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Abstract

This paper considers the local stability of systems com-
prising linear time-invariant operators in combination
with a deadzone nonlinearity. The behaviour of sys-
tems which are not globally bounded-input bounded-
output stable is investigated, and it is shown that under
certain conditions, such systems are bounded-output
stable for a restricted class of inputs. A sufficient con-
dition for this property is stated as a simple norm in-
equality, and the restricted input class is shown to be
characterised by the energy of the signal.

The applicability of this work to systems with satu-
ration nonlinearity, and in particular the well-known
“anti-windup” problem is shown, and an example
given.
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1 Introduction

It is an unavoidable fact that all physical systems ex-
hibit some form of input saturation, which can have
a severely detrimental affect on performance, and can
sometimes lead to instability. In view of the fact that
well-proven strategies have been developed for design-
ing linear controllers for linear plants, many attempts
have been made to include (post-design) compensation
for input saturation; this problem has been termed the
“anti-windup” problem (see for example: [1], [2], [3],
[4] and references therein.)

A reasonable definition of the problem, and one which
has been the focus of much recent work (eg. [2], [3]), is
to firstly design a linear controller which gives accept-
able performance in the unsaturated operating regime,
and then to modify this controller such that

e control action (and hence performance) in the un-
saturated regime is unaltered

e stability is guaranteed for all external inputs in a
given class

e some suitable performance measure is minimised
for all such inputs

It was shown recently in [3] that for stable plants it is
possible to achieve all three of the above for all square-
integrable inputs, with the performance measure an in-
duced norm from the saturation error to certain signals
in the loop.

Taking advantage of the fact that “saturation” plus
“deadzone” equals the identity, this work considers the
analysis of a generalised plant perturbed by a deadzone
nonlinearity; it is clear then that the “anti-windup”
problem given above can be easily formulated in this
way. The condition for such a system to be bounded
input-bounded output stable for all square-integrable
inputs is stated and assumed to be unsatisfied.

Then it will be shown that the system ¢s bounded out-
put stable for a smaller class of inputs, subject to a
single condition being satisfied. This class of inputs
will be shown to be those whose energy is less than
a certain number. Furthermore, such systems may be
said to exhibit “graceful degradation”, that is, small ex-
cursions into the saturated regime will result in small
erTors.

2 Notation

Let L£3[0,00) be the set of bounded-energy time-
varying scalar signals v(t),t > 0, with norm |jv|, :=

o v (t)v(t) dt. Also, let £3[0,T] be the set of time-

varying scalar signals v(t),t > 0 such that ||IIz,v||, is
finite for all Ty < T. Similarly, let L£[0,00) be the
set of bounded-magnitude time-varying scalar signals
v(t),t > 0, with norm |[v|| _ 1= sup,c(g o0 [V(t)]- Let
I be the truncation operator

v(t) iftel0,T],
) (t) :=
(7o) (?) {O otherwise.
Let RHs be the set of real-rational transfer ma-
trices G(s), analytic in the open right half plane
and square integrable on the jw axis, with norm



1G], = \/ff‘;o G*(jw)G(jw) dw. Similarly, let RHo
be the set of real-rational transfer matrices G(s),
analytic in the open right half plane and essen-
tially bounded on the jw axis, with norm |G| :=

Supwe(foo,oo) {G* (]W)G(jw)}

3 System set-up

x(t u(t t
ﬁ»F—j:( : y(t)
|
G

Figure 1: System with deadzone nonlinearity

Figure 1 shows, in block diagram form, the intercon-
nections described by the following equations:

u=Fz+Gy (1)
y(t) = (Au)(t) @

w(t) +1 ifut) < —1,
=40 if —1 < u(t) <1,
u(t) =1 ifult) > 1,

where x(t),y(t), u(t),e(t) € R, F and G are stable,
strictly proper transfer functions (ie F,G € RHaz N
RHoo) and A is the unity deadzone operator, which
is shown in Figure 2. Note that if |u(t)| < « for all ¢,

1

then the gain of the deadzone is at most 7771 =1- =F

Figure 2: Deadzone nonlinearity

4 Main Result

The main result of this paper is that for |G| > 1,
and providing the condition
£l

Gl <
> Pl

(3)

is satisfied, then there exist 0 < Xg < X1, 0 < Y] < o©
and 0 < U; < oo such that

L x|l < Xo implies y = 0 and [[ull, < [[F|l, 1],

2. |lz||, < Xy implies |ly||, < Y7 and |jul, < Ux,
and

3. for X € (Xo,X1), there exist non-
decreasing  functions Y (X) € (0,Y1),
UX) € (||[F|l Xo0,U1) such that [jz], < X
implies [ly||, < Y(X) and ||ul, < U(X).

and hence the system in Figure 1 exhibits a form of
“graceful degradation”. Figure 3 shows a representa-
tive plot of this result.

1771 X2

1yl llul,

Figure 3: Example of norm bounds

5 Preliminaries

Assumptions
1. z € £3]0,0)

2. |Gl >1

Remarks:

1. If |G|, < 1 then the feedback loop would satisfy
the Small-Gain Theorem ([5]), which would mean
that z € £2]0, 00) implies y € £2[0, 00).

