZ[F,GJ (A)

1T 11l
as shown (solid line) in Figure 3.11 (b). This is the “characteristic bounding curve”.

Furthermore, the second part of the theorem states that the characteristic bounding
curves indexed by [upper] and power] are such that the three curves are nested, in the sense
that the curve indexed by [upper is conservative, and that indexed by power is optimistic
(and note that these are tight bounds, in the sense of Lemma 3.2) These curves are
shown as dotted lines in Figure 3.11 (b).

Finally, the overall “forbidden region” (ie the union over all A\ € Az ¢ of the individual
forbidden regions) is shown in Figure 3.11 (¢). It may be seen that this region can
be determined from only the lower half of the “characteristic bounding curve”, ie that
portion of the curve which is increasing in the z-direction.

Figures 3.11 (b) or (c) may then be used to determine (conservatively) the local stability
properties of the interconnection, in the sense that the following quantities may be read
off the plot:

(a) A lower bound on the largest permissible ||II;z||, which guarantees that Ilyw € Lo

(b) An upper bound on the nonlinear “gain” from ||IIrz||, to |[|[IIrw]|,, as a function
of [[TIpz||, (provided that ||IIpz||, is no greater than the largest permitted value
determined in (a))

and, moreover, tight upper and lower bounds on each of these may be determined from
the dotted lines in Figure 3.11 (b).

Similar graphical interpretations hold for the relationships between |[IIpz||, & |[IIrv]|,
and between |[Ilpz||, & |[IIrv]|..
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Proof of Theorem 3.20 will require the following two Lemmas:

Lemma 3.21
For any z € Ly, and T > 0 with |[Ilpz||, # 0 there exists some Ty € (0,T] such that the
unique solutions v, w € LY, to Fquations 3.32 and 3.33 satisfy

Izl #0  and

Mz wlly < Xg) 1Fl 2]l
Lemma 3.22

1.

)\Olower /\?F a < )\?upwl with all three equal iff Bop = 0
2.

/\[lloweﬂ < A[lF’G] < )\[lupper] with all three equal iff Bip > 1
3.

Zoupper] < Z0 < Z(l)ower] with all three equal iff Bop = 0 or rog =0
4.
Ziﬁeﬂ < ZOpt < Z‘l’fjer with all three equal if Bip < 1 and only if Bip < 1

5. if XD ey <A< A then

Bo < Viupern (A) < Veey(A) < B and
Z[upper]()‘) S Z[F,G]()‘)
6. if Mpo <A<\

[lower]

then

ﬁo < ,Y[F,G]()\) < ,Ylower ()\) < /61 and
Zir,61(A) < Zigower (A)
)\1

[lower]

7. if e (N9 ) and A < \°

[F,G]

ﬁo < P)/[lowe'r]()\) < 61 a/nd
ZOF‘ ,G] < Z[lower]()\)

then

[lower]?

8 if A€ (Mg Afpgy) and X < X

[upper]

Bo < Yira(A) < B1 and
Z0 , < Zipe (V)

[upper]

then

Furthermore, the non-strict inequalities in items 1 — 6 are tight (in the sense of Lemma 3.2)
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PROOF OF LEMMA 3.21:

We use proof by contradiction: assume that there exists some z € Lo, and T" > 0 with
|11y 2||, # 0 such that for all Ty € (0,77 either

Irzll, =0 (= [Hpwl,=0) or
Mzywlly > Npg 1l Ty 2ll, >0 (= [Ty 2], # 0)

ie ||IIz 2|, and [[II;,w||, are either both zero or both non-zero.
For any r > ry > 0 there exists (by Proposition 2.1) some 7; € (0, 7] such that

0 < Mzl < gy (= [Mzwll, > 0)
and similarly some Ty € (0,7T] such that

0 < [Tpw|, < m (= IITzz[l, > 0)
so letting Tjy := min{7}, 75} we see immediately that

0 < [[Hzp 2|, < and 0 < [|[IIpw|, <

_r_ _r_
2[1Fll 2[1G1l,

Hence by Proposition 2.3
max [[Hgyvifl o < [[Fl; [Tz 2]l; + |Gl [Trpw]l,
<r

Since this is true for any r > rg, we deduce that max ||Il;,v;||, < 7. But this implies (by
(2

Lemma 2.8) that ||l w|, < Gy ||Ig,v|[,.
But then by Corollary 3.3

Mz wlly < Bo [Tz, vl| o

< /BOF[F,G] < ||HT0w||2

1Pl || T 2|,

Bo

— I w
||HT0"”||2 >|| To ||2

e <||F||oo [tz 2],

VIl T2

which implies that

II w”
” To™llo

_Pnwll, ) <
,Y[F,G](”FOOHHTOZH2) —= 50

but we assumed that [[Igwl|, > A ¢, || Fl o [Tz, 2|5, which means that

11 w”
|| To 2

’Y[F,G](FOOHHTOz”) > By

This is contradictory, so the Lemma must be true. [
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PROOF OF LEMMA 3.22:

Items one to six, and the first parts of items seven and eight follow directly form the
definitions of 7o, Ao and Z., and Lemma 3.5.

For the second part of the seventh item, consider

7 B Q/J_I(W’Uower]()\)) To ro _ 0
[lower]()\> — > Z 0 - [F,G]
14 pA L+pA 7 14 pAhg
The second part of the eighth item follows in a similar manner. [

We can now prove Theorem 3.20:
PROOF OF THEOREM 3.20:
Consider the first inequality: it is clear that ||lIrz|, = 0 = [[Ilyw||, = 0, so assume

that ||IIrz|, # 0 and
Mzawll, > A F[l [Trz],
By Lemma 3.21 there exists some T € (0, 7] such that ||Ilz, 2|, # 0 and
Mz, wlly < Ay g [Tz 2]l
so by Proposition 2.1 there exists some 77 € (1p, 1] such that ||Il;, 2|, # 0 and
Mz wlly = A Fll [Tz, 2]
By Corollary 3.3 we have that

i (V)
Tz, 0lly < DornN) [ FlLo 11,21, = 291

[y wlly = Yira(A) [Hr v,
so by Lemma 2.8

||HT1w||2 ie

max Tz vill oo > %~ (Vira (V)
By Proposition 2.3 we then have that
max || Thr vill o < [y [z 2[l; + (|Gl [Tl
= {UIFlly + G I Flle A} 1Tz 2]l
= {1+ pA} Pl [Tz, 2]
so we have shown that |[II;w|, > X || F|| [IIrz|, implies

¢71 (’Y[F,G}()\))
{1 + p)\}

which is equivalent to the first inequality. The bounds on |[IIpv||, and max ||[IIpv;|| follow

1 T zlly 2> ([, 1117 21, >

immediately by Corollary 3.3 and Propositions 2.2 and 2.3.
The inequalities in the final paragraph follow directly from Lemma 3.22. [
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In the remainder of the section we state a number of results which are all essentially
derived from Theorem 3.20.

Corollary 3.23 gives a straightforward infinite-horizon interpretation of Theorem 3.20,
and Corollary 3.24 gives the “best” such result:

Corollary 3.23
For any A\ € A the interconnection of Equations 3.52 and 3.33 is locally stable with
respect to the set

{z 2l, < ||F|| FG](/\)}

Furthermore for any z € Zpa(A) the solutions v,w € L3 to Equations 3.32 and 3.33
satisfy

leolly < {A}1F1L D121,
ol < {Tira )} 1Pl 121,
max [[ull,e < {1+ oA} 1Pl 211, (< 07 (v (V)

PROOF OF COROLLARY 3.23:
Directly from Theorem 3.20. [

Corollary 3.24
The interconnection of Equations 3.32 and 3.33 is locally stable with respect to the set

Z?tc] {z ”ZHQ ||1«}||2Z0pé]}

Remark
1. Returning to Figure 3.11 (c), we see that this corresponds to the point
Tz, [[Trwll,]

remaining under the shaded region for all 7' > 0.

As mentioned in the Remarks following Theorem 3.20, a useful way to determine Z[‘g?g]
is to read it from the “characteristic bounding curve” (Figure 3.11 (b))

PROOF OF COROLLARY 3.24:
Directly from Corollary 3.23 and the definition of Z‘;Pg] [
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Considering the limiting case as A \ )\([)EG] gives a simple result that holds for all inter-
connections. Recall that for ¢ being any of (.1, upper] O ftower]

To
20 = lim Zo(\) = — 2 _
o i =l 2o = 17 %

Corollary 3.25
The interconnection of Equations 3.32 and 3.33 is locally stable with respect to the set

- Zira )

Furthermore, for any z € ch] the solutions v,w € LY to Equations 3.32 and 3.33
satisfy

[FG {Z ||z||2 >

1wl < {Ne} 1Pl 121
[olly < {TirrNe) } 1Pl N2
max o], < {1+ pXoug } I 121, (< 7o)

Moreover, Zf}, ;1. My and Tipq(Apg) are bounded above and below by

Z0 <Z0 <Z0

[upper] [lower]

A0 <>\0 <>\°

[lower] [upper]

laweT ()\Olowe’r]) <F[F G]()\ ) < F )\0

[upper] ( [uppe'r])

where each of these inequalities is tight (in the sense of Lemma 3.2) and

Z[(l]ower] 1 - /BOM Z?t er] = TO(I — /gou)
pﬂo+\/1—ﬁou " pBo + (1 = Bop)
)0 S\ — i
[low?r] m [upper] 1 _ ﬁ(]/'l’

1 1
F[lower] ()\?lower] ) = i

T 5 5 FU er] Au er] -
W [pp]([pp]) 1_ﬁ0M

Remark

1. Tt is quite possible that ry may be zero, in which case this is a very small set of signals!

2. Note that the various bounds in the final paragraph (Z!

[lower]

u (representing F' & G), and on rg & [y (representing A)

etc) depend only on p &

PROOF OF COROLLARY 3.25:
Directly from Corollary 3.23 by considering A ™\, )\[F a- [
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We now counsider the cases f1u < 1 and B > 1 separately:

Case (a): (i < 1, stability is assured

If 51 < 1 then we know already (by Proposition 3.7, and because ||A|| < ;) that the
interconnection must be stable. The same deduction may be made from Corollary 3.23:

Theorem 3.26
If Bip < 1 then

opt __
Z[F,G] = 00

and the interconnection of Equations 3.32 and 3.33 is therefore stable.
Furthermore, for any z € LY the solutions v, w € LY to Equations 3.32 and 3.33 satisfy

lwlly < { N} 1 1211, (3.46)
Al
loll, < {52} IFll NIz, (3.47)
max [[vil, < {1+ pAea }I1Fl 121, (3.48)

Moreover, A[lF’G] s bounded above and below by

<AL <\l

[F,G] — 7 [upper]

)\1

[lower] —

where each of these inequalities is tight (in the sense of Lemma 3.2) and

1 ﬂl 1 ﬂl

)\[upper] - 1 o /Bllu )\[lower] - W

Hence if ||Al| = By then the inequalities in Equations 3.46, 3.47 and 3.48 are no weaker
than, and may be significantly stronger than, FEquations 3.14, 3.15 and 3.16 in Proposition
3.17.

Remark

L. If ||AJ]| < By then the relationship between these inequalities and those in Proposition
3.7 is not so clear; it depends on quite how much larger 3; is than |Al|. However, if
the least conservative 1) is used, then the difference between ; and ||A|| will often be
small.

2. Note that the bounds \!

fowery a0 AL depend only on g (representing F & G), and
on (31 (representing A)

[upper

PROOF OF THEOREM 3.26:
Directly from Corollary 3.23 by considering A )\[1F7G], and noting that G;p < 1 implies
]S)\%RG]S)\I ; < 00. u

[upper

)\1

[lower
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Case (b): [ip > 1, stability may be assured if 5 = 1, and is not assured if
B> 1

For o being any of (r.c], fower], upper, recall that

ZP = sup Zo(\)
AEAQ

and that

AR AL A (3.49)

[upper] [lower]

where each of these inequalities is tight (in the sense of Lemma 3.2)
If By = 1 then it is possible, although not certain, that we can guarantee stability:

Theorem 3.27
If Byp =1 then

1. The following are equivalent

o 7Pt 00 (1€ Zjjoer(A) — 00 as X/ 0)

[lower] —

o There exists some o > % and (possibly infinite) k > 0 such that

(E=r) )=k asr /2

o
2. The following are equivalent
® Zipgen = 00 (i€ Zyuppen(A) — 00 as A/ o0)
e There exists some a > 1 and (possibly infinite) k > 0 such that

(L —r)'r) =k asr / %

I

opt

Hence it is possible that Z ¢, in Corollary 3.24 is the whole of L3', in which case the
interconnection of Equations 3 32 and 3.33 1s stable.

Remarks

1. Note that this is only BIBO stability: it is not possible to state finite gain results
similar to Theorem 3.20. The reason for this is that the result comes from considering
A — oo in Corollary 3.23.

2. Clearly, if Z(P' ., = oo, then stability is guaranteed. On the other hand, if Ziby,, < oo,

then stability cannot be guaranteed.

The final (éase whtere Z[uf)f)er] < oo and Z), 1ower] = 00, is more interesting. The upper
bound Z 7., < Z%

t t
fower) 15 achievable but so is the lower bound Z77. > Z00 .

Nevertheless, relaxing the upper bound to infinity is still a useful result!
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PROOF OF THEOREM 3.27:

Note that i — Viower) Das a zero of order 2 at infinity, and 1

14+pA
infinity. If «, the order of the singularity of ¢ at %, is such that 2a > 1 then 7., will have

a pole at infinity.
A similar argument applies to Z,

has a zero of order 1 at

apper]s Where % — Yiuppers AS & zero of order 1 at infinity.
Then, by Equation 3.49, we see that Z[‘}Ifg] = oo is therefore possible, in which case the
interconnection would (by Corollary 3.24) be locally stable with respect to £3'. But, by

Definitions 3.4 and 3.5, local stability with respect to £3" is equivalent to stability. [

If By > 1 then we cannot guarantee stability:

Theorem 3.28
If Bipp > 1 then
Z[opt < 00

lower]

Hence it is not possible that Z[Ogg] in Corollary 3.24 is the whole of LT, so we cannot

guarantee stability of the interconnection of Equations 3.32 and 3.33.

Remarks

1. Note that Bi > 1 does not imply that the interconnection is unstable, merely that in
this case the largest local stability region identified by this method is strictly smaller
than the whole of L7

2. In Theorem 3.18 we were able to make Zpby,,| arbitrarily large by making 8,1 approach
1. One would hope that the same procedure would apply in the general case (because
the process which generates Zo2° ; appears to be quite well-behaved), but this remains

[lower
unprovei.

PROOF OF THEOREM 3.28:
If Bipp > 1 then from Lemma 3.5 we see that yp (M) < i < By for all X € Apg. So

L R 10Y)) <V (e (V) <v71(2)

{1+pA}
for any A € Ajpq, and hence Z{%g, < w_l(%) < 0. "
If Z0, o) < Z{¥Fe < oo then let
APey = arg max Zip ¢ (\) (3.50)
AEA[F’G]

(which is guaranteed to exist, since the function is continuous and does not achieve its
supremum at an endpoint)
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Theorem 3.29
If Bip > 1 and Z&G] < Z{ﬁfg] < o0 then the interconnection of Equations 3.32 and 3.33
18 locally stable with respect to the set

Z?tc] = {z ”ZHQ |F||2Z(g)é]}

Furthermore, for any z € Zf}’f’tc] the solutions v, w € LY satisfy
lwlly < {AF6 Il 1121,
lvll, < {Tira(AEe) } I1F . 121,

o 1
max [l . < {1+ pAZE HIF I 12l (<

1— “Y[F,G]()\[Ozgtc]))

Moreover

o if B > 1 then it is certain that ZFe, < Zg,, < o0

o if Bypu>1 and

(14 pAlr) (1 = Bon)

o (5 )p <

F[FG ()\[F G])
where V' (rd) means the right-derivative % evaluated at ro, then it is certain that
70 o < Zik.
Remarks
LItz g = Z(} ¢, then Corollary 3.25 gives the best result available, and the possibility

that Z‘}{’g 0o has already been discussed in Theorem 3.27.

2. The following simple deductions, which depend only on p and p (ie they do not depend
on the interaction of F'(jw) and G(jw)) are immediate from the stated (sufficient)

condition for Z(; a < Z[C}Iftc] in the case fyp > 1:

e If either ry or ¢/'(ry) is zero then the condition is always satisfied.
e If 13y = 0 then the condition simplifies to 79’ (rg)p < 1

o If uBy € (0,1), and roi'(rg) > 0, then the condition is satisfied by any of the
following

ot (rg )p < (1 — Bopt + pBo) (1 — Bop)
ro! (rd)p < (1 — Bop)?
oy’ (rg) < Bo(1 — Bop)

3. The stated (sufficient) condition for Z, .,
a specific (given) 1, it is often possible to calculate Z{Pr | and ZgP,,, analytically, and
hence using the relation in Equation 3.49 one may obtain a less conservative sufficient

condition, and possibly also a necessary condition.

ZC}DG] may be extremely conservative. For
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PROOF OF THEOREM 3.29:

Apart from the very last condition, this is simply putting together results from Corollary
3.24, Theorem 3.27 and Theorem 3.28.

The final part — the condition for Z&}G] < Zﬁé?g] — involves finding sufficient conditions
for the existence of some ¢ > 0 such that

(U (’Y[F,GJO\?F,c] + 5)>
I+ p()\[OF,G] + 5)

To
:Z[J(/\0 4—(5)>Z0 =
F,G [F,G] [F,G] 1 +P)\?F,G]

or equivalently, noting that ¢(.) is monotonic

ropod
Vir, (/\0, +5)>¢(r0+7)
[F,GI\"\F,q| 1_’_10)\&!6]

Since 1 is differentiable (by assumption), it is clear that
P(ro +0r) < ab(ro) + ' (g )or + O(617)

ie that

rop0

L 1+ 057
1+ pA?F,G’]

5 !/
(0 (%-F#p)\?ﬂc]) < p(ro) + ' (rg)

and Lemma 3.5 states that

J

— O
[FvG'](A?F,G]) ( )

’Y[F,G]()‘([)F,c] + 5) > 7[F,G}()‘?F,G]) + (1 - M’V[F,G]()‘?F,G])) T

Substituting V[F,G]()\?F’G]) = (rg) = Py into these two inequalities, and subtracting, we see
that Zpe (Mg +0) > Zhg if

(1 —Bop) o (rg)p 9
— 0—0(6°) >0
{F[F,c](/\?p,c]) L+ pAh g } @)

which is clearly true for some sufficiently small ¢ if the quantity in the braces is positive. n
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This concludes the local stability analysis in the general scalar case; some examples now
follow:

Examples
la. Counsider ¢ : (1,00) — (0,1) given by

1
—1-=
vir) =1
which we used as Example 1 in Section 2.2, and which is shown in Figure 3.12 (a).
For this particular ¢ the family of nonlinearities A, contains the ideal unity deadzone
function, which is shown in Figure 3.12 (b).

(a) ¥(r) (b) Unity deadzone

Figure 3.12: 1 for local stability Example 1

In fact, the results from using this 1 are identical to those obtained in Section 3.4.1.
However, in Section 3.4.1 we did not discuss fully the bounds obtained by using Z,
aIHi ézﬂoweﬂ'

upper]|

Figure 3.13 shows, for the same F' and G as in Example 1 in Section 3.4.1, the “real”
characteristic bounding curves of Figure 3.9 as bold lines, and those obtained using
Zower) a0 Z,,,01 as dashed lines.

