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Abstract

This paper considers local stability properties of sys-
tems comprising stable linear time-invariant operators
in combination with a scalar nonlinearity. We consider
those nonlinearities whose gain can be related to the
peak value of their input signal. It is assumed that the
nonlinearity has some nominal gain for small signals (ie
with peak value less than some number), and that the
gain then increases for larger inputs.

It is shown that there is a class of exogenous inputs,
characterised by their energy, such that all signals in
the system are bounded, and the effective gain of the
nonlinearity is no greater than the nominal value.

It is further shown that, providing a stated condition
is satisfied, there is a larger class of exogenous inputs,
again characterised by their energy, such that all signals
in the system are bounded. This condition is shown
to be an inequality between known parameters of the
nonlinearity and the Hs- and Ho.-norms of the linear
parts of the system.
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1 Introduction

For many nonlinearities, it is possible to express the
Lo-L5 gain as being bounded by a known function of
the peak value (Lo.-norm) of its input signal u. For
example, consider the “ideal deadzone”, which satisfies

o if [|ul|, <1 then ||A| =0

o if full, <r (r>1)then Al <1-1

Knowing this information, and given some system in-
corporating this nonlinearity, we may well ask:

e Can we determine a class of exogenous inputs to
the system such that all the signals in the system
remain bounded?

If we can find such a class, and in practice we nearly
always can, then we say that the system is locally sta-
ble with respect to inputs in this class. Local stability
of systems with the ideal deadzone nonlinearity was
considered in [1]; this paper can be considered a gen-
eralisation of that work.

Such a concept makes intuitive sense if applied to real
systems - for example, an aircraft cannot maintain sta-
bility in the presense of arbitrarily large wind gusts,
but it may well be stable for all gusts with sufficiently
small energy.

We see also that, for this particular nonlinearity, the
gain has a nominal value (zero) for small u (those with
peak value no greater than 1). For larger signals, the
gain grows to some upper value (the L3-L5 gain of
the nonlinearity.) This pattern occurs with a number
of common memoryless nonlinearities, and leads us to
consider a second question:

e Can we determine a class of exogenous inputs
to the system such that the nonlinear gain is no
larger than the nominal value?

If we can find such a class, then we say that the system
is nominally stable with respect to inputs in this class.

The usefulness of this concept is that, if we believe that
the disturbances will be in this class (or are likely to
be in this class), then we can model the nonlinearity as
being norm-bounded by the nominal value, and hence
use any of the many design techniques for such nonlin-
earities.

However, if we did this, then we would certainly desire
that there is some (strictly) larger class of signals for
which the system is locally stable, in order to have some
guarantee on what happens if the disturbance is just a
little bit too large.

We will see that we can find answers to both of these
questions, along with a simple sufficient condition to
determine whether the former class is larger than the
latter.

It should be noted that for particular nonlineari-
ties, there are numerical methods for calculating such



bounds (eg [3]), and due to the fact that these methods
use more information about the nonlinearity, they can
be less conservative that the method described here.
The strength of this work is that it provides insight
into the relationship between the properties of the sys-
tem components (eg Hz- and Hoo-norms of transfer
functions) and the overall local stability properties.

2 Notation

Let L3[0,00) be the set of bounded-energy time-
varying scalar signals v(t),t > 0, with norm |jv|, :=

oS vr(@)v(t)dt.  Similarly, let L£o0[0,00) be the

set of bounded-magnitude time-varying scalar signals
v(t),t > 0, with norm [|v]|, := sup,cp,o0) [v(t)]. Let
II7 be the truncation operator

(Ipv)(t) := {”(t> if t € [0, 77,

0 otherwise.

Then let L2, be the set of bounded-energy time-varying
scalar signals v(t),t > 0 for which ||IIz,v||, is finite for
any 1" < oo.

Let RHo be the set of real-rational transfer matri-
ces G(s), analytic in the open right half plane and
square integrable on the jw axis, with norm ||G||, :=

\/ffooo G*(jw)G(jw) dw. Similarly, let RHo be the set
of real-rational transfer matrices G(s), analytic in the

open right half plane and essentially bounded on the
Jw axis, with norm ||G|| = sup {G*(jw)G(jw)}.