2. We do not consider the borderline case ||G||, =1
in this paper, since some systems with |G|, =1
have x € £5]0, 00) implying y € £3]0, c0), while
others do not, and simple norm conditions are
not sufficient to determine this.



Definition

e
BE

Well-posedness of feedback equations

Lemma 1 The loop formed by G and A is well-posed.

Remark: Hence for any = € £3[0,00) and any T €
(0,00) there are unique solutions y,u € L3[0,T] to
Equations 1 and 2.

Proof of Lemma 1: Firstly, FF € R'H, and
z € L3]0,00) imply that Fz € L2[0,00). Secondly,
G € Hy implies that the product of the uniform in-
stantaneous gains of G and A is zero. Hence the loop
is well-posed. (Details may be found in eg. [6]) =

6 Main Theorem

Define the following functions of ¢ € (0, c0):

r@):= ot {|[ZF €|, Vi@ 1)
n. 1 9 T(¢ )
O = R, 50 T() -

Theorem 1 For any T € (0,00) such that ||Ilpz|, >
0, and for any ¢ € (0,00):

1
< = [z,

[Mrz|l, <&(¢) = [Hryl, p

Corollary 1 For any T € (0,00) such that ||llpz|, >
0:
1

sup {¢ : ||[lrz|l, < 2(4)}

[Hzyll, < [y
Corollary 2 For any T € (0,00):

[y < = [[Hzyll, =

1
1T,

Proof of Theorem 1 will require the following three
Lemmas:

Lemma 2 For any T € (0,00):

al,
ITryll, > 0 = |Tira], > ( (1)
2 2 2% | gyl

Proof of Lemma 2: We consider the cases
|IHrull, <1 and |[II7ul, > 1 separately:

Case 1: if |[TIpu|| <1 then y(t) =0 for all t € [0,7]
and [[II7y||, = 0. Hence this case is not applicable.

Case 2: if ||IIpul > 1 then |Iry|l, > 0, and the
following inequality holds:

iy <(1 ! )HH T
- u
=T ] )
Defining
e,
o =
Iyl

it is then standard that
Hrull < [Pl [Mrzl, + |Glly [Hryll,  (6)
and also true that

[Trully < T(ér) [y, (7)

Substituting Equations 6 and 7 into Equation 5, elim-
inating ||II7yl|, # 0, and rearranging, we deduce that

1 ¢r T(or)
£y ¢ + 0 (o) — 1

[z, >

Hence the statement is proved. =

Remark: The bound in Equation 7 is the small-
est lower bound, ie there exist x,y such that

Mrx .
Ir(Fa +Gy)l, = () [ryll, (this was

shown in [7].)

Lemma 3 |IlIpz||, and |II7y||, are continuous non-
decreasing functions of T'.

Proof of Lemma 3: For any v € L3]0,00),
| 7o, is non-decreasing in T" (this is a basic assump-
tion about IIr) and |IIpv|, is continuous in 71" (see

8]). =

Lemma 4 There exists some 17 > 0 such that
[Hz,z|l, >0 and |[Iz,yl|, = 0.

Proof of Lemma 4: We know that z # 0 and
|Hrx||, is continuous in T, hence for any 6 € (0, ||z||,
it is possible to find 77 such that ||IIz, z||, = 6. Then,
if ¢ is sufficiently small, one solution to the feedback
equations in the interval [0,71] is y = 0, u = IIp, (Fz).

But Lemma 1 states that there are unique solutions
in any time interval [0,71]. Hence this s the unique
solution, so ||IIz x|, =46 > 0 and |7 y[, =0. =



Proof of Theorem 1: Assume that there exist
some T' € (0,00) and ¢ € (0,00) such that |[IIpz|, <
#() and [Uryll, > 2 [rall,.

Then by considering Lemmas 3 and 4 there exists
some Ty € (0,T] such that ||HT¢yH2 3 HHT¢95||2 and

Tz, ][, > 0.

But Lemma 2 states (noting that HHT¢yH2 > 0)

x”2
T,
= z(¢)

which contradicts the assumption above. m

Mz, ], = 2(

Proof of Corollary 1: Immediate from Theo-
reml. ®

Proof of Corollary 2: Noting that
1

limy_,o (¢) = LG this result is immediate

from Corollary 1. =

6.1 Continuation to infinite time
Hence by considering T — oo, we get the following
Corollary:

1. If we define
1
1E1l

Corollary 3
Xo =
then ||z||, < Xo implies

y=0
ull, < 1F1l o 1]l

2. 1f supye(0,00) {2(0) } > ”1,1“2, and we define

¢1:=arg sup {i(¢)}
#€(0,00)
= f‘(cbl)

Y, = EXI

Ui = [|Fll o X1+ [|Gll o Y1
then ||z||, < X1 implies
lyll, <Y1
[ully, <Th

3. For any X € (Xo,X1), if we define
1
Y(X):= X
(X) sup{¢: X < ()}

U(X) = [IFllo X + 1G]l Y(X)
then ||z||, < X implies
lylly < Y(X)
[ull, < UX)