It may be seen, in this particular case, that the “real” curve lies almost midway between
the bounds; this is to be expected if we look at Iz and vz (and their bounds) which
were shown in Figure 3.4 (e) and (f). If we were to repeat the example using F' = i—é
then the “real” curve would coincide with the curve obtained using 7;.p.; if Wwe were
to repeat the example with F' = ik_z then we might hope that the “real” curve would
coincide with that obtained using vy, — unfortunately this £ is not strictly proper,

so the analysis method cannot be applied.



(g) k =1.01

(h) k = 1.10

0.8
Iz,

(i) k=120

Figure 3.13: Local stability analysis: Example 1a
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1b. In fact, for ¢ : (1,00) — (0, 1) given by

1
r)=1—-—
vy =1--
(and hence for the case of the ideal deadzone nonlinearity) it is possible to identify all
possible “shapes” for the “characteristic bounding curves” obtained using the bounds
Viupper] ANA Vjower-  Figure 3.14 shows® representative examples of all the possibilities
(dependent upon g and p)

The various possibilities depend on g and p in the following ways (as taken from
Theorem 3.16 and Corollary 3.19)

e For < 1 we have Z;2 . = 0o and Zjh,, = o0
e For y =1 we have ZP', = max{l, } and ZgP | = 0o

o For 1 > 1 we have Z;2 . > 1if p < 1, with Z>' = 1 otherwise

[upper] [upper] —
and ZP > Lif p < \/u— with ZpP,, = 1 otherwise
The “real” characteristic bounding curve obtained using 7z always lies somewhere
between the two bounds, depending on the precise relationship between F'(jw) and

G(jw).

Note that some of these curves (Figure 3.14 (c), (f) & (i)) have an odd feature: they
appear to allow “non-graceful degradation”, in the sense that ||Il;w||, may increase
rapidly for a small change in |[II;z||, (for ||IIrz]|, > |F” )

In practice, one would not expect such “non-graceful degradation” to occur, and in
fact we hope that by applying the analysis to a whole family of loop-transformed
systems, and superimposing all of the results onto a single plot, that such features will
be eliminated. It is not clear, however, whether this claim could be proven in general.

SIn this figure the z-axis has been scaled by | F||, and the y-axis scaled by ””5‘“2 so that the curves

plotted are simply
[Z[upper]o\) AZ[upper](A)} and [Z[lower]()\) )\Z[lower]()\)]

over A € Appper a0d A € A,y Tespectively. For the purposes of qualitatively showing the possible “shapes”
of these bounding curves the scaling due to ||F|| is not important.
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2. Cousider 9 : (0,00) — (0, M + 1) given by

T ifr<M

)=
v(r) M+ 258 ifr > M

for some M > 1, which we used as Example 2 in Section 2.2, and which is shown
in Figure 3.15 (a). For this particular ¢ the family of nonlinearities A, contains the
“saturated squaring” function”

w(t) == { Sata (v(t))}*
which is shown in Figure 3.15 (b).

150r

-1001

-1501

(a) ¥(r) (b) “Saturated squarer”

Figure 3.15: ¢ for local stability Example 2

Since #; = M + 1 > 1, it is not possible to guarantee stability of the interconnection
for any G'such that |G|, > 575 Indeed, if M is sufficiently large, and assuming a
nonlinearity A € A, with [|A]| = (i, then it is not unlikely that the interconnection

would be (globally) unstable.

"The motivation here is that as M — oo the “saturated squarer” becomes almost indistinguishable from
the “real squarer” w(t) := |v(t)|2 — note that you can’t actually consider the real squaring function directly,
since it has infinitely large uniform instantaneous gain. Nevertheless, we expect that for sufficiently large M
the results will be independent of M, and hence could be expected to hold for the “real squarer” (in so far
as it is possible to find such a device in the real world)
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Figure 3.16: Local stability analysis: Example 2

Figure 3.16 shows the “characteristic bounding curve” and “forbidden region” obtained
by applying the local stability analysis (Theorem 3.20) for
__ _*+4s _ %2
F = W and G = 512
(The solid line is the “real” characteristic bounding curve obtained using 7 ¢, and

the dashed lines are those obtained using Vuppeq a0d Yyower)

As it happens, it is possible in this case to find the upper and lower bounds on Zﬁi?g]

analytically, using standard algebraic methods, in which case we see an explicit and
relatively simple dependence on p and p.

Lemma 3.30 For sufficiently large M, and v : (0,00) — (0, M + 1) given by

¢(T):{r ifr <M

M+ S5 fr>M
and for any stable, strictly proper F' and G with p := ||G|| . and p := %
1
opt
Tt = o )
1
opt
Z[ P _
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3.5 Summary and suggestions for further work

3.5.1 Summary

In this chapter we have
e Motivated the idea of analysing stability from both global and local perspectives.

e Given a simple H..-norm-based stability criterion for [0, 1] sector-bounded nonlineari-
ties, which is related to the well-known Circle criterion.

e Derived a novel method for determining local stability properties of a simple nonlinear
I1Fls G,
. . . e HF”

in determining the local and global stability of such a feedback system.

feedback system, and shown that p := |G| and p := are important factors

e Demonstrated the features of this new analysis method with a number of examples.

3.5.2 Suggestions for further work
Biproper [ in Section 3.4

The results of Section 3.4 cannot be applied directly to systems with a biproper transfer
function F'(s) from the external input z to the nonlinearity A. However, by considering a
sequence F. = ﬁF , and letting ¢ — 0, one would hope to get a meaningful result; no
general results in this area have been obtained to date.

The main drawback to using this sequence of approximations is that tends to zero

IIF ll2
as € — 0. If we recall that local stability is guaranteed for z such that

1 t
I2ll, < Ao 20
then it is clear that non-trivial results will only be obtained in cases where Z;7 G] Srows
at least as fast as ||F.||,. Conditions under which this takes place have not, as yet, been
determined.

Conservatism in the results of Section 3.4

It is expected (and accepted) that the results of Section 3.4 will often be quite conserva-
tive; how conservative remains an open question.

There are a number of avenues for combatting this conservatism: the most useful is to
consider various “multipliers” and loop transformations, such as was used in the proof of
Theorem 3.9. Such methods are widespread in the literature; good treatments and many
common examples may be found in Balakrishnan [Bal95] and Kothare et al [KM99).

We mentioned in the preamble that Hindi & Boyd [HB98| have recently proposed a dif-
ferent method for determining a similar form of local stability. (This paper dealt exclusively
with the ideal deadzone nonlinearity, but the approach could be easily generalised in a simi-
lar manner to Section 3.4.2.) We would expect that their method will give less conservative
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results than the method of Section 3.4, since it uses local generalisations of the Circle and
Popov criteria.

However, as pointed out in the preamble, this method uses a “black box” numerical
optimisation algorithm based on LMIs, which offers no intuition. By comparison, the main
advantages claimed for our method are simplicity and transparency, in the sense that
it is relatively easy to calculate the numerical results, and that there are clear indicators
of the important (open-loop) properties affecting the results, specifically p := ||G||,, and

— IFILIG,
P="rl, -
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Chapter 4

Systems with nonlinear actuators

4.1 Introduction

4.1.1 Background and motivation

It is clear from practical experience that all physical systems have limitations: structures
are only designed to take certain stresses, pistons and valves have a restricted range of travel,
and in fact all aspects of practical reality are limited in some way.

Equally, however, many systems can be modelled well by linear and time-invariant differ-
ential equations, provided that certain “signals” (which may be voltages, stresses, displace-
ments, flow rates or whatever) remain within some nominal limits.

We unify these two observations by modelling the overall system in two parts: the “plant”
(which has the LTI dynamics), and the “actuator(s)” (which are fundamentally nonlinear
and/or time-varying.) This is a good way to represent many real systems, and has the added
benefits that (i) a nominal LTI controller may often be designed which works well with the
LTT plant (ignoring the limitations), and (ii) such a model can often be represented in the
standard form of Figure 3.1 for the purpose of stability and/or performance analysis.

A motivating example: input saturation

As a motivating example let us consider the simple, and widely studied, case of a single-
input system with a magnitude limitation in the input path. A model of such a system is
often assumed to take the following form:

u(t) = Sat, (u(t))
y = Bzt

where P, € R, is a LTI transfer function, and a > 0 denotes the limitation on a(t).

Our final objective will be to implement some sort of compensation scheme to account
for the nonlinearity: it therefore seems clear that we will need either a measurement or an
estimate of @(t); methods for obtaining this signal differ from author to author, however
most fall into one of the following categories:
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1. Assuming that an exact measurement of %(t) may be made (Lin & Berg [LB98] actually
claim that this is a reasonable assumption...)

2. Assuming that a filtered measurement F'u may be made, where the filter F' € RH, is
known exactly

3. Estimating @ by Sat, (u(t)), assuming that the “real” nonlinearity is an ideal saturation
function, and that the saturation level a is known exactly

We claim that none of these ideas makes good sense, for a number of reasons:

e There may not actually be a signal @(t) in the physical system, or it may simply be
impossible to make a measurement (for example, there may not be a suitable sensor,
or sufficient space for the sensor, or sufficient bandwidth to transmit the measurement
back to the controller)

Any (filtered or unfiltered) measurement will inevitably be affected by noise

A filtered measurement will be sensitive to errors in estimating the filter F'

An estimate will be sensitive to errors in estimating a, or by the “real” saturation
function failing to be perfectly ideal.

If the compensation scheme assumes the “real” saturation element to be the ideal
function Sat,, then the scheme may also be sensitive to errors in estimating a, or by
the “real” saturation function failing to be perfectly ideal

Instead, we propose a fourth method
4. Ensure that u(t) is such that 4(t) = wu(t) for all £, and use u(t) for compensation

Of course, if the model is correct, and we know a exactly, then it is clear how to do this:
let u(t) be the output of an ideal saturation function Sat;, for any @ < a. What is not so
obvious is why this is a better idea:

e The measurement/estimation problem is now solved: wu(t) is an internal signal of the
controller implementation, and hence is available exactly (give or take the precision of
the computer, in the case of a digital implementation!)

e Similarly, the compensation scheme is not sensitive to estimating the properties of
the implemented nonlinearity, and is no more sensitive (and possibly less sensitive) to
the “real” nonlinearity failing to be ideal in the “linear” range (we do not care what
happens outside the range [—a, a]!)

In other words, the “real” actuator needs only to satisfy the simple condition:
if |u(t)| < a then u(t) = u(t)

This condition is, of course, satisfied by the modelled actuator (the ideal saturation
function Sat,), but it actually permits the “real” nonlinearity to be any one of a wide
class of functions, whose common feature is unity gain for small magnitude signals.



Essentially, what we propose is to model the magnitude-limited system by the equations

i(t) = {u(t) if |u(t)] < a

undefined otherwise
y = Binu
and to ensure that
u(t) = Sat (a(t))

where 4 is the output of the combined control & compensation scheme, and a < a.

We shall refer to this idea of “ensuring that u is within the limitations for the actuator”
as precompensation. Note that we do not claim that this approach is novel, but rather that
it has been tacitly ignored in most of the theoretical literature, while being implemented
without question in practical applications!

This work is believed to be the first in-depth consideration of the general form of the
problem, with the final objective being a framework which aids synthesis of Anti-Windup
compensators.

Prior work on actuator modelling

There are only a handful of ideas in the existing literature about how to model a nonlinear
actuator; the most common are briefly given below:

e Magnitude-limited actuator
The simplest, and most widespread, model of a nonlinear actuator is, as stated earlier,
based on saturation functions. The literature is split between those who consider

the ideal saturation function Sat (Equation 2.15), and those who consider general
saturation functions o (satisfying, for example, Definitions 2.2 and/or 2.3)

1. Ideal saturating actuators, ie

a(t) = Sat <u(t)>

are considered by, for example, Hui & Chan [HC99]; Lin & Berg [LLB98]; Miyamoto
& Vinnicombe [MV96b|, [Miy97], [MV96a]; Astrom & Rundqwist[AR89]; Park &
Choi [PC95]; Peng et al [PVH96]; Weston & Postlethwaite [WP98] and Zheng et
al [ZKMO4].

2. The general case, ie
at) = a(u(t))

is considered by, for example, Kapila & Haddad [KH9S8|; Lin et al [Lin97], [LS93];
Saberi et al [SLT96]; Yakubovich et al [YNF99] and Teel & Kapoor [TK97].

Note that our proposal in the motivating example above could be interpreted
in such a way, although with the fairly strong assumption that small magnitude
signals are not affected by the nonlinearity (eg b; = ¢; = 1 in Definitions 2.2 and
2.2) — this assumption is simlar to that made by Teel & Kapoor [TK97].
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e Rate-limited actuator

There are two common models for rate limitations; both models use either an ideal or
generalised saturation function (we shall use the symbol o to represent either of these
possibilities) to limit the derivative, but they differ in the internal structure:

1. One model differentiates the input, saturates the resulting signal, and then inte-

grates, ie
du (du)
at ~ 7\t

This model is considered by, for example, Kapila et al [KH98], [KPdQ99]; Hui &
Chan [HC99] and Peng et al [PVH96].

There are obvious problems with this model if u fails to be differentiable.

2. The second model assumes a first-order dynamic for the actuator, ie

% = o (ult) ~@(); @(0)=0

This model is considered by, for example, Lin et al [LB98], [Lin97] and Rantzer
& Megretski [RM97].

e Rate- & magnitude-limited actuator

Actuators with both rate and magnitude limitation may be modelled by a simple series
composition of a magnitude-limited model and a rate-limited model; there is, however,
a choice to make here: which comes first?

1. Kapila et al [KH98], [KPdQ99] model the saturation before the rate limiter —
although it is interesting to note that they then propose to implement a precom-
pensator which is the other way around.

2. On the other hand, Hui & Chan [HC99] and Lin et al [LLB98], [Lin97] model the
rate limiter first.

3. Finally, Peng et al [PVH96] do not make it clear which of these two choices they
subscribe to. They say that @ and 2% satisfy @(¢) = Sat(u(t)) and 2% = Sat (%)
simultaneously — but these two statements can be contradictory!

e “Unknown” actuator

A significant number of papers simply assume that the nonlinearity is modelled by
some “A”, for example, Edwards & Postlethwaite [EP97] and Kothare et al [KCMN94],
[KM95], [KM99].

This is fine (for anti-windup synthesis), just so long as an exact measurement of the
internal (and possibly non-existent!) signal @ is available...



Prior work on precompensation (or similar concepts)

A small number of similar, although still significantly different, schemes have been pro-
posed recently; each of these has been quite a brief treatment, without any strong physical
or mathematical motivation.

1. Campo & Morari [CM90] (see also Park & Choi [PC95] and Peng et al [PVHW9S])
consider an “artificial nonlinearity”, which goes between the controller output and the
actuator input; nevertheless, it is still assumed in these papers that the actual plant
input (@ in the above example) is measurable.

Moreover, their “artificial nonlinearity” is more than a simple model of the real actua-
tor: it actively modifies the input signal, for example to maintain the “direction” of the
vector u(t). This seems a counter-intuitive proposal: if one actuator saturates, then it
does not seem sensible to deliberately restrict the control authority in the remaining
actuators.

2. Kapila et al [KH98], [KPdQ99] consider rate- & magnitude-limited actuators, and
propose to produce the actuator input w(t¢) in the following way

u(t) = Sat(v(t))
& — Sat(w(t))

where w(t) is the output of the control & compensation scheme. This certainly ensures
that the actuator input w(t) is within the constraints, however we would point out that
there is no reason why wv(t) should not become very large (“wind up”), which could
have a detrimental effect, since w(t) might then remain saturated for an unnecessarily
long time.

3. Hui & Chan [HC99] propose a similar scheme, but with w(t) being the derivative of
the controller output. The previous comment about “windup” applies equally to this
proposal.
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4.1.2 Modelling of systems with limited-authority actuators

We assume that the system which we are trying to control can be modelled as two separate
components, which we will refer to as the “plant” and “actuator”.

‘ dact C.il d2

+

u Actuator ﬂ+@—» Pin i»@y—>

Figure 4.1: Model of limited-authority actuator and plant

This two-element model is shown in Figure 4.1, where uw € L£J* is the input to the
actuator, @ € L3* is the input to the plant, and y € £, is the measured output of the
plant. Note that although v and y are real signals in the physical system, w may only be a
feature of the system model.

We make the following assumptions about the behaviour of the plant and actuator:

e We assume that the plant can be modelled by a (possibly unstable) LTT transfer func-
tion Pi,(s) € Rp? ™™, with input- and output-additive disturbance signals (d; € £5*
and dy € L3 respectively) to represent any unmodelled effects:

y = Pi,(u + Jl) +ds

e We assume that the actuator is square and decentralised (ie it may be represented as
the diagonal composition of n,, individual scalar operators) and that it can be modelled
by a nonlinear operator A : u — u satisfying the following two relationships for some
given U, C L3* (the output constraint space), Unom C L5* (the nominal input space)
and stable LTT transfer function P, (s) € RHL™™ (the nominal dynamics)

Al w €U, for all uw € L3
A2 if u e U, then u = P,u

with a disturbance signal (d..) to represent any unmodelled effects, which we will
assume to be output-additive, and hence absorb without further comment into d;.
Note that we cannot model disturbances at the actuator input in this framework.

e We assume that the nominal input space U, comprises those inputs for which the
nominal output does not violate the constraints, ie

Upom : = {v € Ly Pyv € Llact}

so that if Pa(s) = I then Uyom = Uact-



e Finally, we make a technical assumption that P, does not cancel any unstable poles
of Plin-

In terms of an overall system model, these assumptions are equivalent to assuming that the
following relationship between u and y holds:

) (4.1)
undefined otherwise

_ {Phn(Pmu tdi)+dy i Pott € Uy

It is now clear that a desirable goal is to ensure that the actuator input w satisfies
U € Upom (ie Port € U,et), so that the behaviour of the actuator and plant can be assumed
to be linear and time-invariant.

There is a strong physical motivation behind these assumptions, based on the observation
that a limited-authority actuator (such as, for example, a valve, a hydraulic piston, a mass-
spring-damper with endstops or an op-amp) behaves linearly until such time as its output
violates the constraint(s). After this time the behaviour may become quite complex — but
if this situation can be avoided, then it is unnecessary to attempt to model this complexity.

4.1.3 Precompensation for limited-authority actuators

We now propose to implement, within our combined control & compensation scheme, a
“nonlinear precompensator” (which we denote by an operator P), the purpose of which is
to ensure that the actuator input is always a member of the nominal input space, ie that
u € U on.