Derivatives of functions will be shown with apostro-
phes, ie f'(zq) means the derivative of f(z) evaluated
at z¢. A one-sided derivative will be shown as f'(z).

3 Problem Definition

3.1 System interconnections
We consider the interconnections shown in Figure 1,
which can be described by the following equations

u=Fz+Gy (1)
y=Au (2)

where © € £5]0, 00) is a (possibly vector-valued) exoge-
nous input, u and y are real scalar signals, F' and G are
stable, strictly proper, real-rational transfer functions,
and A is a causal scalar nonlinearity with finite gain
and finite uniform instantaneous gain.

Lemma 1 The interconnection formed by F, G and A
s well-posed.

a(t) + ol y(t)
—| F |— A
+
G

Figure 1: Linear system with scalar nonlinearity

Proofof Lemma 1: G has zero uniform instan-
taneous gain (since it is strictly proper), so the product
of the uniform instantaneous gains of G and A is zero.
Hence the interconnection is well-posed. (Details may
be found in eg. [5]) =

Hence unique solutions y,u € Lo, exist on any finite
interval [0, 7] for any z € Loe.

3.2 Properties of [F' G]

Define a function v ¢(.) on [0, 00), which characterises
the gain of [F G] with respect to individual norm
bounds on x and y

o 0]
O SUD |, <1y, <o 1T+ Gyl

(3)

Vra(9)

which can be calculated [2] as
¢
infc o0 {|[2F G|l v+ }

It may be shown that v, ¢(.) is continuous and strictly

monotonic, with vr¢(0) = 0 and limg oo Yra(P) =

HG;’ and that the following inequality holds

lloo
¢ o
<vre(@) <
[Flloe +11Gllo ¢ \/”FHio + ||GHio $2

(4)

A/F,G((b) =

3.3 Properties of A

We assume a known function ¢, (.) defined on (g, cc)
for some ry > 0 such that for any u € Lo, T > 0, and
y=Au

o if ||II7ul| < r for some r > rq, then

[Hrylly < thalr) [l (5)
We define
Bo:= rli_{?o a(r)
bo: = 0 if Bo=0
CT e (B) it o € (0. )

Pr:= sup a(r)

re(rg,00)
b1 = Tre(B1) i B1 € (0, 1)
o0 if 1 >

o]



and assume that v, (.) is differentiable with finite,
strictly positive derivative on (rg,c0), which implies
that ¢ 1(.) is well-defined, continuous and strictly in-

creasing on (5{% 51)-

Examples of 1, (.) are given in Figure 3 (for the “ideal
deadzone” nonlinearity) and Figure 5 (for the “satu-
rated squaring” nonlinearity.)

3.4 Assumptions
We make the following assumptions

e 31]G| = 1 (since otherwise the interconnec-
tion would be globally stable, by the small gain
theorem [6])

* GollGlle <1

4 Main Results

Definition 1 An interconnection is said to be locally
stable with respect to some restriction(s) on its ex-
ogenous inputs if for any inputs satisfying the restric-
tion(s)

e all signals are bounded

Definition 2 A nonlinearity satisfying FEquation & is
said to be operating in its nominal regime if

o Jlullo <ro

Definition 3 The interconnection in Figure 1 is said
to be nominally stable with respect to some restric-
tion(s) on the exogenous inputs if for any inputs sat-
isfying the restriction(s)

e the interconnection is locally stable, and

e the nonlinearity is operating in 1its nominal
regime.