In addition, we desire that one or more signals containing information about the internal
state of the precompensator should be available for use by the control & compensation
scheme, for anti-windup purposes.

d1 d2
R -+ +
) Precompensator u Actuator h><Z>—> Py, —+>@y—>
'3
£,

Figure 4.2: Precompensator, nonlinear actuator and linear plant

zn

This idea is shown in Figure 4.2, where @4 € L£5* is the input to the precompensator,
£.&, - ,Sng are the additional feedback signals, and all other signals are as in Figure 4.1.
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Since we may not know U ., perfectly, we state the requirements for the precompensator
in terms of an estimated nominal input space Upon,, which is assumed to satisfy

U,om is a subset of Upom (4.2)

The specific requirements which the precompensator must satisfy are listed below:
e to ensure, for any input @(t), that its output w is always a member of U
e to pass unchanged any input @ which is a member of Upom

e to produce (one or more) feedback signals &, - - - &y, which contain useful information
about the signals within the precompensator, satisfying

EIEEZ.HSHEE,& ifﬁ/ez’?nom

e to behave in a reasonable manner for @ ¢ Z:{nom
e to be as simple as possible
e to be suitable for both implementation and analysis

Unfortunately, not all of these items can be quantified in a rigorous manner; those which can
are given below, but we may still decide that an admissable precompensator is unacceptable
for an unquantifiable reason (such as being overly complicated.)

Definition 4.1 (Precompensator admissibility)
Given Uy C L3Y and ng > 1, a precompensator

u
3
€ne
is said to be admissible if
PO P is causal and well-defined (analogously to well posedness, Definition 3.3)
Pl ueld,, forall 4 € L5*
P2 if & € Upom then w =@ and &, = @ for eachi € {1,2,--- ,n¢}

Note the similarity between these requirements, and the assumptions we made about the
behaviour of the actuator itself. In fact, although we have chosen not to model actuators
in the “normal” way, each of our precompensators will be based on a standard model of a
limited-authority actuator (recall from the introduction to this chapter that our proposed
precompensator for the magnitude-limited system was a simple ideal saturation function.)
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4.2 Mathematical preliminaries

4.2.1 Signal spaces with magnitude or rate constraints
Simple constraints

We denote by I, C L, those scalar signals which are bounded in magnitude by a > 0:
M, : = {veﬁoo o) < a VtZO} (4.3)
The multivariable equivalent 94 C L7 for a diagonal matrix A > 0 is then:
Z)JTA::{veﬁgo:viEimai ViE{l,Q,---n}} (4.4)
Lemma 4.1

o If A, A >0 are diagonal matrices such that

AA T >T

then DMt ; C Miy.

PROOF OF LEMMA 4.1:
Immediate from Equations 4.3 and 4.4. [

We denote by C C L. those signals which are continuous, and by D, C C those signals
which are also right-differentiable. Note that for any v € C and T" > 0

sup ||v(t)]| is finite
t€[0,7

ie that such signals are bounded, not just essentially bounded. Hence the truncated £..-norm
[|H7v|| is the true magnitude supremum for any v € C.

We then denote by R, C D, those scalar signals which are continuous and right-
differentiable, with derivative bounded in magnitude by b > 0:

%b::{v€D+:‘é—§€mb} (45)
The multivariable equivalent Sz C D7 for a diagonal matrix B > 0 is then:

%B::{vEDﬁ:viG%bi ‘v’iE{l,Q,---n}} (4.6)
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Lemma 4.2

e For any diagonal matrix B > 0

t
Rp = {v e DY :v(t) = v +/ w(r)dr, for some w € Mp and v, € ]R"}
0

o IfB, B >0 are diagonal matrices such that
BB '>1

then Rz C Rp.

PROOF OF LEMMA 4.2:
Immediate from Equations 4.5 and 4.6. [

Dynamic constraints (first-order)

We denote by im}l’c C L. those scalar signals which, when passed through a first-order

lag ~= (¢ > 0), produce an output which is bounded in magnitude by a > 0, ie
1 . . ¢
M, .= {v € Loce : TRV E i)ﬁa} (4.7)

The multivariable equivalent 99t' 4 o C L7, for diagonal matrices A, C' > 0 is then:
Mo = {v €L, v eM, . Vie{l2 -n}} (4.8)
Lemma 4.3
o For any diagonal matrices A,C' > 0
dt

My = {v eLl, :v(t)=x(t)+C "2 for somex € D} N 93?,4}

o [fA C, A>0 are diagonal matrices such that
AATY > T
then M 3 C M 4 .
o If A C, 121, C >0 are diagonal matrices such that
AAT > T and AAT' >20C07' -1

then imlAé - fD’IlA,C.

Remark

1. Figure 4.3 shows the admissible ratios 4 and £ such that 90} , C M} .

c



D - = =

0 0.5 1 15 2 25 3

[

Figure 4.3: ¢ and ¢ such that M . C M, .
PROOF OF LEMMA 4.3:

We prove the results for the scalar case only; the multivariable case then follows imme-
diately, since everything is defined component-wise.

Given v € Lo, it is clear that 2 = = v is the unique solution to the following differential
equation (assuming z(0) = 0)

o = clv(t) —z(1)
or, equivalently, to the following unique decomposition of v

v(t) = x(t) + %(Cll—i

in which z is certain to be continuous and right-differentiable (for any v € L), and must
satisfy = € M, if v € M, ..
To show the first set inclusion result, note that if v € 9, then

lzlle < 551, vl < @

Since x is continuous, its L,-norm is its true magnitude supremum, and so we deduce that
—< v € IM,;. Lemma 4.1 then states that 9M; C M, if a < a, in which case v € IM,,.

s+c s+c
For the second set inclusion result, consider = v and x = v, and assume that v
is such that & € My, ie that v € M} .. By a simple rearrangement we see that

p={ot i)

and hence by Proposition 2.2 that

lelloe < {5+ 5 5, 3 121

ct|é—c| | 4
e 12l

< c+|§fc|&

The inequalities then follow by simple algebra, once again noting that the £,,-norm of x is
its true magnitude supremum. [
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We denote by 9‘{2# C Loe those scalar signals which, when passed through a first-order
lag ~= (¢ > 0), produce an output with derivative bounded in magnitude by b > 0, ie

R, = {v € Lo 2w E mb} (4.9)

s+

The multivariable equivalent R'p o C L7, for diagonal matrices B, C' > 0 is then:
Rlye: = {'v €L v ER, . Vie{l2. -n}} (4.10)
Lemma 4.4

e For any diagonal matrices B,C' > 0

t
Rlpc = {v eLy, v(t)= / w(7)dr + C lw(t), for some w € f)ﬁg}
0

o If /Al, B, C > 0 are diagonal matrices such that
BC™' > 24
then 94 C %1370.
e If B,C, B,C >0 are diagonal matrices such that
BB'>1 and BB '>20C"'-1

then 9‘{13,@ g 9‘{13,0.

0 0.5 1 15 2 25 3

Figure 4.4: % and £ such that ?ﬁ;c C Ry,
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Remark

1. Figure 4.4 shows the admissible ratios

SHIc

and ¢ such that R} C Rl
c b,¢ ,C

PROOF OF LEMMA 4.4:

We prove the results for the scalar case only; the multivariable case then follows imme-
diately, since everything is defined component-wise.

Given v € Lo, it is clear that 2 = = v is the unique solution to the following differential
equation (assuming z(0) = 0)

‘;—f = c(v(t) — a:(t))

or, equivalently, to the following unique decomposition of v

— 1 dx
v(t) = (t) + <G
in which z is certain to be continuous and right-differentiable (for any v € L...) and must
satisfy = € Ry if v € Ry .. Moreover, by Lemma 4.2, z € Ry iff

for some w € My; note that % = w(t).
For the first set inclusion result, note that if v € 9, then

Izl < lz5ll, vl < @

and hence (by the triangle inequality) ||%|| = |lc(v — z)||, < 2ac. Noting that z has finite
. . . . oo . . . . .
derivative indicates that s—icv € MRose, from which the inequality follows immediately.
¢ v and = v, and assume that v
K s+c s+c
is such that ‘fl—f € M;. ie that v € Dﬁzc By a simple rearrangement we see that

For the second set inclusion result, consider & =

d_xf{g ¢=c _c di
dt é+é's+c dt

and hence by Proposition 2.2 that

dx c é—c c dz
15 1 < {5+ = skl I Nl

L
- é dt lloo
_ ctle=dy
== b
The inequalities then follow by simple algebra, once again noting that Cfi—"’f is finite. [
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Dynamic constraints (general)

Lemma 4.5 gives a general result for essentially arbitrary dynamic constraints, although
it must be stressed that the set inclusion may possibly be extremely conservative.

Lemma 4.5

If
P(s) = Diag {p1(s), p2(s),- -+ , pn(s) }
with ||p;(s)||; < 1 for eachi € {1,2,--- ,n}, and if A, A > 0 are diagonal matrices such that

AAL > T

then M ; C {’UE gg:Pvef’ﬁA}

PROOF OF LEMMA 4.5:
In the scalar case, the result follows from Proposition 2.3; the multivariable case is then
immediate. u
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4.3 Precompensators for common nonlinear actuators

dl d2
R .+ +
u Precompensator u Actuator U @—» Py —+>@y—>
'3
Eng

Figure 4.5: Precompensator, nonlinear actuator and linear plant

Figure 4.5 shows once again the series composition of precompensator, nonlinear actuator
and linear plant. In the following sections we state the appropriate output constraint space
Ui, nominal dynamics Pai(s) and nominal input space Uyom for a number of common
actuator nonlinearities, and propose a suitable precompensator for each.

4.3.1 Magnitude-limited actuator

The simplest, and most common, form of limitation is clearly that of a magnitude con-
straint, for example that a valve can only be between 0% and 100% open. For simplicity,
and without loss of generality, we shall assume that the allowable range for the ith input
channel is symmetrical about zero, ie [—a;, a;], for some a; > 0.

The output constraint space for an actuator with magnitude limitation is then seen to be
given by U, = M4, where A = Diag{ay,as, -+, an, }-

Actuator with unity nominal dynamics Pac(s) = 1

We consider first the case of a static actuator with no nominal dynamics, and without
loss of generality we assume that P,.(s) = I. Hence we see that the nominal input space is
given by U om = Uaer = N A

Now, by Lemma 4.1, if A>01isa diagonal matrix such that

AAL > 1 (4.11)

then 9T ; C M4. So, we propose to take anom = M ; as our estimate of Uyop,.
It is clear that a suitable precompensator for U,., = PT; may be obtained using an
ideal saturation function to limit the magnitude of w. Note that this is precisely the same

proposal as in the motivating example discussed in Section 4.1:
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— %) Sat; |4

Figure 4.6: Precompensator 1

Precompensator 1 (for L?nom =M;)

u

Given a diagonal matriz A > 0, let ]P”f1 tU [[ ﬂ be defined by

1

£,(t) = Sat;(a(t))
u(t) = & (1)

Theorem 4.6
For any diagonal matriz A > 0 and Uy, = DM, the decentralised operator

Pfi c U { u ] (Precompensator 1)
€]
satisfies Definition 4.1.
Furthermore, for any T > 0 and any i € {1,2,--- ,n,}
(] [fﬂz < 'Cooe then I|HTU1||OO S ||HTQALZ||OO
[ J [fﬂz € ,Cge th@’ﬂ ||HT(ﬂz — UZ)HQ S ||HT1AL7,||2

PROOF OF THEOREM 4.6:

It is clear from the definition of Sat(.) that conditions PO, P1 and P2 in Definition 4.1
are satisfied.

That |u;(t)] < |u;(t)] for each i € {1,2,--+ ,n,} and any time ¢ > 0 is immediate, and
since, by Equation 2.18

a(t) — u(t) = Dzn (a(1))

it is also true that |u;(t) — u;(t)| < |t;(t)| for each ¢ € {1,2,---,n,} and any time ¢ > 0.
Hence the two inequalities follow immediately. [
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Precompensator 1 is simple and suitable for both implementation and analysis, and the
feedback signal &, provides the only possibly useful internal information. Furthermore, the
behaviour of this operator is reasonable for @ ¢ anom: note that the £.-L and Lo-L5 norm
bounds in Theorem 4.6 show that the output does not become arbitrarily larger than the
input.

Hence we claim that Precompensator 1 provides appropriate precompensation for an
actuator with magnitude limitation U om = M4 and unity nominal dynamics Pa(s) = 1,
provided that the “matching condition” in Equation 4.11 is satisfied.

Precompensator 1

Figure 4.7: Precompensator 1, magnitude-limited actuator and linear plant

One useful consequence of Theorem 4.6 is that the series composition of Precompensator
1, magnitude-limited actuator and linear plant may be represented as shown in Figure 4.7,
ie that the behaviour of the actuator can be considered to be linear and time-invariant.

Actuator with first-order nominal dynamics Ppei(s) = Diag{ -}

We now consider the simplest non-trivial nominal dynamic model - a first-order lag. We
assume that

P,(s) = Diag{-&—, & ... _nu

stec1’ ste2”? 7 steng,

for some c¢y,c9,--- ,¢,, > 0, and hence we see that the nominal input space is given by
Uom = M 4 ¢, where C' = Diag{cy, ca, -+, ¢, }-

Now, by Lemma 4.3, if A > 0 is a diagonal matrix satisfying Equation 4.11 then 90t i C
ot A,c. So, one possibility is to take anom = M ; as our estimate of Uyop.

But this is precisely the same space Upom for which we designed Precompensator 1! It
may be thought that this solves our problem, since we already know that Precompensator 1
is appropriate for Upom = M i

However, we have neglected the fact that 9t 4 is a strict subset of 9t 4 . What this
means is that there may be some conservatism due the fact that Precompensator 1 will
modify some signals which would not actually violate the magnitude constraint.

We illustrate this conservatism with a simple scalar example:
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Example

1. Assume that @ = a and ¢ = ¢ (ie that the parameters of the actuator are known
exactly), and let o be given by (Figure 4.8 (a), dotted line)

0 at + ¢ fort <1
u =
a fort>1

In this case u # 4 is given by (Figure 4.8 (a), solid line)

t) at +¢ fort <min{0,1—1}
u =
a for t > min{0,1 -1}

1.2} 1.2
1 1
0.8} 0.8f
0.6f 0.6f
0.4f 0.4f
0.2f 0.2f
% 05 1 15 2 25 % 05 1 15 2 25
(a) 4 (dotted) and u (solid) (b) s (dotted) and S u (solid)

Figure 4.8: Example responses for U o, = E)ﬁclw and Precompensator 1

Figure 4.8 (b) then shows -4 and —f-u as dotted and solid lines respectively. We
observe from Figure 4.8 (b) that -4 does not violate the magnitude constraint, and
hence conclude that the precompensator is being overly conservative.

In an attempt to reduce this conservatism, we return to Lemma 4.3 to see that if A, C>0
are diagonal matrices such that

AATY > T and AA'>2007' -1

then 2tt ie C M 4 o. So, a second possibility is to take U, = N A as our estimate of
U nom. Moreover, recall that a signal v € 9 4 » may be obtained as

_ A—1de
v=x+C &

for some right-differentiable & € M ;.
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Based on this decomposition of elements of 9T ; », we might propose the following

T gl ..
precompensator for Upom = M 4

Precompensator 1la

Figure 4.9: Precompensator la

Precompensator la (for Unom = 93?14,@)

u

51}] be defined by

Given diagonal matrices A,C > 0, let Pfa’é U [[

Precompensator la is quite simple, easily implementable (despite the differentiator) and
amenable to analysis, and it imposes the required constraints on @#. However the operator
behaves in an unreasonable way, exhibiting “wind-up”, in the sense that x(¢) can become
very large, preventing @ from correctly following w. We illustrate this with a scalar example:

Example

la. Assume that @ = a and ¢ = ¢ (ie that the parameters of the actuator are known
exactly), and let @ be given by (Figure 4.10 (a), dotted line)
t+2 fort<T
a(t) = at +, lor
0 fort >T

for some T > 1. In this case u is given by (Figure 4.10 (a), solid line)

at+ ¢ fort <1
u(t) =< a for 1 <t <T+ 2log(T)
0 for t > T + L1og(T)
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(a) @ (dotted) and u (solid) (b) ;5@ (dotted) and S u (solid)

Figure 4.10: Example responses for U = sm}w and Precompensator la

Figure 4.10 (b) then shows =4 (= z) and ;Zu (= Zs) as dotted and solid lines
respectively. We observe from Figure 4.10 (a) that u continues to drive the actuator
for a significant time after o has dropped to zero — this is due to  “winding up”.

45
2.5¢

4,
3.5¢ 2
1.5¢
1,
0.5¢

05

00 1 2 3 4 5 6 00 1 2 3 4 5 6
(a) 4 (dotted) and desirable u (solid) (b) Desirable —-u

Figure 4.11: Desirable responses for U, = M, .

A much more desirable actuator input u is shown in Figure 4.11 (a), and the corre-
sponding desirable ~=u in Figure 4.11 (b). In this figure we observe that u drops
to zero at the same time as @, and hence the actuator output (s u) comes out of
saturation as soon as possible.
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The reason for Precompensator la exhibiting “wind-up” is clear: although |z4(t)] < a
is enforced by the saturation function, it is not possible to restrict the growth of x. An
alternative precompensator for Upom = M* ;4 5 which does not suffer from “windup” is given
below:

Precompensator 1b

Figure 4.12: Precompensator 1b

Precompensator 1b (for Unom = 93114’(})

Given diagonal matrices A,C' > 0, let be’é cU hgﬂ be defined by
1
df; <o if 2i(t) < —a; and () < z5(t); :(0) =0

¢i(0;(t) — x;(t))  otherwise
for each i € {1,2,--- ju,}
& (1) ==(t) + é_l%
u(t) = & (1)

Precompensator 1b is quite simple and implementable, it behaves in a reasonable manner,
and it imposes the required constraints on w. Moreover, it gives the “desirable” response of
Figure 4.11 (a) and (b) for the same scalar input signal as previously, ie for

R at+ ¢ fort<T
u(t) = ¢
0 fort >T

One major drawback to this precompensator, however, is that it is not particularly amenable

to analysis — in fact, it is not even clear that the operator ]P’fb’c is well-posed, since the
“switching” element introduces a non-Lipschitz nonlinearity into the feedback equations.

1 As seen in the differential equations defining Precompensator 1b, this element stops integration in the
ith channel whenever |x;(t)| is going to increase beyond @;: it is, in a way, a crude form of anti-windup.
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After considering Precompensators la and 1b, we conclude that the conservatism due to
using Precompensator 1 is probably an acceptable price to pay for simplicity and tractabil-
ity. Hence we propose to use Precompensator 1 for the magnitude-limited actuator with
first-order nominal dynamics, providing that the “matching condition” in Equation 4.11 is
satisfied.

Precompensator 1

Figure 4.13: Precompensator 1, magnitude-limited actuator and linear plant

Moreover, we again see that the series composition of Precompensator 1, magnitude-
limited actuator and linear plant may be represented as shown in Figure 4.13 (which is
simply Figure 4.7 again), ie that the behaviour of the actuator can be considered to be
linear and time-invariant. The nonlinear perturbation due to Precompensator 1 is again
denoted by Dzn ;.

Actuator with any nominal dynamics Pi,e(s)

Finally, we consider the case of arbitrary P,:(s). We make the mild assumption? that

Pact(s) = Diag{pl(s)7p2(s)a e 7pnu<8)}

with ||p;(s)||; < 1 for each i € {1,2,---,n,}.
Then, by Lemma 4.5, if A > 0 is a diagonal matrix satisfying Equation 4.11

M ; C {’U € L5¥ : Pyyv € m,q}

which means that we can take Z]nom = M ; as our estimate of Upnom.

Hence we conclude that, subject to satisfying the “matching condition” in Equation
4.11, Precompensator 1 provides appropriate precompensation for any magnitude-limited
actuator, although there may be some — possibly significant — conservatism (in the sense
discussed previously in the first-order case)

Moreover, we again see that the series composition of Precompensator 1, magnitude-
limited actuator and linear plant may be represented as shown in Figure 4.13, ie that the
behaviour of the actuator can be considered to be linear and time-invariant.

2This assumption may often be trivially satisfied by transferring gain from the actuator to the plant or
controller.
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4.3.2 Rate-limited actuator

Another common limitation is that of a rate constraint, for example that a hydraulic
ram has a maximum (instantaneous) velocity. More rigorously, this means that the actuator
output u(t) should be right-differentiable, with derivative in some range. Without loss of
generality we shall assume that the allowable range for the ith input channel is symmetrical
about zero, ie [—b;, b;|, for some b; > 0.

The output constraint space for an actuator with rate limitation is then seen to be given
by U, = Ry, where B = Diag{by, by, -+ , by, }

Actuator with unity nominal dynamics P,e(s) = 1

We consider first the case of a static actuator with no dynamics, and without loss of
generality we assume that P,.t(s) = I. Hence we see that the nominal input space is given
bY z/lnom - uact - 9:{B- .

Now, by Lemma 4.2, if B > 0 is a diagonal matrix such that

BB '>1 (4.12)

then Mz C Mp. So, we propose to take Z;lnom = M as our estimate of U om.

~

The following precompensator for U, = My is based on a model of a rate-limiting
actuator which has been widely studied:

Precompensator 2a

Figure 4.14: Precompensator 2a

Precompensator 2a (for Uporn = MRjz)

Given a diagonal matrix B> 0, let IP’QBa S [[uﬂ be defined by

3

d dt

%1 saty(9): &0 =0
u(t) = &,(1)

Precompensator 2a is quite simple and amenable to analysis (provided the input @ is
right-differentiable), but it would be impossible to implement exactly due to the differenti-
ation element.
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Furthermore, although it does enforce the correct limitations on its output u, it does not
behave in a reasonable manner. For example, if there are regions of high gradient, then w
completely fails to remain close to @, as the following scalar example demonstrates:

Example

2a. Assume that b = b (ie that the rate constraint is known exactly), and let @ be given
by a “sawtooth” (Figure 4.15 (a), dotted line)

(bt for t € [0, 1)
b—(k—1)b(t—1) forte[l,1+2)

a(t) = b(t — 1) for t € [1+ 1,2)
b—(k—1)b(t—2) forte[2,2+1)
ete

for some k> 1. In this case u is given by (Figure 4.15 (a), solid line)

(bt for t € 0,1)
b—b(t—1) for t € [1,1+ 1)

u(t) =< b(1—2)+b(t—1) forte[l+1,2)
b(2—2)—b(t—2) forte[2,2+1)
etc

It is clear that u is quite unreasonable, since it continues to grow without bound, even
though |u(t)| <1 for all ¢!

3.5f

2.5F

157

0.5f

0 1 2 3 4 5

(a) 4 (dotted) and w (solid)

Figure 4.15: Example responses for Uyom = R and Precompensator 2a

A much more desirable actuator input u is shown in Figure 4.16 (a): this signal remains
close to u by converging at the maximum permitted rate whenever u(t) # u(t).
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3.5f

2.5F

157

0.5f

0 1 2 3 i 5
(a) 4 (dotted) and desirable u (solid)

Figure 4.16: Desirable responses for anom =Ry

The following alternative precompensator for L?nom = MRy is modelled on an “ideal” rate-
limiter:

Precompensator 2b

Figure 4.17: Precompensator 2b

Precompensator 2b (for I:lnom = ?ﬁé)

u
be defined bt
51}:| ﬁ ()

Given a diagonal matrix B >0, let IP)QBb S [{

dd—il = B.Sgn(a(t) —£,(1); &(0)=0
u(t) = & (1)

Precompensator 2b is quite simple, it imposes the required constraint on u, and moreover
it gives the “desirable” response of Figure 4.16 (a).
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For implementation or analysis, however, the signum relation Sgn is not desirable.?

(a) bSgn(v) (b) Sat;(cv)

Figure 4.18: Signum relation and high-gain saturation function

Intuition suggests that this problem (and the associated problems of well-posedness and
tractability) could be solved by approximating the signum relation with a high-gain satura-
tion function, ie to change the feedback equation in the definition to

L1 sat (Cla) - (1))

with & > b; for each i € {1,2,--- ,n,}.
However, it is easily verified that this change results in
acl,, =— u-= Diag{#”q}ﬁ,
which does not satisfy Definition 4.1. This rules out using this approximation to Precom-
pensator 2b directly.

We propose instead to consider the nominal dynamics as being first-order; note that this
is a perfectly reasonable assumption in practice, since all real physical devices attenuate
(sufficiently) high-frequency signals.

Moreover, it will become clear that the appropriate precompensator for a rate-limited
actuator with first-order dynamics will be (in some sense) “close” to this approximation to
Precompensator 2b, and hence also “close” to Precompensator 2b itself.

Cq

Actuator with first-order nominal dynamics Pact(s) = Diag{ -}

We now consider the simplest non-trivial nominal dynamic model - a first-order lag. We
assume that

Pact(S) = Dlag{ €l C2 e Cny,

stci? stea? 7 stcng

for some c¢y,cq, -+ ,c,, > 0, and hence we see that the nominal input space is given by
Unom = R'p o, where C' = Diag{ci, ca, -+, cpy }-

_ da

3For example, if & € Unom, then the solution ought to be &, =u =4 with éSgn(O) =
instant — and it is not clear how one might implement this without prior knowledge of .

at each time
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Now, by Lemma 4.4, if A>0isa diagonal matrix satisfying
A<lipc
then 2T ; C Rt B,c- S0, one possibility is to take Z]nom = M ; as our estimate of U,or,. This
suggests once again that Precompensator 1 would be appropriate; this is, however, likely to
be a very conservative choice.
Returning to Lemma 4.4, if B , C' > 0 are diagonal matrices satisfying

BB '>I and BB '>20C'—1T (4.13)

then 9R! se S Mz . So, a second possibility is to take U, =N ¢ as our estimate of
unom-
The following precompensator is based on a common model of a rate-limited actuator:

Precompensator 2

Figure 4.19: Precompensator 2

Precompensator 2 (for Unom — R 5.6)

Given diagonal matrices B,C > 0, let IP’? Cae [[gﬂ be defined by
1

9~ sat, (C(aln) ~ (1)) 2(0) =0

dx
&(t) = 2(0) + O
u(t) = &(1)

Note that if C'is very large (ie ¢; > 1 for each i), then Precompensator 2 is “similar” to
Precompensator 2b, in the sense that

and I+ sO 1~
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Theorem 4.7 o
For any diagonal matrices B,C' > 0 and Uypm = ?ﬁl];’é, the decentralised operator

Pf’é TS [[g]] (Precompensator 2)
1
satisfies Definition 4.1.
Furthermore, for any T > 0 and any i € {1,2,--- ,n,}

o Ifu; € Looe then ||yl < |[Tpt;]|

o Ifi; € Lo then |Tp(i; —w)ll, < (1+V2) ||Hra,

PROOF OF THEOREM 4.7:

The feedback loop is clearly well-posed, by Proposition 3.6, so condition PO in Definition
4.1 is satisfied. Furthermore, since ® € 9, and using Lemma 4.4, u € 9%%’ & satisfying
condition P1. Finally, if & € ‘ﬁg o then a valid (and hence unique) solution & € My to the

differential equation would be gi{/en by

x = Diag{7--}4

which satisfies the final condition in Definition 4.1.
For the L..-L norm inequality, assume that |[II;t;|| = k; for some k; > 0. It is then
immediate from the differential equations that
ul(to) > k‘z — % <0 and
ui(to) > ki = % <0

By continuity of u;, and the assumption that w;(0) = 0, we conclude that u;(t) < k; for all
t € [0,T]. A similar argument shows that u;(t) > —k; for all ¢ € [0,T].
For the £o-L5 norm inequality, it is shown by Megretski [Meg99] that for any ¢y € [0, 7]

Ty, < V2T,

for u; € L., and hence the result follows by the triangle inequality. [

Precompensator 2 is simple, easily implementable (despite the differentiator) and amenable
to analysis, and the feedback signal &; is clearly sufficient to determine the current value of
the only internal state (x); furthermore, the behaviour of this operator is reasonable: note
that the L.-L. and Lo-L5 norm bounds in Theorem 4.7 show that the output does not
become arbitrarily larger than the input.
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Hence we claim that Precompensator 2 provides appropriate precompensation for an actu-
ator with rate limitation U0, = M p and first-order nominal dynamics P, (s) = Diag{sj"c_ 1
provided that the “matching condition” in Equation 4.13 is satisfied.

Precompensator 2

] An . Actuator | '\ Plant [
o |‘ jI - S +o
U : SUuc LU .

Figure 4.20: Precompensator 2, rate-limited actuator and linear plant

One useful consequence of Theorem 4.7 is that the series composition of Precompensator
2, magnitude-limited actuator and linear plant may be represented as shown in Figure 4.20,
ie that the behaviour of the actuator can be considered to be linear and time-invariant. In
this figure, the nonlinear perturbation due to Precompensator 2 is denoted by Agr (with
|Ag|| < 1+ v/2, by Theorem 4.7)

_u Diag{ 7} i,@_, Dzng: -, U —u
|— Diag{ 25} ]

S+é;

Figure 4.21: Alternative representation of Agr

Furthermore, the nonlinear perturbation Ay in Figure 4.20 may itself be represented in
the form of a linear feedback around an ideal deadzone nonlinearity, as shown in Figure 4.21.
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Actuator with other nominal dynamics

Finally, we demonstrate that Precompensator 2 is appropriate for rate-limited actuators
with a wide, but not exhaustive, range of other nominal dynamics.

Specifically, we make the non-trivial assumption that, for some diagonal matrix C > 0,
the nominal dynamics P, (s) satisfy

Diag{ =%} P,t(s) = Diag{q(5), ga(5), - - , G, (5)}

with ||¢;(s)||; < 1 for each 7 € {1,2,---,n,}. The interpretation of Diag{ Széi}PaCt(s) is that

s+¢;

it is the (nominal) transfer function relating Diag{-"i-}u to .

This assumption means (by Lemma 4.5) that

4(Diag{itu) emy —  Leomy
which is equivalent to saying that w € R » implies @ € R .

Hence we may take Z:lnom = MR! o as our estimate of U,y for this actuator. This
is precisely the nominal input space for which we designed Precompensator 2, and so we
conclude that Precompensator 2 provides appropriate, although possibly quite conservative,
precompensation for such a rate-limited actuator.

Moreover, we again see that the series composition of Precompensator 2, rate-limited
actuator and linear plant may be represented as shown in Figure 4.20, ie that the behaviour
of the actuator can be considered to be linear and time-invariant.
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4.3.3 Rate- and magnitude-limited actuator

We are now in a position to consider an actuator subject to both magnitude and rate
constraints. By direct comparison with Sections 4.3.1 and 4.3.2 we can state immediately
that the output constraint space for an actuator with both rate- and magnitude-limitations
is given by U,s = M4 N Mp for some diagonal matrices A, B > 0 (which have the same
interpretations as in Sections 4.3.1 and 4.3.2 respectively)

Actuator with unity nominal dynamics Pae(s) = [

In this case we see that U, oy = QQTAA NMNRpg.
Now, by Lemmas 4.1 and 4.2, if A, B > 0 are diagonal matrices such that

AAY>T and BB 1>1

then 2T ; C M4 and MRy C Rp. So, we may take Z:lnom = M ; N Ry as our estimate of
Uom.

But in the previous section we concluded that direct precompensation for Upormn = Ry
was not feasible, and that we should instead assume (with strong physical justification) that
the nominal dynamics are given by a first-order lag. This case is considered below:

Actuator with first-order nominal dynamics Pct(s) = Diag{ -}

In this case we see that U o = SJTIA,C N 9%13,0
Now, by Lemmas 4.3 and 4.4, if A > 0 is a diagonal matrix satisfying

AAL > and A < %BC’f1

then 991 ; would be a subset of both 9t'4 - and R'5 . So, one possibility is to take
anom = M ; as our estimate of U,

This means, yet again, that Precompensator 1 would be appropriate, and moreover, if
A=A (ie the magnitude constraint is known exactly), there would be no conservatism.*
This method of precompensation is to be recommended whenever the magnitude constraint
is significantly more restrictive than the rate constraint.

If ¢; > 1, then this method would not be appropriate (121 would have to be extremely
small, and hence the precompensator would be unnecessarily conservative.)
We return to Lemmas 4.3 and 4.4: if A, B, C' > 0 are diagonal matrices such that

AAT>T and BB™'>T1 and BB '>20C7'—1T (4.14)

then M, C M4 o and KR! e © M'pc. So, we conclude that a second possibility is to
take Upom = MW, N %IB’C as our estimate of U pop,.

This suggests that a series composition of Precompensators 1 and 2 would be appropriate
— we must, however, be careful to ensure that the series composition imposes both constraints
simultaneously.

Ci

d
dt ( s+c; UZ)

<a

oo

4This is because [ ;]| , < a implies immediately that
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We propose to put Precompensator 1 first, followed by Precompensator 2 (and note that,
as mentioned in the preamble to this chapter, the anti-windup methods of both Kapila et
al [KH98|, [KPdQ99] and Hui & Chan [HC99| implement the converse scheme, with the

saturation after the rate-limiter):

Precompensators 1 & 2

—ﬁ._) SatA m+@—> C’ SatB —>| l] [+SO_1 u
3 [
52 ......................................................................................

Figure 4.22: Precompensators 1 & 2

Precompensators 1 & 2 (for I:lnom =MW ;N 9“3,@)

o u
Given diagonal matrices fl, B, C>0 , let Pfg’g’c DU [{1 be defined by
&

E’j —P(a) and [g] — PP ()

where P{i and IP’QB € are Precompensators 1 and 2 respectively.

Theorem 4.8 o
For any diagonal matrices A, B,C'" > 0 and Upep = M ; N 9‘{13,@, the decentralised
operator

u
Pfgg’c T {51 (Precompensators 1 € 2)
&

satisfies Definition 4.1.
Furthermore, for any T > 0 and any i € {1,2,--- ,n,}

[ ] Zf ’ljh € Eooe then ||HTUZ||00 S ||HT@7||00
e if u; € Lo, then
T (G — [€a]i) |l < [[Trdig]
Mz ([€1]s = (&)l < (14 V2) [Tz [Esll,

where [&1]; denotes the ith element of &1, and similar for &;.
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PROOF OF THEOREM 4.8:
Immediate from Theorems 4.6 and 4.7, noting in particular that for each ¢ € {1,2,--- ,n,}
and "> 0

M|, < [Ty

and hence, since u can be seen to be actually (rather than essentially) bounded, we conclude
that © € M ; — u € M ;. [

This composition of Precompensators 1 & 2 is clearly suitable (since both of its compo-
nents are), and hence we claim that this series composition provides appropriate precom-
pensation for an actuator with simultaneous rate and magnitude limitations, and first-order
nominal dynamics Py (s) = Diag{;{:-}, provided that the “matching conditions” in Equa-
tion 4.14 are satisfied.

Precompensators 1 & 2

Dzn Ar Actuator ' Plant a2
. T i ( I ~ +|+
U + @ + @ ' u ' Pact () _UL@_, Piin(s) i@_y_>
AR R T LR T LE PP EPPITPYOLS FPITPPITRPEEPRERIOS B . :
&

Figure 4.23: Precompensators 1 & 2, rate- & magnitude-limited actuator and linear plant

One useful consequence of Theorem 4.8 is that the series composition of Precompensators
1 & 2, rate- & magnitude-limited actuator and linear plant may be represented as shown
in Figure 4.23, ie that the behaviour of the actuator can be considered to be linear and
time-invariant. In this figure, the nonlinear perturbations due to Precompensators 1 and 2
are respectively denoted by Dzn ; and Ag (with ||Ag|| < 1+ v/2, by Theorem 4.7)

Actuator with other nominal dynamics

Combining the results of Sections 4.3.1 and 4.3.2 for actuators with other nominal dy-
namics, we conclude that the series composition of Precompensators 1 & 2 (as described
above) provides appropriate precompensation for an actuator with simultaneous rate and
magnitude limitations, subject to two conditions on P,c(s):

Pact(s) = Diag{pi(s), p2(s),- -+ ,pn,(s)} and
Diag{ sg—éi}Pact(s) = Diag{(h(s)v QQ(S)v " ny (S)}

with ||pi(s)|l; <1 and [|gi(s)||; <1 for each i € {1,2,--- ,n,}.
Moreover, the representation in Figure 4.23 is still valid in such a case.
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4.4 Summary and suggestions for further work

4.4.1 Summary

In this chapter we have
e Stated a general method for modelling actuator nonlinearities.
e Introduced the concept of precompensation, to ensure that

1. the real actuator limitations are always inactive,
2. the nonlinearity is known exactly, and

3. suitable feedback signals are available for anti-windup compensation.

e Derived appropriate models and precompensators for a number of common actuator
nonlinearities.

e Shown how the resulting interconnection can be represented in the form of a nominal
linear, time-invariant plant subject to an input-additive, Lo-norm-bounded perturba-
tion.

4.4.2 Suggestions for further work
Actuators with different dynamics or limitations on each channel

Throughout the preceeding sections, we have assumed that each channel of the actuator
has similar properties, in the sense that if one channel has a magnitude limitation and does
not have a rate limitation, then the other channels also have only a magnitude limitation.
Similarly, if one channel has a first-order nominal dynamic, then all other channels have
first-order dynamics.

In the general case, it is quite likely that different channels will have different types of
limitation or dynamics; indeed it may be approriate to assume that some channels have no
limitations.

We have chosen here not to present such cases in their full generality, for reasons of space
and clarity. Nevertheless, it should be clear from this chapter that the general case may be
obtained by using the appropriate precompensator for “blocks” of channels which share the
same properties.

Limitations on higher derivatives

We conjecture that a limitation on the second (or higher) derivative may often be mod-
elled by either a rate- or magnitude- limitation by transferring some dynamics to the plant
Pin(s) or controller C(s). In such cases, the work described will be applicable.

In other cases, which we expect to be rare, it should be possible to derive a suitable
model and precompensator using similar methods to those proposed in this chapter.
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Non-ideal saturation functions

In our models, we assumed that the actuator behaviour was linear around the origin
(or operating point, in general); it would be quite reasonable to consider other behaviours,
however some care must be taken when designing a precompensator for such actuators.

As mentioned in the preamble, some authors have considered quite general actuator
nonlinearities, such as magnitude limitations which only satisfy Definition 2.2. Clearly it is
impossible to precompensate for a whole family of such functions; clearly also (as discussed
previously) it is often unreasonable to assume that one may measure the true plant input.

We conjecture that the appropriate action would be to assume an ideal saturation function
and hence use Precompensator 1 as usual. The actuator must then be modelled as P, plus
some unmeasured nonlinear perturbation (hopefully with small £o-L£9 gain); a “good” anti-
windup compensator should be able to cope with such a perturbation.

Other forms of limitation

We have considered only limitations which apply independently to each channel (and
also actuator dynamics which are decentralised) Moreover, we have assumed that the plant
Pin(s) comprises the majority of the dynamical behaviour, which rules out, for example,
trying to cope with a limitation on the plant output y.