Theorem 1 (Nominal Stability) For any A satis-
fying Equation 5, the interconnection in Figure 1 is
nominally stable with respect to exogenous inputs x sat-
isfying
To
Izlly < m—A—
27 IFly + 1G5 b0

Theorem 2 (Local Stability) For any A satisfying
FEquation 5, the interconnection in Figure 1 is locally

stable with respect to exogenous inputs x satisfying

[zll, < sup w
27 geton) IF Nl + IG5 ¢

Furthermore, if

F G
rou (rg W e Gl (4 5y e
£,
then
1/);1 (7Fc(¢)) To

sup >

se(@o.sn) IFlla +11Gllp @~ [, + [Gllz do

Remarks

e It is important to note that By, ro and ¢/ (rg)
are simply known properties of the nonlinear gain
bound function ¥,(.) (see Figure 3), and that

b0 : = Yrma(Bo)

e If A is such that rg = 0 then there is effectively no
nominal regime (by Theorem 1), but in that case
there will always be a non-empty class of admiss-
able x guaranteeing local stability (by Theorem
2)

e For any particular F' and G (and A) it is possi-
ble to calculate the bounds on ||z||, quite easily.
However it is often more useful to use the inequal-
ity in Equation 4 to obtain analytic (but possibly
quite conservative) lower bounds, using just the
Hoo- and Ha-norms of F' and G. This technique
will be demonstrated in the examples.

Proof of these Theorems will require a number of pre-
liminary Lemmas.

Lemma 2 For any v € Lo, |II7v|4 is a continuous
non-decreasing function of T'.

Proof of Lemma 2: For any v € L., ||Il7v||,
is non-decreasing in T (this is a basic assumption about
II7) and |||, is continuous in 1" (see eg. [4]). =

Lemma 3 For any x,y,u satisfying Equations 1 and
2, there exists some T > 0 such that ||rx||, # 0 and
My, < ¢o [Hrzll,.

Proof of Lemma 3: It follows from well-
posedness of the interconnection that for sufficiently
small T, ||IIrylly, < BollF|l IH7rz|,, and it may be
shown (using, for example, the inequality in Equation
4) that ¢0 > ﬁo ||FHoo | |



Lemma 4 For any x,y,u satisfying Equations 1 and
2, any T > 0 and any ¢ € (do, $1)

¢Zl ('YF,G (¢))

Mrally < ==
ARl + 1G], ¢

= |y, < ¢ [[Hrz|,

Proof of Lemma 4: We prove the converse,
fe that |Hrylly, = ¢|Mrzf, implies [z, =
U3 (rc(9)

NET2+1GT2 6

Assume that ||TIzy||, > ¢ ||TIrz||,. Then by Lemmas 2
and 3 there exists some T’ < T such that ||l y||, =
¢ |[Urrzlly and ||z ][, # 0.

By Equation 3 we have that

L7yl
'YF,G(QS)
HHT’yHQ > Yre(0) ||HT’UH2

[Trrull, <

and by Equation 5, and noting the monotonicity of
»i1(.), we deduce that

M7l = ¢t (vee(9))
It is then standard that

[Trull o < [|F[ly [Tz 2l[, + [Glly [Tyl
= (1F]ly + 1G1l; @) [T

SO

Uil (Vrc(9))

IMrel, > [Tre], > f2trmeio)
: 2= F], + 6T, 6

Proof of Theorem 1: This result follows by
letting T'— oo and ¢ — ¢g in Lemma 4. =

Lemma 5 Given the following function g(.) defined on
(0,00)

1
W)

. 1 1
=t {lr wc)l (1))

IE|1% 82
z0(z0 + 62)

then

9(z0 +62)<g(z0) —

Proof of Lemma 5: For e > 0 and 2 € (0, 00),
define

AJ%y:&u(i~+%>Hw oG] < g(z0) + ¢}

o?

Then for any € > 0, 29 € (0,00) and o € Ac(2p)

g(z0 +6z) < ||[F O‘G]Hio<1 Lt )

a? 20 + 0%

0z 2

< g(z0) + €~ 700 £02) [[F oG]
_IFIE, o
< g(z0) +e 20(2z0 + 02)

and by taking the limit as ¢ — 0 we get the result
stated. m

Proof of Theorem 2: The first statement fol-
lows by letting T" — oo in Lemma 4.