It is not inconceivable that a future extension to this work could generalise to arbitrary
limitations; care will have to be taken in the case of unstable dynamics, however, since it will
be appreciated that our precompensators are, in a sense, an open-loop observer of certain
signals within the system.

“Optimal” precompensation

It may be possible to pose the question of “how to design a precompensator” in the
form of an optimisation problem (see, for example, the discussion on “optimal artificial
nonlinearities” in Peng et al [PVHWOS].)

For example, one could consider minimising

sup ||y (u — @)

aeLyY

where @ is the control demand, w is the actuator input, and the norm (or, in general,
some cost function) is defined in an appropriate manner. With suitable consideration of,
for example, errors in the actuator model, this could be a powerful methodology; whether it
would perform better in practice remains to be seen.






Chapter 5

Anti-windup compensators

5.1 Introduction

5.1.1 Background and motivation

The phenomenon of “windup” is, in its simplest form, simply the observation that the
signal received at the plant input differs from the signal produced by the control system. The
term windup comes from the application in which this phenomenon was first noticed: a plant
with an input saturation nonlinearity in combination with a controller containing integral
action. Under some circumstances, it is observed that the controller output continues to grow
(wind up) far beyond the level of the input limitation, and hence the actuator continues to
apply maximum effort long after the need has passed.

Over the years a number of ad-hoc schemes were devised to counter this problem, with
varying levels of success, but it is only recently (Kothare et al [KCMN94]) that a suitably
general framework has been formulated in which to consider all useful anti-windup schemes.
In recent years there has been a vibrant effort in the area of synthesising “optimal” anti-
windup schemes to guarantee global (or semi-global) stability and optimise performance (in
a variety of senses.)

We should point out that synthesis of anti-windup controllers / compensators is not
far removed from the general problem of nonlinear control (with the obvious restriction to
saturation or similar nonlinearities); the usual convention is that the term anti-windup refers
to schemes which try to maintain the nominal linear behaviour (ie, in the absence of the
nonlinearity) around some operating point.

Prior work on control of systems with actuator nonlinearities

The field of nonlinear control is wide and varied; here we only discuss papers which
specifically consider problems motivated by actuator nonlinearities (such as saturation or
rate-limits.) There are two major areas of research: the design of controllers where any
control input is acceptable, and the design of compensators which maintain some nominal
linear behaviour (in these cases a nominal LTT controller is specified a priori.)
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e In the more general case the recent emphasis has been on unstable systems, where it
is well known that global stability cannot be achieved with any linear or nonlinear
control scheme. A number of authors (eg Kapila et al [KPdQ99]; Lin et al [LS93];
Pare et al [PHHB98] Hu et al [HL99]) have considered synthesising controllers which
achieve so-called semi-global stability, in the sense that the system states converge to
the origin for any initial conditions in some arbitrarily large set.

A few authors have also considered rate limitations in this framework, such as Kapila
et al [KHI8], [KPdQ99|; Hui & Chan [HC99| and Lin et al [LB9S8], [Lin98|, [Lin97].

This sort of work is extremely valuable in indicating the fundamental limitations governing
the control of nonlinear systems, but we would claim that (in most cases) a physical system
can be modelled well by linear, time-invariant differential equations around an operating
point, and hence that the control engineer should use some of the well-established and
powerful linear design tools to synthesise a nominal controller. This suggests the use of
Anti-Windup compensation:

e The problem of synthesising a compensator to cope with actuator nonlinearities while
matching some nominal LTI behaviour around the normal operating point has received
a great deal of attention over the last few decades. The following representative papers
give a good overview of the progress to date, from the initial recognition of “windup”
as a problem in real-world PID control, to the current unified framework of Kothare
et al :

Astrom & Rundqwist [AR89]; Hanus et al [HKHS87|; Edwards & Postlethwaite [EP98];
Kothare et al [KCMNO94]; Miyamoto & Vinnicombe [MV96b]; Park & Choi [PC95];
Peng et al [PVHOI6], [PVHW9S|; Teel & Kapoor [TK97]; Weston & Postlethwaite
[WP98]; Walgama & Sternby [WS90]; Zheng et al [ZKM94] and Saberi [SLTI6]

In the remainder of this chapter we shall be considering only those anti-windup schemes
which maintain the nominal linear behaviour if the nonlinearity is not activated.

Anti-windup problem formulation

Figure 5.1 shows a nominal tracking problem where the signals Yy, in, Yy, and ey
are the reference signal, controller output, plant output measurement and error signal re-
spectively. The plant and controller are assumed to be linear, time-invariant systems with
transfer functions P(s) and C(s) respectively.

Perturbations due to such factors as plant uncertainty and measurement errors are mod-
elled as disturbances d; and ds at the plant input and output respectively.

As previously stated, we assume that the nominal controller C(s) is specified in advance,
having been designed using some (unspecified) method to guarantee some (also unspecified)
properties of this linear interconnection.
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Figure 5.1: Nominal linear system

In particular, and as a minimum requirement, we assume that this nominal interconnec-
tion is internally stable. If we write the closed-loop relation for this system as

€lin S —SP —S Yrer
Yin| = [I—S SP S d,
Wiy cs —-CSP —-CS| | d,
where S := (I + PC)~! is the sensitivity function, then internal stability is equivalent to

each element in this transfer matrix being stable.

d; dy

=33
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Figure 5.2: System with input nonlinearity

Figure 5.2 shows the tracking problem for the same plant P(s), modified to take account
of a nonlinearity N between the controller output and plant input. Here @, u. y and e are
the controller output, plant input, measured plant output and error signal respectively. We
consider the same external signals y., d; and ds as in Figure 5.1.
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In this interconnection the nominal controller C'(s) has been replaced by a linear time-
invariant controller [Ke [K IR Kngﬂ which, in addition to the error signal e, has access
to one or more signals £, - - -, &, (for some ng > 1) from within the nonlinearity N, so that
the new controller output @ is given by

a - K68+K1€1 + ot +Kn§€n£
We make the assumption that
e lfu=dthen§ =& =---=§, =1

and recall that the precompensators which we proposed in Chapter 4 (cf Definition 4.1 and
Figures 4.13, 4.20 and 4.23) were designed with this assumption in mind.

Parametrisation of anti-windup compensators

The purpose of the new controller [Ke [K IR Kng]] is to mitigate the destabilising
or performance-reducing effects of the nonlinearity A/, while ensuring that the nominal linear
behaviour is recovered if the nonlinearity is not activated.

Rather than blindly searching over all possible [Ke [Kl Kngﬂ until a suitable
response is obtained, we propose to parametrise all “useful” anti-windup schemes, using a
small number of simple parameters. Our parametrisation will have the following desirable
features:

e The scheme will be simple and tractable

e The scheme will be implementable, and will not, for example, inherently cause internal
instability (although, of course, it may not be possible to globally stabilise the resulting
closed loop system)

e If u =4 in Figure 5.2 then the nominal linear behaviour of Figure 5.1 is recovered, ie

eun S - SP - S yref
Yin| = I — S SP S d1
Uiy, cs —-CSP -CS| | d;

S o
Il



Synthesis of anti-windup compensators

The primary purpose of anti-windup is to ensure stability of the system in the face of
actuator nonlinearity. This is formalised in the following problem statement:

Problem 5.1 (Anti-windup stabilisation problem)
Given a linear plant P, stabilising linear controller C and nonlinearity N, to find an anti-
windup controller [Ke [Kl Ky - Kngﬂ such that, for the interconnection of Figure 5.2

o [fu =1 then the nominal linear behaviour of Figure 5.1 is recovered, ie

e €ELn S —SP -5 yref
yl=lyu,| =-S5 SP S d,
U Wiin, cs —-CSP -CS| | d,

e e u,u,y € Ly for all y,, . di,dy € Ly

Assuming that Problem 5.1 admits at least one solution, we may also wish to consider
optimising a suitable performance measure.

If, however, Problem 5.1 may not be solved, we will consider the following local version
of Problem 5.1:

Problem 5.2 (Local anti-windup stabilisation problem)

Given a linear plant P, stabilising linear controller C, nonlinearity N and sets 2y, C Lo,
Zg, € Ly and Zg4, C Lo, to find an anti-windup controller [Ke [Kl Ky --- Kns” such
that, for the interconnection of Figure 5.2

o [fu =1 then the nominal linear behaviour of Figure 5.1 is recovered, ie

e ELn S _SP _S yref
Yyl = |lyu| =11-S SP S d,
u Wi cs —-CSP —-CS| |d;

e e, u,y € Ly forally,,¢€ Zyref’ d, € Z4, and dy € 24,

Remark

1. Note that in Problem 5.2 we assume that the disturbances at d; and ds are due to
isolated external effects, and can no longer use these signals to represent persistent
effects such as model uncertainty or systematic measurement errors.
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As noted at the beginning of Chapter 1, our motivation for the local stability framework
is that signals of bounded energy are suitable for modelling isolated disturbances. If we
believe this to be the case, then it is not unreasonable to assume that only one disturbance
occurs, at either dy or dy or y.y, in a given period of time. Provided that the system is
not destabilised by this disturbance, we may hope that the effect wears off before the next
isolated disturbance occurs.

To determine the largest single disturbance on, say, d; such that the system is not
destabilised involves setting

Zgq, = {z : ||z||2 < 5}
Z4,={z:2=0} and
2y ={2:2=0}

in Problem 5.2, and finding the largest € such that the problem has a solution. The equivalent
procedure can then be used for disturbances on dy and y .

Of course, there is no reason why one should not consider the combined effect of simul-
taneous disturbances on two or three of these external signals, but the results could well be
overly conservative.
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5.2 Parametrisation of anti-windup compensators

d, dy

u+

3
=

Yref +@ €l K, _+,@

31

Figure 5.3: System with input nonlinearity

Figure 5.3 shows once again the nonlinear tracking problem, for some nonlinearity A. In
the following sections we propose a parametrisation of anti-windup compensation schemes,
based on coprime factorisations of the plant P(s) (or equivalently, as we shall show, of the
nominal controller C'(s))

5.2.1 System with input saturation nonlinearity

yref"‘(:) € Ke _+)(:) A; SatA u +@_> P [+ y—>
1

Kl El

Figure 5.4: Anti-windup for saturation nonlinearity
The interconnection of Figure 5.2, in the case when the nonlinearity is given by an ideal
saturation
u =&, = Sat 4(4)
is shown in Figure 5.4, where A= diag{ay, ag,--- ,a,,}, A > 0 indicates the saturation

level for each channel. The anti-windup synthesis problem is then one of choosing K.(s) and

Kl(S).
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This general framework has been shown to encompass many previously studied schemes,
such as the following (see, for example, Kothare et al [ KCMN94| for more details about these
and other prior schemes):

e no anti-windup: K, =C and K; =0

e “conventional” scheme: K, = (I + CCfr)~!'C and K| = (I + CCp)~'CCp
where C'r is a tuning parameter

e Hanus’ conditioning scheme: K, = C(c0) and K; = [ — C(o0)C™?
provided that C' is biproper

e Internal model (IMC) scheme: K, = (I + CP)™'C and K, = (I + CP)"!CP
where it is assumed that P is stable

Coprime factor anti-windup parametrisation

A general framework, including almost all existing linear anti-windup schemes, has been
proposed by Kothare et al [KCMN94] and elaborated upon by Miyamoto & Vinnicombe
[IMV96b]. These authors suggest that the controller should be given by

K.(s)=U(s)
Ki(s) =1—V(s)
where C' = V~='U is a left-coprime factorisation of C. Tn [KCMN94] the anti-windup con-

troller was parametrised by all fixed-order coprime factors of C'; it was later proposed in
[IMV96b] to use all coprime factors of C', which can be parametrised by

[V(s) U(s)] =Q(s) [Vo(s) To(s)]

with @ € Q (Equation 2.5), where C' = \70_1170 is any arbitrary left-coprime factorisation of
C.

It is desirable, although not strictly essential, to have \7(00) = [ so that there is not an
algebraic loop in the controller implementation. If we choose initial left- and right-coprime
factorisations C' =V, *U, and P = NyM, * such that the following Bezout identity holds

VoMy + UyNy = I (5.1)

and under the mild assumption that P is strictly proper, then this is equivalent to desiring
that M (co) = I, ie that Q(00) = My(c0).

We now see that anti-windup synthesis can be interpreted as choosing a particular left-
coprime factorisation of the linear controller

C=VT'0; [V(s) Us)] =Q(s) [Va(s) Uo(s)]

or a particular right-coprime factorisation of the linear plant

P (V)= (i) oo

or simply of choosing @ € Q such that Q(co) = My(00).
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Closed-loop representation for stability and performance analysis

If we write the interconnection of Figure 5.4 with the saturation nonlinearity depicted as
a perturbation from the identity, ie

u(t) = Sat 4 (a())
= a(t) — A(a(t))
then it is clear that the perturbation A is in fact an ideal deadzone Dzn ;.

With the given coprime factor anti-windup parametrisation, the interconnection can be
represented as shown in Figure 5.5.

v

A
. - +
L © ot ~©r OO 2 Fot—
- +

LI—QVO 31

Figure 5.5: Alternative representation of Figure 5.4

Denote by v and w the signals at the input and output of the perturbation A. We can
then express the interconnection with the following LFT on A

e S -SSP =S5 NoQ~t Yoot

Yy o I1-S SP S —]\[()Q_1 d1

w| | cs —-CSpP —CS —MyQ~1 d

v [CS —CSP —-CS]  I—MyQ™! w
w = Av

We see immediately that if w = 0, then the nominal linear behaviour of Figure 5.1 is
recovered, as desired. Moreover, it is clear from Proposition 3.6 that the interconnection in
Figure 5.5 (equivalently, the interconnection in Figure 5.4) is well-posed for any @ € Q such
that Q(oc0) = My(0o), since A has finite uniform instantaneous gain and (I—MyQ ™) € R'Ho.
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Remarks

1. We can now see why Q, Q! € H, is a suitable restriction on the choice of Q:

o If Q ¢ H, then (at least one of) QV, and QU, will be unstable, which is unde-
sirable from the point-of-view of implementing the controller (this point has been
made also by Miyamoto & Vinnicombe [MV96b| and Peng et al [PVHWOS))

Furthermore, allowing @ ¢ H., does not offer any improvement in the min-
imisation of either |[MyQ ' —I||_ or |[MyQ * — I||, (Miyamoto & Vinnicombe
[IMV96a| and Theorem 2.4 respectively), noting that both of these are reasonable
synthesis objectives.

e In contrast to the above, if P is unstable, then M, will be non-minimum-phase, and

in this case allowing Q! ¢ H,, would offer an improvement in the minimisation of
|MoQ ' — 1. But it is well-known that for unstable P this closed-loop system
cannot be stabilised in this manner.
Furthermore, if Q™! ¢ H., then (at least one of) MyQ™' and NyQ~' will be
unstable and hence there will exist some arbitrarily small w € L, such that
either y ¢ L, or u ¢ Lo. Noting that it is possible to “back substitute” to find
appropriate disturbances d;, dy and y,; which produce this w, we conclude that
Q™! ¢ H, implies instability of the interconnection.

2. The four schemes mentioned earlier can often be considered as special cases of the
coprime factor parametrisation:
e no anti-windup: @ = 170_1
e “conventional” scheme: () = (‘70 + UOC'F)_l
e Hanus’ conditioning scheme: Q = C/(c0)U;
e Internal model (IMC) scheme: @ =
provided, of course, that in each case @) € Q. For example, the system with no anti-

windup is a special case if C' is stable, and the IMC scheme is a special case if P is
stable.
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5.2.2 System with a single input nonlinearity

A simple generalisation of the parametrisation for the input saturation case may be used
whenever the nonlinearity N takes the form of the identity operator plus a single bounded

perturbation
u=§ =({-A)a

where we assume that ||Al| is finite.

d,

[~33

TAW
- +
OO o2

3

Figure 5.6: Single input nonlinearity

Figure 5.6 shows a nonlinearity of this form; the plant P and disturbances d; and ds are
shown for clarity.

L K o —070- » FO4—

Figure 5.7: Anti-windup for single input nonlinearity

The anti-windup synthesis problem for this nonlinearity is one of choosing K.(s) and
Ki(s) in Figure 5.7, and it is clear from this figure that the coprime factorisation parametri-
sation of the previous section may be used without modification for such nonlinearities.
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5.2.3 System with multiple (cascaded) input nonlinearities

We consider the interconnection of Figure 5.2 with a general class of cascade nonlinearity

N, of the form

for some ng > 1. We assume that ||A;]| is finite for each i € {1,2

i

Ay

51 = ([ - Al)":"

& =

(I — A2)&,

sng—l = (] - Ang—l)EnE—Q

u = €n5 = ([ - Ang)gngfl

1

|

,ng}.
A, d, d,
—I + +
+ @ U + - P i)(:) )

3

(%)
Y

&

Figure 5.8: Multiple (cascaded) input nonlinearities (shown for nge = 2)

Figure 5.8 shows a nonlinearity of this form, for n, = 2; the plant P and disturbances d;

and dy are shown for clarity.

Yrett (Z) €
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Figure 5.9: Anti-windup for multiple input nonlinearities (shown for ng = 2)

The anti-windup synthesis problem for this nonlinearity is then one of choosing K.(s)

and Ki(s),- -+, Kp.(s) in Figure 5.9.
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Coprime factor anti-windup parametrisation

We propose the following controller parametrisation, which is a generalisation of the
coprime factor anti-windup parametrisation described in Section 5.2.1:

K, = Qlﬁo
Ki - Ql(Q:l - Q;—ll) Vi € {1:27' o '/(nﬁ - 1)}
Kng = Ql( r_zgl - ‘N/O)

with free parameters Q; ... Qn, such that @; € Q (Equation 2.5) for each i € {1,2,--- ,n¢}.
It is desirable, although not strictly essential, to have

Qng(oo) - = QQ(OO) = Q1(OO) and
Qngf/() =1

so that there is not an algebraic loop in the controller implementation. If we choose initial
left- and right-coprime factorisations C' = V5 !0 and P = NyMy* such that the Bezout
identity (Equation 5.1) holds, and under the mild assumption that P is strictly proper, then
the second of these is equivalent to M, (co) = I, ie that Qn,(c0) = My(00).

We now see that the problem of anti-windup synthesis can be interpreted as choosing ng
(not necessarily all different) left-coprime factorisations of the linear controller

C=VU; [Vi(s) Ui(s)] = Qi(s) [Vo(s) To(s)] Vie{1.2,--.ng}

or ng right-coprime factorisations of the linear plant

P = NM™, {Az\{((j))} _ [A]@((j;] Q7'(s) Vie{L2- . ne}

or simply of choosing @1, Q2, -+, @n, € Q such that

Q1(00) = Q2(00) = -+ = Qng(00) = Mo(0)

Remark

1. If one or more of the signals &, are not available (or, perhaps to reduce controller
complexity, the designer chooses not to use them), then simply setting Q;, = Q;,+1
will make 1 independent of §;, (and also reduce the number of free parameters by one.)
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Closed-loop representation for stability and performance analysis

The interconnection of Figure 5.2, with a nonlinearity N of this form and with the stated
controller parametrisation, can be represented as shown (for ne = 2) in Figure 5.10.

U1 Al w1 (%) AQ

Wa
e 0t o0t oo ot
- + +L
-0 |-&

d, d>

QQy" — QVo &

Figure 5.10: Alternative representation of Figure 5.9

Denote by v; and w; the signals! at the input and output of the i-th perturbation A;, for
each i € {1,2,--- ,n¢}, and let

vy wy Ar 0 -0 0
Vo Wa 0 AQ s 0 0
v = . L wi= . A= | . . .
Ung—l wnE—I 0 0 e Ané—l 0
| Une | | wy, | _0 0o --- 0 Ané_

In addition, define the following transfer matrices

S -SSP 8] M N o Npr Ny
Xn = |I-S SP S Xlg = —N1 _N2 ce _Nng—l —]\fn‘5
¢S —-CSP —CS| M, —My --- =M, —M,,
[CS —-CSP —CS] ([ — My [ =My -+ I =M,y I—M,]
0S —CSP —CS ~M; =My -+ =My [—M,
Xop = | : : Xog 1= : : : :
cs —-CSP —-CS —M,; My oo T =My I — M,
¢S —CSP -CS] | —M My - =My =M, |

INote the break with our convention of using boldface for vectors. The reason is that we shall stack

V1 Up, into a new vector v.
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We can then express the interconnection with the following LE'T on A
" -‘ [ Yret -‘
_ X1 X d;
Xo1 Xao d;
w

w = Av
and see immediately that if w = 0 then the nominal linear behaviour of Figure 5.1 is
recovered, as desired.

We see also that this interconnection does not conform to the assumptions of Section 3.3
(since Xoo ¢ RH3), and hence well-posedness cannot be shown using Proposition 3.6. We
show that the loop is well-posed using a variation on “D-scaling” (eg Zhou et al [ZDG96],
Chapter 11):

e g 0

Proposition 5.1
The interconnection shown in Figure 5.10 (equivalently, Figure 5.9) is well-posed for any

Q1, Q2+, Qn, € Q such that Q1(00) = Q2(c0) = -+ = Qy,(00) = Mp(c0).

PROOF OF PROPOSITION 5.1:
Consider the equivalent interconnection

e Yret
yl{ | Xu X2 d,
u H_1X21 H_1X22H dg
v w

w=H 'AH%

where H = Diag{hyI, hol,- -+, hy I} is strictly positive.

By Willems ([Wil71]), this interconnection is well-posed if the product of the uniform
instantaneous gains of H 'XyH and H 'AH is bounded away from unity at any time
T € [0,00). It is clear that the uniform instantaneous gains of H 'AH and A are identical,
and that the uniform instantaneous gain of H Xy H is simply given by

0 0 0 0]
h1
—h—2[ 0 0 0
|‘H71X22HH = }Z : . : :
o __he 1 .. 0 0
hngfl hngfl N
hl h2 ne—1
i —EI _@] — hig 1 0_

which can be made arbitrarily small by suitable choice of H. Well-posedness then follows
provided A has finite uniform instantaneous gain. [
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5.3 Synthesis of anti-windup compensators

5.3.1 System with magnitude-limited actuator

Implementation of nonlinear precompensator

d;

Actuator u+@_’ Py _+)@y—)

Figure 5.11: Model of magnitude-limited actuator and plant

Figure 5.11 shows our assumed model of a (possibly unstable) linear plant Py, € Rp* ™™
with magnitude-limited actuator. We make the same assumptions as in Sections 4.1.2 and

4.3.1, ie

o Plin(Pactﬁ' + C-il) + d2 it Pactu S g)tA
"~ ] undefined otherwise

for some (stable) nominal actuator dynamics P, (s) € RHL* ™ and diagonal matrix A > 0.

Precompensator

L, SatA

Figure 5.12: Precompensator 1

We saw in Section 4.3.1 that Precompensator 1 is a suitable precompensator for a
magnitude-limited actuator with any nominal dynamics P, = Diag{pi,pa2, -, Pn,}, SO
long as ||pi(s)|; <1 for each ¢ € {1,2,---,n,} and the diagonal matrix A > 0 satisfies

AA™L > T
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Precompensator 1

Figure 5.13: Precompensator 1, magnitude-limited actuator and linear plant

Since Precompensator 1 ensures that P, @ € M4, we may represent the resulting inter-
connection of precompensator, actuator and plant as shown in Figure 5.13; note that this
interconnection has only one nonlinear element, and that the signal &, is exactly measurable.

To simplify the presentation of the synthesis results which follow, we assume (without
loss of generality) that A=1 , which corresponds to unity saturation levels on each channel
in the precompensator, and hence saturation levels of unity or greater in the real actuator.

Implementation of anti-windup compensator

If we were now to define P(s) := Piy(s)Pact(s) and dy := Pa_ctlcil, and to consider d;
instead of d;, entering just before the actuator dynamics P,.(s), then we would have a
system of the form considered in Section 5.2.2 (cf. Figure 5.6)

At first glance, this approach seems invalid, since it is unlikely that P,.(s) is invertible in
R,; however, it will transpire that (in the final closed-loop relations) d; will always appear
in the form of Pd;, which is the same as PnnCL- This sleight-of-hand simply motivates
the use of the coprime factor anti-windup parametrisation, and could in theory be avoided
completely by a simple re-definition of the plant and disturbances in Figure 5.6.

The important thing to remember, as mentioned in Section 4.1.2, is that we do not
(indeed we cannot) consider disturbances entering at the actuator input.

In Section 5.2.2 we stated a coprime factor parametrisation of anti-windup controllers
for this interconnection: given initial left- and right-coprime factorisations C' = ‘70_1(70 and
P = NoMj' satisfying the Bezout identity (Equation 5.1), the anti-windup controller is
given by

i = QUye + (I — QVy)E,

parametrised by @ € Q (Equation 2.5) such that Q(oco) = My(c0).
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Precompensator 1

v Dzn W d @,
. ——I + +
Yot eQUO—J@EJu |— +@ U +@—>Pi>@—y—>
- +
1-Qv |2

Figure 5.14: System with Precompensator 1 and coprime factor anti-windup controller

The resulting closed-loop interconnection, shown in Figure 5.14, can be described by the
following LFT on Dzn:

e S -Sp -8 NoQ—! Yo
y I-S Sp S _NyQ-! d,
u cs -CcspP -CS —MyQ~1 d,
v [CS —CSP —-CS]  I—MQ* w

w = Dzn(v)

where S := (I + PC)~'. As mentioned, we see that d; enters this relation as a multiple of
Pd; which is equivalent to Ry,d;, and hence that an equivalent relation — using the real
disturbance d; — is given by

e S _SPlin _S NOQil yref
y I-S SP, S —NoQ ! d,
u cS —CSP,, —-CS —MyQt d,
v [CS —CSPw —CS] I— MyQ™" w

w = Dzn(v)

We see that we have, in a sense, come around in a full circle: Figure 5.14 shows precisely
the same AWBT interconnection that is usually assumed in the literature (eg Miyamoto &
Vinnicombe [MV96b]; Weston & Postlethwaite [WP9S8|; Peng et al [PVHWIS| or Teel &
Kapoor [TK97]), with the significant difference being that the saturation nonlinearity in our
case is an implemented element, and hence that both the nonlinear perturbation Dzn and
the feedback signal &, are known exactly.
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Anti-windup compensator synthesis

(€S —CSPy —CS] Pir ()2~ Dun =

M()Q_l -1

Figure 5.15: Representation of Figure 5.14 for stability analysis

For stability analysis, recalling the comments made in Section 3.3, and noting that each
element in this transfer matrix is stable,? we need consider only the simpler interconnection
of Figure 5.15. Note that the external input to this interconnection may be taken to be either

yref yref
d; | or simply uy, := [C’S CS Py, —C’S} d; |, which may be seen to be independent
dg d2

of the anti-windup compensation scheme chosen. Both of these interpretations will be useful.
The signals e, @, and y in Figure 5.14 are then simply given in terms of the nominal
linear response of Figure 5.1 and w, the output of the deadzone nonlinearity in Figure 5.15:

e— e = NoQ 'w (5.2)
a4 — uy, = (I — MyQ Hw (5.3)
U — up, = —MoQ tw (5.4)
Y — Y = —NoQ ™ 'w (5.5)

This characterisation of the behaviour in terms of the relatively simple nonlinear intercon-
nection of Figure 5.15 has been previously identified by a small number of authors, notably
Weston & Postlethwaite [WP98|, Hui & Chan [HC99] and Crawshaw & Vinnicombe [CV9§]
(implicitly also by Miyamoto & Vinnicombe [MV96b], [MV96a|, [Miy97])

Direct consideration of the difference in behaviour between the nominal and real be-
haviour (eg y — vy, etc) has been studied by those same authors, plus also Teel & Kapoor
[TK97] (who discuss nonlinear anti-windup schemes, and hence do not identify the nonlinear
feedback loop of Figure 5.15), and Rantzer [Ran99].

2This may not be obvious: if SPj, (or CSP;,) were unstable, and SP (resp. C'SP) were stable, then of
necessity P,y would have to cancel out the unstable pole(s) of SPy, (resp. CSPin) However, since both S
and C'S are assumed to be stable, the only way this could occur would be for P, to cancel out the unstable
pole(s) of Pin, which we assumed (in Section 4.1.2) was not the case.
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Proposition 5.2 and Theorem 5.3 are important results which indicate the fundamental
limitations to the anti-windup synthesis problem:

Proposition 5.2
Given C' = Vo_on and P = NOJ\/IO_1 satisfying the Bezout identity (Equation 5.1), and
with respect to the interconnection of Figure 5.14:

e [f all poles of P are in the open left half-plane then there exists at least one Q) € Q
which solves Problem 5.1 and which satisfies Q(oc0) = My(c0)

e [f any poles of P are in the open right half-plane then there does not exist any Q) € Q
which solves Problem 5.1 and which satisfies Q(oc0) = My(c0)

PROOF OF PROPOSITION 5.2:

If all poles of P are in the open left half-plane then it is clear, by Proposition 3.7, that
the interconnection can be stabilised by choosing Q) = M.

If any poles of P are in the open right half-plane then it is well known (eg Sussmann et
al [SSY94]) that the interconnection cannot be stabilised by any bounded control input.

Theorem 5.3

Given C = \70’1(70 and P = NoM,* satisfying the Bezout identity (Equation 5.1) and
any Q € Q such that Q(oco) = My(oo), and for any € > 0 and v < ||P||, there exists
Wim € Log and T > 0 with

o0’

IDzn(wn)l|, < e
w,(t) =0 forallt >T
such that in the interconnection of Figure 5.14
lw = winll, = [[Dz0(win)ll, and
1Y = Yunllo > 7 Dz ()|l

PROOF OF THEOREM 5.3:
Given any € > 0 and v < ||P||_, there exists € Lo and 7" > 0 such that

|I7|l, <e and
[y Prefy > oy [z,

(otherwise v < || P||,, would not be true) Now, let wy, be given by
iy, = Iy (”' + Sgn(QMJW))
in which case it may be verified that Ilpw = QM Ly and hence that

Iy (u — wyy) = —Ilpr  and
Hr(y — yy,) = —HrPr
Finally, by Corollary 2.6, |Dzn(uy,)|, < ||[Hr7||, which completes the proof. ]
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Remark

1. In the case that P is “critically stable” (having one or more jw-axis poles but no open
right half-plane poles), we conclude from Proposition 5.2 and Theorem 5.3 that finite
gain stability with respect to ||[Dzn(wyy )|, cannot be achieved with any @ € Q, but
that bounded-input bounded-output stability is not necessarily impossible.?

Case I: stable P

Proposition 5.2 indicates that for any stable P, there is at least one solution to Prob-
lem 5.1; we now consider synthesising () to optimise a suitable performance measure while
guaranteeing global stability of the interconnection. We consider two possible performance
criteria:

e Miyamoto & Vinnicombe [MV96b] propose to minimise the £, gain from ¢ —u (=w) to
the difference between the actual and nominal outputs y — y,;,, modified by some suit-
able weight W. This corresponds to minimising |[WWNoQ ||, subject to maintaining
global stability; this is guaranteed in [MV96b] by ensuring that || — MyQ7 || < 1:

Proposition 5.4 (Miyamoto & Vinnicombe [MV96b])
For stable plant P and any weight W such that W, W=! € RH. there always exists

Q € Q such that
WNQ™!
[l <

and MyQY(occ) = I; such a Q then solves Problem 5.1.

e Teel & Kapoor [TK97| propose to minimise the £, gain from Dzn(uy,) to the difference
between a specified signal in the nonlinear system and its corresponding nominal signal,
such as w — Uy, or Yy — Yy,

A simple upper bound on the £5 gain from Dzn(w);,) to u — wy,, for interconnections
satisfying the (multivariable) Circle Criterion, was recently given by Rantzer [Ran99].

Note that no anti-windup scheme can do better than

| — win |, < ||Dzn(uy,)||, and
|y — Yinllo < 1P|l Dzn ()],

by Theorem 5.3. Omne scheme which achieves these bounds is the unmodified IMC
scheme (see Zheng et al [ZKM94]), which sets @ = My; a choice which can be seen to
cut the nonlinear loop in Figure 5.15. However, it has been pointed out by a number
of authors (eg Weston & Postlethwaite [WP98|) that this choice may lead to poor
performance if P has lightly damped or slow modes.

3Stoorvogel et al [SSS99] consider BIBO stabilisation of critically stable plants with saturation, but their
work is not in the anti-windup framework, ie the linear controller is not assumed to be given a priori. The
question of whether a Q € Q achieving BIBO stability exists remains an open question.
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We propose the following synthesis method, which uses the stability condition and per-
formance bound of Corollary 3.10 (which is based on the multivariable circle criterion) in
place of the small-gain condition of Proposition 5.4. In the light of Equations 5.2 to 5.5, we
claim that this method is applicable to both of the performance criteria given above.

Theorem 5.5

For stable plant P, any weight W such that W, W= € RH., and any diagonal matriz
A = diag{ay, as, - - ,a,} with a; € (0,2) for eachi € {1,2,--- n}, there always exists Q € Q
such that

WN,Q™!
AMQ™t -1

| <1

and MyQ™t(o0) = 1.
Furthermore, for any such Q, the interconnection in Figure 5.14 is stable, with
Jowll, < 14
1= [[AMQ~ = T||,
1y — Yiilly < [[NoQ7H| [l

LA NoQ ] o
T 1= [[AMQ T = I

IDzn(wm)|,

[Dzn(wm) ||,

PROOF OF THEOREM 5.5:
By a change of variable Q = AMyQ™!, we consider the unconstrained problem

1A

inf {W{DA Q} '

QeQ Q-1 o

which has infimum given by (Miyamoto & Vinnicombe [MV96b])
W PA],,

V1t IWPA-12,

<1

We then conclude that the full problem has infimum

PA™
max{ W o ,||A—]||} <1
V1+IwPA-LE

where the second term is due to the interpolation constraint MyQ *(co) = I, which does
not otherwise put up the achievable norm (see eg Vinnicombe [Vin00] Theorem 1.29)
Then by Corollary 3.10 the interconnection is stable, and moreover

1Al
[AMoQ~" — 1|

lwlly < 1= IDzn(w) |,

from which y = y;;, may be bounded as stated. [
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Remark

1. The main application of this synthesis method is clearly to guarantee £, performance
from Dzn(uyy,) to y — yy, (or equivalently to e — ey,) However, since || MyQ || may
be trivially bounded by [|A7!|| ([JAMoQ™' — I]|, + 1), we see that L, performance
from Dzn(wy,) to @ — uy, and w — wy, is also guaranteed, albeit less strongly.

2. A suitable solution to Theorem 5.5 (or Proposition 5.4) can be obtained by solving
a standard H., full-information problem with the weighted plant given by (A = T
corresponds to Proposition 5.4)

0 WPA™!
—1 1

If WPA ! has a stabilisable and detectable state-space realisation

{ Awp | Bwp ]
Cwp | Dwp

then the weighted plant is given by

Awp| 0 Bwp
Cwp| 0 Dwp
0 —I I

and the “generalised plant” Gy is given by

Awp| O Bwp
Cwp| 0 Dwp
Gy = 0 —TI I

o 1) 1

The Hs full information problem is then one of determining an internally stabilising
K1 such that

| Fi(Grr, Ker)l,, <1

It is shown by Miyamoto & Vinnicombe [MV96a] that any solution to this full infor-
mation problem satisfies Q, Q‘l € R'H~, and it will also be the case that the central
solution satisfies Q(oo) = [. Hence Q,Q7 ! € RH, and MyQ(oo) = A, which unfor-
tunately means that the central solution does not satisfy the interpolation condition
MoQ (o0) = I unless A = [; it is always possible, however, to choose such a @ given
the parametrisation of all solutions.

The right-coprime factors of the plant (MyQ™! and NyQ™!) are then trivially derived
from the closed-loop transfer function; the compensator implementation is then given
in terms of the left-coprime factors of the controller (QVO and QUO), which may be
computed easily.
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Case II: unstable P

Proposition 5.2 and Theorem 5.3 indicate that for any unstable P, there are no solutions
to Problem 5.1*, and hence that we should consider instead Problem 5.2, ie synthesising @
to optimise local stability. As previously discussed, we consider only 1solated disturbances
occuring at either d; or dy or y,., and for convenience we shall only discuss the case of d,
— the other two cases proceed in a similar manner.

There are two sensible types of disturbance which we could consider:

e Disturbances such that ||Dzng (w,)||, < €, for some diagonal matrix 0 < K < I (eg
Teel & Kapoor [TK97|)

e Disturbances such that ||cflv1||2 < ¢ (ie simple “balls” in L)

We observe immediately that both of these possibilities have their drawbacks, since it is clear
that there may exist a disturbance d; such that

0

w

and yet both Dzng (wy,) (for any K < I) and d, are not in £y — for example, a persistent
signal which makes lim;_ . uy;i,(t) = 1. We propose to use the latter type of set, to permit
the use of the local stability analysis methods which we derived in Section 3.4.

Our basic framework is then the interconnection shown in Figure 5.15, which for distur-
bances only on d1 corresponds to the interconnection discussed in Section 3.4.1 with z = d1
and

I = CS-Plin
G=MQ "' —

The only restriction on the application of the local stability analysis method presented in
Section 3.4.1 is that /' = C'S P, must be strictly proper, which simply requires that either
C or Py, be strictly proper — not an unreasonable assumption. Provided this assumption
is satisfied, then we may use those methods to determine a number Z[FG > 1 such that the
interconnection in Figure 5.15 is locally stable with respect to the set of disturbances

{ ||Z||2 |F|| Z(}ptc}

Moreover, as mentioned at the end of Chapter 3, it is often possible to obtain significantly
less conservative results from the local stability analysis procedure by considering a family
of suitable “loop transformations”, each of which gives rise to a new interconnection of the
form discussed in Section 3.4.2 with different F', G and A.

4Recall that for “critically stable” plants it may be possible to achieve BIBO stability, but that finite
gain stability is not possible.
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One synthesis method would be to directly search over @ € Q for the largest such set of
permitted disturbances, however this is likely to be computationally inefficient.