Proof of the second statement involves finding sufficient
conditions for the existence of some d¢ > 0 such that

¢;1(7F,G(¢0 +5¢)> > o
[F[ly + G5 (Do +60) ~ [IF]ly + [|Glly do

or equivalently (noting that ¥, (.) is monotonic)

[Flly + 1G5 (G0 + 6¢) ro)
1E]ly + 1G5 @0

If By # 0 (implies ¢g # 0) then we apply the chain rule
to the result of Lemma 5 to show that

2
P50 7.0 (¢0)
%
Otherwise, if 8y = 0 (implies ¢y = 0), we use the ap-
proximation in Equation 4 to say that

)> ((150 +5¢)
~ Pl + Gl (0 + 6¢)
oo
[Fllo + |Gl 60

Yr.c(Po +0p) > Pa (

V(b0 + 06) > Vraldo) + 5 — O(6¢°)

e (¢0 +d¢

Noting that

Ya(ro 4 6r) < halro) + ¥4 (ro)or + O(6r%)

and using Equation 4, it is simply algebra to show that
the condition stated does indeed imply the existence of
such a 0¢. n

5 Examples
5.1 Example 1

We consider a system with the “ideal deadzone” non-
linearity

y(t) = Au(t))
u(t) +1 if u(t) < -1,

ut) =1 ifu(t) > 1,



-4 ; |
0
u(t)

Figure 2: A(.) for the “ideal deadzone” nonlinearity

For this nonlinearity we can use
1
sz(r)::l—; (r>1)

with Bg = 0, 81 = 1, 79 = 1 and ¢ (rd) = 1. We
assume |G|, > 1 so as not to satisfy the small gain
theorem.

B=1

Figure 3: ¢¥a(.) for the “ideal deadzone” nonlinearity

Applying Theorem 1, we see that this interconnection

remains in its nominal regime if ||z, < HI}H .
2

Applying Theorem 2, we see that the condition is sat-

. e 1P LG
isfied if T2 < 1.

[
Assuming this condition is satifsied, we use the inequal-

ity in Equation 4 to obtain an analytic lower bound
-1

o1 SUP 4 (. 61) % which uses just the Heo-

and Hy-norms of F' and G. For convenience, write

pi= |Gl and p:= % Then the interconnec-
2

tion is locally stable with respect to z satisfying

1 <\/7p<u1>+m)2
[Flly \ Vol —p)+ Vi —1

[EIPRS |

: IEN NG,
provided e < 1.

5.2 Example 2

100

80

60r

Au(®)

40¢

201

-10 -5

0
u(t)

Figure 4: A(.) for the “saturated squaring” nonlinearity
(shown for M = 10)

Secondly, we consider a system with a “saturated
squaring” nonlinearity

y(t) = A(u(t))

for some M > 1. For this nonlinearity we can use

r):=
valr) M+t iy > M

{r ifr<M

with B = 0, /1 = M + 1, ro = 0 and ¢4(r]) =
1. Note the term M + %, which is intentionally
conservative in order to satisfy the condition that the
function ¥, (.) be differentiable and strictly increasing.

As noted in the Remarks to Theorems 1 and 2, since
ro = 0, this interconnection does not have a nominal
regime, but always has a local stability property.

We again use the inequality in Equation 4 to obtain an

-1
analytic lower bound on supye 4,,4,) % which

uses just the Hoo- and Ha-norms of F' and G. For
convenience, write p := ||G|| ., and p := .
o0 £l

Then the interconnection is locally stable with respect



12r Ble+i

Figure 5: ¢4 (.) for the “saturated squaring” nonlinearity
(shown for M = 10)

to x satisfying
1 1

11 (Vi+ v/p)?
1

~ (VIFIL G + VIGT; TFT.)?

It is clear that if M is sufficiently large, then with
any z in this class, |lul|,, < M, and hence this “satu-
rated squaring” nonlinearity is indistinguishable from
the “ideal squaring” nonlinearity y(t) = |u(t)|* (which,
having infinite gain, cannot be considered directly in
this framework.)

2]l <

This leads us to conclude that this result holds for the
“ideal squaring” nonlinearity.

6 Conclusions

In this paper we have considered the local stability
properties of certain nonlinear systems. We have iden-
tified a regime of nominal operation, and determined a
class of exogenous inputs such that the system remains
in that nominal regime.

Furthermore, we have found a sufficient condition on
the system components which, if satisfied, guarantees
that there is a larger class of exogenous inputs such
that the system remains bounded.

The methods have been illustrated with two examples.
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