An alternative to the direct search would be to recall that the results of Section 3.4.1
indicated the importance of two simple quantities

pi=IGl, and
1Pl G
11,

Since F'is fixed (by C, Py, and P,.;) we see that these two quantities are simply proportional
to | Mo@Q ' — I|| and || MyQ ' — I||, respectively.
Specifically, we showed that Zs, > ZiP . where

lupper

opt  __
[upper]

2
v/ p(p—1)++/n—p 1\ -
(VP(H—P)+\/H—1 €(ly) ifp<l

1 otherwise

which suggests that keeping both ||[MyQ™" — I, and ||[MyQ~"' — I||, small is desirable.
In Theorem 2.4 we indicated the fundamental limitations on these quantities:

Q" 1]l =1

it [MoQ™ 1], = /2> .

where p; are the right-half-plane poles of P. Furthermore, in Theorem 2.9 and Corollary
2.10 we indicated how to obtain a sub-optimal solution to

. L
Q*leRHm;ﬁ}orégq_Iqu HMOQ [H2

which, although it does not guarantee that () € RH.., nevertheless seems to be reasonable
in use.

Appendix A illustrates the main points of the synthesis method for unstable plants with
input saturation by means of a design example.
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5.3.2 System with rate-limited actuator

The approach in this section will almost exactly parallel that in Section 5.3.1. To avoid
unnecessary duplication, some of the implementational issues are not discussed fully here;
the reader is referred to Section 5.3.1 for the details.

Implementation of nonlinear precompensator

d,

+

EECIEN Actuator '&+@_’ Pin _+)@y—)

Figure 5.16: Model of rate-limited actuator and plant

Figure 5.16 shows our assumed model of a (possibly unstable) linear plant Py, € Rp*" "™
with rate-limited actuator. We make the same assumptions as in Sections 4.1.2 and 4.3.2, ie

| Pu(Pwit +di) + do if Poiu € R
undefined otherwise

for some (stable) nominal actuator dynamics Py (s) € RHL "™ and diagonal matrix B > 0.

Precompensator 2

Figure 5.17: Precompensator 2

We saw in Section 4.3.2 that Precompensator 2 (with parameters B>0andC > 0)is a
suitable precompensator for a rate-limited actuator with nominal dynamics P, (s) satisfying

Diag{ S+éi}Pact(5) = Diag{ql(s)v QQ(S)J " Gny (S)}

&

with ||gi(s)]|, < 1 for each i € {1,2,---,7n,}, so long as the diagonal matrices B,C' > 0
satisfy

BB'>1 and BB '>20C"'-1
(In particular, this is true for first-order dynamics P,(s) = Diag{ bt REE ,Sfr’;iu ,

which we conjecture is often the appropriate P,.(s) for a rate-limited actuator.)
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Precompensator 2

A - Actuator | " Plant [
- |‘ jI - S +
u . SUu S U :

Figure 5.18: Precompensator 2, rate-limited actuator and linear plant

Since Precompensator 2 ensures that P, € PRp, we may represent the resulting
interconnection of precompensator, actuator and plant as shown in Figure 5.18, where
|Ar|| < 1+ +/2; note that this interconnection has only one nonlinear element, and that the
signal &; is exactly measurable.

Implementation of anti-windup compensator

As in Section 5.3.1 we define P(s) := Pjin(s)Pact(s) and d; = Pazgdl, and consider d;
instead of d;, entering just before the actuator dynamics Py (s). This gives a system of the
form considered in Section 5.2.2 (cf. Figure 5.6)

For such a system we stated a coprime factor parametrisation of anti-windup controllers:

given initial left- and right-coprime factorisations C' = 170_100 and P = NyM; ' satisfying
the Bezout identity (Equation 5.1) the anti-windup controller is given by

@ = QUse + (I — QVp)€,
parametrised by @) € Q (Equation 2.5) such that Q(oco) = My(c0).

v AR d1 dg
. ( jI + +
Yreft € + u + u + + Y
@ e [0 O P o—4—
- +
' Kl El

Figure 5.19: System with Precompensator 2 and coprime factor anti-windup controller
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The resulting closed-loop interconnection, shown in Figure 5.19, can be described by the
following LFT on Ag:

e S _S-Plin —S NOQ_l ygef

yl| _|[I-S SPw S —No@Q* dy

u s —-CSPh, —-CS —MoQ* ds

v [C’S —CS By —CS} I—MyQ™* w
w = Ag(v)

where S := (I + PC) . (Note that this relation is given in terms of the real disturbance d;)

It will be seen immediately that this is similar to the closed-loop system obtained in
the case of a magnitude limitation (Figure 5.14), although the nonlinear perturbation is
substantially different (and, importantly, has a possibly larger Lo-Lo gain.)

Anti-windup compensator synthesis

[CS —CSP, —CS] Pty Yl Ag

MoQ=t =1

Figure 5.20: Representation of Figure 5.19 for stability analysis

For stability analysis we need consider only the simpler interconnection of Figure 5.20.
The signals e, @, u and y in Figure 5.19 are then simply given in terms of the nominal linear
response of Figure 5.1 and w, the output of the nonlinearity Agr in Figure 5.20:

e — e = NoQ 'w (5.6)
a4 — = ([ — MoQ ) w (5.7)
u— uy, = —MoQ 'w (5.8)
Y — Yun = —NoQ 'w (5.9)
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[0S —CSPy, —CS] 2 F 5(5)~] Dznge |

Figure 5.21: Alternative representation of Figure 5.20

Furthermore, if we use the representation of Ar from Figure 4.21, then Figure 5.20 is
equivalent to Figure 5.21, where
F'=Diag{;-} and

G = Diag{ﬁ‘féi}MOQ_1 -1

Note that the output of the nonlinearity is again w.
By comparing Figures 5.21 and 5.15 it may be seen that applying the methods of Section
5.3.1 for the linear plant

P, = {PDiag{*t%}} = {No}{ Diag{ 2 } Mo}~

would result in Figure 5.15 having the same nonlinearity, and the same feedback element
Diag{ - jéi}MoQ_l — I, as Figure 5.21. Hence we conclude that Problem 5.1 for rate-limited
systems is very closely related to the same problem for magnitude-limited systems.
Specifically, the problem of stabilising the rate-limited system with linear plant P must
be equivalent to the problem of stabilising the magnitude-limited system with linear plant
P = {P Diag{%ﬁi}}. Note that P; is always unstable, and that if P has any open right

half-plane poles, then P; has them too.

Theorem 5.6
Given C = V;'Uy and P = NoMi ' satisfying the Bezout identity (Equation 5.1), and
with respect to the interconnection of Figure 5.19:

o [f all poles of P are in the open left half-plane then there exists at least one Q € Q
which solves Problem 5.1 and which satisfies Q(o0) = My(c0)

e [f any poles of P are in the open right half-plane then there does not exist any Q € Q
which solves Problem 5.1 and which satisfies Q(00) = My(o0)
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PROOF OF THEOREM 5.6:

If all poles of P are in the open left half-plane then it is clear, by Proposition 3.7, that
the interconnection can be stabilised by choosing @) = M.

If any poles of P are in the open right half-plane then (by comparison with the problem
of stabilising Figure 5.15 for the unstable linear plant P, = P Diag{%@}) we conclude by
Proposition 5.2 that Problem 5.1 cannot be solved. [

Case I: stable P

Theorem 5.6 indicates that for any stable P, there is at least one solution to Problem
5.1; we now consider synthesising ) to optimise a suitable performance measure while guar-
anteeing global stability of the interconnection. We consider the same performance criteria
as in Section 5.3.1:

e By comparison with Miyamoto & Vinnicombe [MV96b], we propose to minimise the £,
gain from 4 —u (=w) to the difference between the actual and nominal outputs y—1y;,,
modified by some suitable weight W. This corresponds to minimising ||V NoQ™}||
subject to maintaining global stability, which can be guaranteed by ensuring that

1= MQ M < 75

Theorem 5.7

For stable plant P and any weight W such that W, W= € RH, and
1

WP, < T
(2+v8)?

there always exists Q) € Q such that

i)l <=
MyQ™ ' — o 1+ V2
and MyQ~'(cc0) = I; such a Q then solves Problem 5.1.

Remark

1. A suitable solution to Theorem 5.7 may be obtained in an identical manner to
that discussed in the remarks following Theorem 5.5.
PROOF OF THEOREM 5.7:
It is shown by Miyamoto & Vinnicombe [MV96b]| that

-
Mo@ 1+ ||WP||

inf
QeQ

from which the maximum permitted size of ||W P||_ follows immediately. ]
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e The appropriate version of the performance criterion of Teel & Kapoor [TK97]| would
be to consider the £, gain from Ag(wj,) to ©w — uyy, or y — yy;,- At the present time
this is not a feasible problem, because there is no simple way to relate w to Ag (w,).
However, we can state that the unmodified IMC scheme (see Zheng et al [ZKM94]),
which sets @) = My, will achieve the following level of performance with respect to this
criterion:

| — wpnll, < ||Ar(wi)|, and
1Y — Yiinllo < 1P|l | Ar (wiin) 5

which may be (by comparison to Theorem 5.3) the minimum achievable.

e An attractive alternative, although one which has no strong physical justification,
would be to consider the £y gain from Dzngp i (Fupn,) to w — wy, or y — gy, (see
Figure 5.21); unfortunately we cannot use the small-gain or circle criteria to show
stability of the interconnection in Figure 5.21 since G(0) = I.

Nevertheless, since we know that there exists at least one stabilising () for this inter-
connection, it may be possible in future to formulate a tractable synthesis problem
with respect to this performance criterion.

Case 1I: unstable P

In a similar manner to Case 1l in the case of a magnitude-limited actuator, we see that
the local stability analysis methods of Section 3.4 may be applied to the interconnection in
Figure 5.21 if (assuming a disturbance on d; only) Diag{- jCi}CS Py, is strictly proper.

Both of the proposed optimisation methods in that case may therefore be applied in this
case also, ie direct search over ) € Q for the largest set of admissable disturbances, or the

mixed-norm minimisation of |G| and |G|,
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5.3.3 System with rate- and magnitude-limited actuator

The approach in this section will almost exactly parallel that in Section 5.3.1. To avoid
unnecessary duplication, some of the implementational issues are not discussed fully here;
the reader is referred to Section 5.3.1 for the details.

Implementation of nonlinear precompensator

Y% Actuator ﬂ»@—» Py, _+,(:> Y

Figure 5.22: Model of rate- and magnitude-limited actuator and plant

Figure 5.22 shows our assumed model of a (possibly unstable) linear plant P, € Ry ™
with rate- and magnitude-limited actuator. We make the same assumptions as in Sections
4.1.2 and 4.3.3, ie that

PP+ di) +dy if P € RN Wiy
) undefined otherwise

for some (stable) nominal actuator dynamics Ph(s) € RHL ™ and diagonal matrices
A, B > 0.

We saw in Section 4.3.3 that a series composition of Precompensators 1 & 2 (with parame-
ters A > 0, B>0andC > 0) is a suitable precompensator for a rate- and magnitude-limited
actuator with nominal dynamics P, (s) satisfying

Pact(s) = Diag{pl(s)’pQ(S)v e 7pnu(8)} and
Diag{*}%} Poct(s) = Diag{qi(s). g2(s). -+ , qu. (5)}

with [|p;(s)]]; < 1 and [¢g(s)||; < 1 for each i € {1,2,---,n,}, so long as the diagonal
matrices A, B, C' > 0 satisfy

AA'>T and BB'>T and BB !'>200"'—1T

(In particular, the assumption on P, (s) is true for first-order nominal dynamics P, =

: c1 co cn . . . .
Diag{ - et bt SRR e 3 which we conjecture is often the appropriate P, (s) for a rate-

and magnitude-limited actuator.)
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Precompensators 1 & 2

| Pona An Actuator '..?.._.Pl_ai_lt__.... &
a |’ +j|/\ |‘ + ]\ U i L Y

g ©, | Faals) G Pinls) FO——
51 ...............................................................................................
¢,

Figure 5.23: Precompensators 1 & 2 | rate- & magnitude-limited actuator and linear plant

Since Precompensators 1 & 2 ensure that P, € T4 N Mp, we may represent the
resulting interconnection of precompensator, actuator and plant as shown in Figure 5.23,
where ||Ag|| < 1+ v/2; note that this interconnection has only two nonlinear elements, and
that the signals &, and &, are exactly measurable.

Implementation of anti-windup compensator

As in Section 5.3.1 we define P(s) := Pin(s)Pact(s) and dy = Pa;tlc‘i'b and consider d;
instead of d}, entering just before the actuator dynamics P, (s). This gives a system of the
form considered in Section 5.2.3 (cf. Figure 5.8)

For such a system we stated a coprime factor parametrisation of anti-windup controllers:
given initial left- and right-coprime factorisations C' = f/o’lljg and P = NyM, ! satisfying
the Bezout identity (Equation 5.1) the anti-windup controller is given by

= Q1U0€ + (I — Qngl)sl + (I - Q2%)€2

parametrised by @1, Q2 € Q (Equation 2.5) such that Q1(00) = Q2(00) = My(0).
The resulting closed-loop interconnection, shown in Figure 5.24, can be described by the

Dzn; 0
following LFT A :
ollowing on [ 0 AR:|
e [ S —-SPB. -S No@Qi' No@y* Yuet
y I-S SPR, S —No@3' —NoQ5" d;
u csS —-CSP, —-CS —MoQ7t —MoQ5* d,
vy CS —CSPw —CS I—MQi' I — MQs* w,
vy | [0S —CSPy, —CS —MoQrt T — MoQ3! w,
wa| —DznA 0 (o
wo 0 Agr| |v2

where S := (I+PC) . (Note that this relation is given in terms of the real disturbance d;)
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Figure 5.24: System with Precompensators 1 & 2 and coprime factor anti-windup controller
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Anti-windup compensator synthesis

Yrer

2. :

ds cs —-CSpP;,, —-CS Uin| 4 ~ |2 Dzn; 0 wo
CS —CSP, —CS] = { 0 AR}

Figure 5.25: Representation of Figure 5.24 for stability analysis

For stability analysis we need consider only the simpler interconnection of Figure 5.25.
The signals e, @, u and y in Figure 5.24 are then simply given in terms of the nominal linear
response of Figure 5.1 and w, the output of the nonlinearity in Figure 5.25:

e — e = NoQ7 'wy + NoQ5 'wo (5.10)
u — Ulin = ([ — Monl)wl + (I — M()le)wg (511)
U — Uy — —MOQIIUM — M0Q2_1w2 (5.12)
Y — Y = —NoQy w1 — NoQy 'wy (5.13)

yref

dl |:u11n:| w1

ds cs —-CSPy,, -CS Ulin n Dzn ; 0 wo

CS —-CSPy, —CS} F _)@_' 0 Dznges

Figure 5.26: Equivalent representation of Figure 5.25

Furthermore, if we use the representation of Agr from Figure 4.21, then Figure 5.25 is
equivalent to Figure 5.26, where

1 0
F = [O Diag{ siéi }] and
_ MoQyt =1 MoQs" — 1
Diag{ 75 }MoQ7" Diag{ 7z }MeQz" — I

Note that the output of the nonlinearity is again w.
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Theorem 5.8
Given C = V;'Uy and P = NoMy"' satisfying the Bezout identity (Equation 5.1), and
with respect to the interconnection of Figure 5.24:

e [f all poles of P are in the open left half-plane then there exists at least one pair
Q1, Q2 € Q which solve Problem 5.1 and which satisfy Q1(c0) = Qa(00) = My(00)

o If any poles of P are in the open right half-plane then there does not exist a pair
Q1, Q2 € Q which solve Problem 5.1 and which satisfy Q1(c0) = Q2(00) = My(o0)

PROOF OF THEOREM 5.8:

If all poles of P are in the open left half-plane then it is clear, by Proposition 3.8, that
the interconnection can be stabilised by choosing Q)1 = Q2 = M.

If any poles of P are in the open right half-plane then (by comparison with Proposition
5.2 and Theorem 5.6) we cannot stabilise the interconnection with either of the nonlinearities
Dzn ; or Ay individually. (Imagine relaxing one of the two limitations to a sufficiently large
number so that the limitation is inactive.) Hence we deduce that it is impossible to stabilise
both simultaneously. [

Case I: stable P

Theorem 5.8 indicates that for any stable P, there is at least one solution to Problem
5.1, so we may like to consider synthesising ) to optimise a similar performance measure
to those of Miyamoto & Vinnicombe [MV96b] or Teel & Kapoor [TK97|, as discussed in
Sections 5.3.1 and 5.3.2.

Unfortunately, the nature of the interconnections in Figures 5.25 and 5.26 are such that
guaranteeing stability by the small-gain or circle criteria is not trivial — in fact, something
similar to Proposition 3.8 will be necessary. The following synthesis method may be expected
to work well in practice:?

For stable plant P and weight W = [Wl Wg} such that W,W=1 € RH., and scalars
hi,he > 0, solve the Ho, minimisation problem
[(WiNoQy ! WaNoQ, '
inf hi 0] [MoQi' =1 M@y —1I][57 O]t 0
Do hf | M@ Mt =1 [0 ][0 1+v2]||

If solutions Q1,Qo € Q exist such that this infimum is less than unity, then these Qs will
solve Problem 5.1

(Proof that such @s would then solve Problem 5.1 is immediate by Proposition 3.8.)

SFor any particular set of parameters Wi, Wy, hy & ho there is no guarantee that the infimum will be
less than unity, however there does exist at least one set Wy, Wa, hy & hs for which Q1 = Q2 = M) (a choice
which is known to solve Problem 5.1) achieves a Hoo-norm less than unity.
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Note that this mimimisation may be posed, for given Wy, Wy, hy & hs, as a standard
Hoo problem; this formulation must, however, be as a search over Q7' Q;' € RH.., and
hence cannot guarantee )1, Q)2 € RH,,. Nevertheless, it may be hoped that this method is
often suitable, with appropriate choice of the scalars hy and hs.

Case II: unstable P

We do not consider the unstable case in any detail, since G in Figure 5.26 is not strictly
proper. It may often be possible to use “D-scaling” or a similar method to obtain an
equivalent representation with a strictly proper “G”, however it cannot be guaranteed that
the resulting “A” will be appropriate for applying the methods of Section 3.4.

We might expect that the mixed-norm minimisation of ||G]| , and |G|, may be useful,
but no results in this area have been obtained to date.

5.3.4 Systems with other nonlinear actuators

Provided an input nonlinearity may be represented with a cascaded, bounded pertur-
bation of the form discussed in Section 5.2.3, it will always be possible to stabilise the
interconnection for stable plants, by using

Qr=0Q2="-=Qn =M

which is the unmodified IMC scheme (see Zheng et al [ZKM94])

Moreover, it should always be possible to formulate a synthesis algorithm similar to that
proposed in the case of a stable plant with rate- and magnitude-limited actuator, provided
that the L£o-L5 gain of the nonlinear perturbations are known.
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5.4 Summary and suggestions for further work

5.4.1 Summary

In this chapter we have

e Motivated anti-windup compensation, to maintain nominal behaviour when the non-
linearities are inactive.

e Derived a general coprime factor parametrisation of anti-windup compensators for
systems with input-additive nonlinear perturbations.

e Demonstrated how to combine a precompensator and anti-windup compensated con-
troller to control a system with nonlinear actuator.

e Discussed synthesis for stable or unstable plants with magnitude- and/or rate-limited
actuators.

e Given a number of synthesis methods for stable plants with limited-authority actuators,
which guarantee global stability and performance in some suitable sense

5.4.2 Suggestions for further work
Anti-windup synthesis for magnitude limitations

Although the methods outlined in Section 5.3.1 are quite powerful, there are some
plant /controller combinations for which the resulting closed-loop performs badly. Indeed,
we have already commented that the IMC scheme is “optimal” in a certain Lo sense, but
that it may behave poorly if the plant has slow modes.

Anti-windup synthesis for rate limitations

We have rather skimmed over the synthesis problem for plants with rate-limited actuators
(and, by implication, plants with rate- and magnitude-limited actuators.) Many avenues of
research in this area remain open.

In particular, it may be possible to formulate other stability and performance criteria
(using, for example, [QCs [MR97] or other LMI-based methods); whether these criteria are
suitable for synthesis remains to be seen.



Chapter 6

Conclusions and suggestions for
further work

We have discussed three aspects of systems with nonlinear actuators, namely global and
local stability analysis, modelling € precompensation and anti-windup compensator synthesis:

Global and local stability analysis

With respect to a simple nonlinear feedback loop (Figure 3.5) we have presented a global
stability criterion for [0, 1] sector-bounded nonlinearities which is based on the well-known
circle criterion but which is expressed in terms of an H.,-norm (Theorem 3.9); furthermore,
if the nonlinearity is an ideal deadzone, then this result is extended to give an L, gain
inequality (Corollary 3.10.)

We then considered the local stability properties of the same loop with an ideal unity
deadzone nonlinearity. A novel method for relating the Lo-norms of the (time-truncated)
input and output was presented, which was shown to hold even for unstable interconnections
(Theorem 3.11); some of the consequences of this result were then elaborated upon in more
detail.

This method was then shown to apply to a large class of “deadzone-like” nonlinearities
(Theorem 3.20), from which all of the results for the ideal deadzone case were generalised.
Some simple illustrative examples were then given.

Extension of this local stability analysis could continue in a number of directions. Firstly,
the assumption that the external signal passes through a low-pass filter should be investi-
gated, to see how restrictive this is in practice. Secondly, the level of conservatism in these
results is unknown, but expected to be quite poor in some cases. Some examples to show
the best- and worst-case scenarios would be very useful.

Finally, it is clear that many interconnections may be “loop-shifted” in various ways;
each new representation may be analysed separately, and by combining the results, a less
conservative conclusion may be drawn. The practical use of this method, including useful
“loop shifts” should be demonstrated by some case studies of both stable and unstable
systems.
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Modelling & precompensation of nonlinear actuators

A two-element model comprising a linear plant and nonlinear actuator was presented
(Figure 4.1) for which we presented a number of physically-motivated assumptions regarding
its behaviour.

In order to take account of the nonlinearity introduced by the actuator, and to avoid
problems associated with direct measurement and/or modelling of the actuator, we proposed
to implement a nonlinear precompensator within the controller (Figure 4.2) to ensure that
the actuator remains within its nominal region of linear operation.

Suitable precompensators for actuators with magnitude, rate and both rate & magnitude
limitations were proposed (Figures 4.6, 4.19 & 4.22 respectively) and shown to have a number
of desirable properties (Theorems 4.6, 4.7 and 4.8 respectively.)

This method of precompensating for the nonlinear actuator is practically unknown in the
literature, and this must therefore be considered a preliminary investigation. Many more
types of actuator nonlinearity, including non-decentralised models and limitations on higher
derivatives or other internal variables, should be considered; moreover, the behaviour of
these devices has not yet been tried in practice (with the obvious caveat that all Digital-to-
Analogue Convertors implicitly saturate their output.)

Anti-windup compensator synthesis

We have motivated the problem of compensating for input nonlinearities (Figures 5.1 and
5.2) and defined global and local stabilisation problems (Problems 5.1 and 5.2 respectively.)
A parametrisation of anti-windup compensators based on coprime factors was then presented
and shown to be suitable for a general class of cascaded input nonlinearities.

Using this parametrisation, we then discussed the synthesis problem for systems with
magnitude-limited, rate-limited and both rate- & magnitude-limited actuators:

For magnitude-limited actuators, we have indicated the fundamental limits on achievable
stability and performance (Proposition 5.2 and Theorem 5.3), and shown for open-loop stable
systems that global stability and a certain guaranteed level of L5 performance can be achieved
(Theorem 5.5.) This was followed by a brief discussion of the applicability of the local
stability results of Chapter 3 to the open-loop unstable case.

For rate-limited actuators, the synthesis problem was shown to be closely related to the
magnitude-limited case, with similar limitations (Theorem 5.6) and a synthesis procedure
for open-loop stable systems was given (Theorem 5.7) which guarantees global stability.
For open-loop unstable systems the local stability analysis method was again shown to be
applicable in certain cases.

The case of the combined rate- & magnitude-limited actuator was discussed, and funda-
mental limitations were again deduced (Theorem 5.8.) A synthesis procedure for globally
stabilising open-loop stable systems was proposed. This procedure depends on a number of
scalar parameters, and for a given set of parameters is not guaranteed to have a solution;
there does, however, exist at least one set of parameters for which there is a stabilising
solution.



With the exception of the synthesis method for open-loop stable systems with magnitude-
limiting, these synthesis procedures remain largely untested, either by simulation or practical
implementation. Moreover, it is known that the L, performance criterion is not always
certain to produce acceptable results in practice; for example, the IMC scheme is “optimal”
in one L5 sense, but has been observed to behave poorly for some plants. It is not clear
whether good results can be achieved with simple weighting, nor indeed how one might
choose the weights in general.
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Appendix A

Design example

Description of nonlinear system and nominal linear controller

For our design example we consider an unstable scalar LTT plant —-= with an ideal unity

saturation element at the plant input. This system satisfies the assumptions in Section 4.1.2
with
uact - gjt1 Pact(s) =1
Z/lnom - ml Plin(s) - 8_05

and has nominal linear dynamics P(s) = Pin(5)Pact(5) = 7555
di do
+ +

Yret+ @elin C Ulint+ @_) p [+ @ Ylin

Figure A.1: Design example: nominal (linear) closed-loop interconnection

It may be easily verified that the linear controller!

C(s) = &%

s—b
internally stabilises P(s) in the absence of the nonlinearity (in a negative feedback inter-
connection, as in Figure A.1), placing both closed-loop poles at —%, and that normalised
coprime factors P = NoM, Land C = VO_IUO satisfying the Bezout identity VoMo+UgNg = I
may be given by

My| 218:8; ~ =1 [(s=5)(s+0.05)  6.05(s+0.05)
Ny | —=— [VO UO] - (s+0.5)2 (s+0.5)2
0 5+0.05

INote that any strictly proper stabilising controller for this plant must itself be unstable.
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The nominal linear behaviour (which, of course, will be observed if the system never
enters saturation) may be described by the following relation:

€lin [ (I+ PC)il —(I+ PC)ilp —(I + PC)il Yref
in| = [I—(I+PC)"  (I+PC)'P  (I+PC) | |dy
Ulin | C(I+PC)y" —CU+PC)'P =C(I+PC)'| | do
r(s—0.05)(s=5) —s(s—=5) —(s—0.05)(s—b)
(s40.5)2 (540.5)2 (s+0.5)2 —‘ Yref
o 6.05s s(s—5) (5—0.05)(s—b) d
- (s4+0.5)2 (s4+0.5)2 (s4+0.5)2 1
6.05(s—0.05)  —6.05s  —6.05(s—0.05) J ds
L (s+0.5)2 (s40.5)2 (s+0.5)2

Nonlinear precompensation

As discussed in Chapter 4, we propose to implement a nonlinear precompensator
1. to ensure that the actuator always operates within its nominal linear region, and
2. to provide a suitable feedback signal for anti-windup compensation.

An appropriate precompensator for input saturation is given by Precompensator 1 (see Figure
4.6 on page 110), which is itself a saturation element.

dy ds
Precompensator Actuator | |
Jtaere  rera : S - n
et D K R sat A Sat RO A FR)——
- +[ | —
i |6

Figure A.2: Design example: nonlinear closed-loop interconnection

The overall nonlinear closed-loop interconnection is then as shown in Figure A.2 in which
the nominal linear controller C'(s) has been replaced by K.(s) and K(s).

The problem of designing an anti-windup compensator is now one of choosing K. and

K, appropriately.



Anti-windup compensation by choice of K, and K;

In Chapter 5 we listed some previously-studied compensation schemes; K, and K; for
two of these schemes? are given below:

e no anti-windup: K, = C and K; =0

e “conventional” scheme: K, = % and K, = H%C%

where CF is a tuning parameter (with Cp > % if stability of K, and K7 is desired)

Our proposed scheme is based on a coprime factor parametrisation of anti-windup com-
pensators (Kothare et al [KCMN94] and Miyamoto & Vinnicombe [MV96b])

e coprime factor scheme: K, = QU, and K, = I — QV}
where @ € Q is a unit in RH (Equation 2.5) and should satisfy Q(o0) = My(00).
Note that, since the plant has a pole in the open right half-plane, it is impossible to

globally stabilise the interconnection in Figure A.2. We will therefore consider local stability
with respect to isolated disturbances, and for simplicity will assume disturbances at d; only.

A

d_ [ —i(:)—% Do 24

G

Figure A.3: Design example: simple interconnection for stability analysis

In Chapter 5 we saw that analysis of the interconnection in Figure A.2 is easier if we
consider the (equivalent, in terms of local and global stability) simple interconnection of
Figure A.3 where

F(s)=C(I+ PC)'P = O

—6.055 o
(5+0.5) no anti-windup
_ ) —6.05{(1-Cr)s+Cr} « : .
G(s) = (570.5)2 conventional” scheme
5=0.05 ) —1 _ :
ST0.05 1 coprime factor scheme

From this figure it is clear that the smallest signal (in Lo-norm) which causes saturation,

and which we will denote by d**, has ||d*||, = ﬁ; this signal may be obtained by scaling
2

the time-reversed impulse response of F(s), and is clearly independent of the anti-windup

scheme used.

2For this particular P and C neither Hanus’ conditioning scheme nor the internal model (IMC) scheme
are applicable.
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Analysis of system behaviour without anti-windup compensation

Since the plant P and controller C' require only one state each, we can investigate the
behaviour of the system without anti-windup compensation by plotting the plant state xp
against the controller state zo. The state-space representation of the open-loop transfer
function —C'P is taken to be

0.05 0 [0.05
—_OCP=| -1 5) —1 with state BP]
0 6.05] 0 ¢

o

N

a1
1

o
N
T

o

-

o
T

o
=
T

o

o

a
T

-0.05-

Controller state ¢

I

o

=
T

-0.15

—0.2F

-0.25

-0.25 -0.2 -0.15 -0.1 0.1 0.15 0.2 0.25

“Blant state a(r):'(})f

Figure A.4: Design example: state trajectories of uncompensated system

The following features of the system without anti-windup compensation are shown in
Figure A .4:

e The region where the system is in saturation (shaded area)

e The boundary of the state-space region within which the unforced system returns to
the origin® (shown as a dotted line)

e The evolution of the state when the input disturbance is given by

1. dy = d*** (shown as a dashed line)
2. dy = 1.14d%** (shown as a dash-dot line)
3. dy = 1.15d%* (shown as a solid line)

This last plot indicates that the system may be destabilised by a relatively small
disturbance.

3Note that this boundary is a limit cycle, and may be obtained by simulating the time-reversed system.



Design of () to maximise local stability properties

Recall that in Section 3.4 we showed that if ||d;[|, < ”F”
that the system never enters saturation), which can be stated as

then || — ul|, = 0 (and hence

e The interconnection in Figure A.3 (equivalently, Figure A.2) is locally stable with
respect to the set of disturbances

. 1
{#: 12l < 71}

We also derived a method for determining a number Z{;, > 1 such that if ||d; ||, < G FH ZPe
then (4 —u) € Lo (and hence that all signals in the loop are bounded), which can be stated

as

e The interconnection in Figure A.3 (equivalently, Figure A.2) is locally stable with
respect to the set of disturbances

{ 121l < |F|| Z[(?f;}

Our aim now is to choose () € Q to maximise Z[‘E’G] (and, as a minimum requirement, to
achieve Z[‘}E’tc] strictly greater than unity.)

The method given in Section 3.4 for finding Z3, FG] does not lend itself easily to direct

synthesis of @), but fortunately we also showed that Z(}ptc] > Z‘Zf;pe,] where

VD) (11 i<
v plp=p)+vp=1

1 otherwise

opt
[upper]

and where p and p are given by

F
pe=Gl, and pi=lge= |G, = 14142(|G],

This relatively simple closed-form expression for Z u‘;f)er can be used to plot contours of
constant Zi> . on axes of ||G||, versus |G| ,; by plotting || MoQ™! — I||, and || MpQ™ — I,
on the same axes we may immediately determine a guaranteed level of local stability (since
Z f; is no less than Z[(f;per) for any given @ € Q.

Note that for both the system without anti-windup compensation

G = (;fégg)% |G|l = 6.05

1. = 6.05

1
2

and for the “conventional” anti-windup scheme (with any real value of Cr)

) i >

o _ oos(-Crpscr) Gl 605 T Gl 24.2 |CF| if |Cp| >
= (5+0.5)2 2 — L. \/ 10 oo 6.05(1—CFg)>2 if |C

\/1-2CF—3C% ! | F| <

PR

we have that ZOpt = 1.

[upper]
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We now recall that Corollary 2.10 on page 32 gave a computationally efficient method
for minimising ||MyQ~* — I||, subject to a constraint on [|[MyQ ' —I||_, over a subset of
RHo comprising those elements Q1 € R'H,, with a fixed denominator. For simplicity we
choose denominators (s+ 1), (s +1)% and (s +1)°, and perform the optimisation for various
'Hoo-norm constraints between 1 and 2.

Figure A.5 shows the following:

e The results of the optimisations (solid lines) corresponding to Q! € RH,, with de-
nominators (s + 1) (top-right), (s + 1)® (centre) and (s + 1)° (bottom-left)

t
e Contours of constant Z» .

Z> . = L.17 (bottom-left) in increments of 0.01

[upper

(dotted lines) ranging from Z* . = 1.09 (top-right) to

[upper]

Figure A.5: Design example: results of mixed Hs-H,, minimisation

We can make the following deductions from this plot:

1. The best Z™ _, over all Q! € R'H,, with denominator (s+1) is approximately 1.09, ie

with the best such @) the system would be guaranteed to be locally stable with respect

to disturbances with Lo-norm up to 9% larger than ||d**||, = ﬁ
2

Note that this is only slightly better than the “Hs-optimal” solution, ie the @) for which
| Mo@Q" — 1|, is minimised and [|MoQ™' = 1|, = 2.
2. The best Z2 ., over all Q! € RH, with denominator (s + 1) is approximately 1.12

[upper

3. The best Zo2 . over all Q! € RH, with denominator (s + 1) is approximately 1.16

— large enough to guarantee stability if subjected to the disturbance d; = 1.15d%
which destabilised the uncompensated system (recall Figure A.4)



Based on Figure A.5 we choose two Qs for further investigation:

e The “(s+1)°-optimal” solution, obtained by performing the mixed-norm minimisation
with @' having denominator (s + 1)° and with the constraint |[MoQ~" — 1| < 1.2.
The best such @ is given by

(s+1)°

Q= F T i8I1sT 1 97557 1 8.40557 7 45825 1 0.1983

and achieves

p=1200 p=0577 and Z . =1.163

upper,

Figure A.6 (a) shows the “characteristic bounding curve” (as described in Section 3.4)
as a solid line, and its conservative approximation as a dashed line, for this choice of Q.
From this plot we can determine that Zﬁftc] = 1.66, which is quite significantly larger
than the guaranteed Zob: | = 1.16 — and hence that the system will be much more

resilient to disturbances than the lower bound Zb  indicated.

e The “Hsy-optimal” solution, which corresponds to @ = I* and which is, in one sense,
the simplest coprime-factor anti-windup scheme. This choice of ) achieves

opt
p=2000 p=0447 and Z2F . =1.091

[upper

Figure A.6 (b) shows the “characteristic bounding curve” and its conservative approx-
imation for this choice of Q. From this plot we can determine that Z tG] = 1.28, which
is again quite significantly larger than Z[il;;er] = 1.09, although not so spectacularly as
in the previous case.

&~ ull,
lla— ull,

o R o 005 01 015 025 03 035
leZ

[EA

(a) “(s+1)®-optimal” Q (b) “Hy-optimal” @

Figure A.6: Design example: characteristic bounding curves

4In general, the “Ha-optimal” @ is not the identity, however in this case we have chosen My to be all-pass
(see Theorem 2.4 to see that MpQ ! all-pass minimises HMOQ’1 - IH2 over @ € Q)
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System responses

The final stage of the analysis is to simulate the closed-loop system response, with each of
the anti-windup compensators, and with a number of different disturbances. For simplicity
we consider only disturbances where d; is a simple scaling of d®*, since this type of signal
causes the maximum peak level of uy, (in the nominal system) for given Lo-norm.

Results for minimum saturating input

0
o
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Figure A.7: Design example: responses to d; = d*"

Figure A.7 shows the system response to a disturbance d; = d**; the response is the
same for all anti-windup schemes, since this signal only just causes saturation.

Figures A.8 and A.9 show, respectively, the system response to disturbances d, = 1.14d5*
and d; = 1.15d%*; the responses for the uncompensated, “Ha-optimal” and “(s+1)°-optimal”
anti-windup schemes are shown as solid, dash-dot and dashed lines respectively. We observe
that the two coprime-factor compensators behave in a very similar manner to the nominal
linear system, despite the significant level of saturation (approx 20%) — by contrast the sys-
tem without anti-windup is noticeably nonlinear with d; = 1.14d%*", and becomes divergent
with d; = 1.154%".



Results for input 1.14 times larger than minimum saturating input
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Figure A.8:

Design example: responses to d; = 1.14d**

Results for input 1.15 times larger than minimum saturating input
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Figure A.9: Design example: responses to d; = 1.15d%
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To illustrate the difference in behaviour between the “Ha-optimal” and “(s+1)°-optimal”
anti-windup schemes, we need to increase the disturbance size considerably: Figure A.10
shows the system response to a disturbance d; = 30d***, shown again as dash-dot and dotted
lines. (The response for the uncompensated system is not shown - suffice to say that it
becomes rapidly unstable!)

We observe that the “Hs-optimal” compensator may be less satisfactory than the “(s +
1)5-optimal” compensator (it exhibits an extra “oscillation” from negative saturation to
positive saturation and back), however it is obviously dangerous to make such an assumption
based only on one simulation!

Results for input 30 times larger than minimum saturating input
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Figure A.10: Design example: responses to d; = 30d%*

Conclusions

We have shown how to apply the methods presented throughout this thesis to a simple
unstable system with input saturation. The design methodology proposed in Chapter 5
has been used to synthesise an anti-windup compensation scheme which is able to tolerate
disturbances of Ly-norm approximately 65% larger than the minimum signal necessary to
cause saturation — this is in contrast to the system without any anti-windup compensation,
which could be destabilised by a disturbance of L£o-norm only 15% larger than this minimum.

For comparison, we also analysed the local stability properties of a so-called “Hy-optimal”
coprime factor compensator; this compensator is generally of quite low order (which is desir-
able for implementation), although the local stability properties guaranteed are not as good
as the best achievable.