Proof of Corollary 3: These results follow im-
mediately from Corollaries 1 and 2, and from the simple
norm inequality [[ully, < [|F|[ ]l + Gl Iyl ®

It remains only to give conditions such that
SUPge(0,00) {i’((b)

G2 1 Fll oo
I3

Theorem 2 Define pu:= |G|, p:= and

W(A) :=(1— pH)A® +4p\° + p? (4 — 3p%)A\?
+ 2pp° NP + PP (4 = 3pP) N
-t (e = 1)
Then

1. p <1 implies

. 1
sup {2(¢)} > G

$€(0,00)
x> L (fp(u_—l)ﬂ/m)Z
T Fl \ Vel —p)+ V=1

implies

2. SUPg e (0,00) {2(0)} > MF

2
p<1

e A1 \/)\2—1-/1,
l_
IIF\|2A1+p\/A2+M —1

where A1 is any positive real solution to U(\) = 0.

Remarks:

1. For any p € (0,1) and any p € (1, 00), there is at
least one positive real solution to U(X) = 0, since
U(0) < 0, () > 0 for sufficiently large A, and
U(A) is continuous.

2. We believe, based on numerical results, that for
any p € (0,1) and any p € (1,00) there is pre-
cisely one positive real solution to ¥(\) = 0, and
hence that A; is uniquely defined.

3. Note that in addition to proving the suf-
ficient condition stated in Equation 3, this
Theorem also gives a mecessary condition for

SUPge 0,00) {12(9)} > 177

Proof of Theorem 2:

1. By considering the approximation

[P 6l <\ 112 + 161



it follows that

I'(¢) < [|Fllo ¢ + 1Gl o

and hence, since Z(¢) is monotonic in I'(¢), it is
straightforward to verify the stated lower bound
on X1, and the conditions under which this bound
is larger than m

2. By considering the approximation

1
I RS AN

it follows that

r(6) > \/IFI% ¢ + IGII%

and hence, since #(¢) is monotonic in T'(¢), it is
straightforward to verify the stated upper bound

on X1, and the conditions under which this bound

is not larger than ——.
[Fl,

7 Application to SISO systems with saturation
nonlinearity

In [3], a system comprising a plant P and controller
C with a saturation nonlinearity at the controller out-
put was considered. It was shown that if the plant and
controller are given as P(s) = N(s)M ~1(s) and C(s) =
Vo t(s)Uo(s) such that M(s)M*(s) + N(s)N*(s) = I
and M (s)Vo(s) + N(s)Uo(s) = I, then all coprime fac-
torisations of that same controller can be parameterised
as C(s) = V- 1s)U(s) with V(s) = Q(s)Vu(s) and
U(s) = Q(s)Uo(s) where Q,Q ' € RHoo.

Noting that Sat(u) = (1 — A)(u), and assuming that
the saturated signal is available, then this set-up can
be implemented as in Figure 4. Note that this imple-
mentation will give the same response in unsaturated
operation as the original system.

It may then be seen that Figure 4 can be redrawn in
the form of Figure 1, in which case F' and G are given
by

F(s) = M(s)Up(s)
G(s) =1—M(s)Q'(s)

It was proved in [3] that for unstable plants P there is
no Q,Q ! € Hy such that ||I— MQ*1HOO < 1, and
hence that it is not possible to guarantee stability in
this case. However, in certain cases, the results of this
work can be used to show stability for suitably small
inputs x.

x(t)+ T

Figure 4: Anti-windup control problem

Example
Let
1
P(s)2871
(7w (55
B s+12 s+2
21
)=
[ (s+11)(s+V2) o 21(s +V/2)
Tl s2410s+10 52 +10s + 10
o=

with a,b > 0. For this system, F' and G are given by

F(s) = 221(9771) independent of a,b
s2 4+ 10s+ 10
2+1— 2
G(s) = (T V2H1-D)s+ (b +av?)

(s +v2)(s +a)

and hence Xy = 0.203, independently of a and b. This
means that for any « such that ||z||, < 0.0203, y = 0.

Then we plot X7 as a function of @ and b: this is shown
as a contour plot in Figure 5. Picking the best a and
b from this data (e = 1.8197, b = 1.2023) gives X; =
0.2157, which means that for any x such that [|z|/, <
0.02157, ||y||, is bounded. Note that the lower bound
on X; from Theorem 2 is 0.2128, which is not a bad
approximation.

Figure 3 shows Y (X) and U(X) for this F' and Gj; the
plot also shows Xy, X7, Y7 and U;.

8 Further applications

Many of the results given are not limited to the case

. F
studied (|Gl > 1, [Gll, < {12

Theorem 1 and its Corollaries can be used in the case

); in particular,



Figure 5: Contour plot of X; vs a and b

|G|l <1 (and sometimes also in the case ||G||,, =1)
to derive bounds from ||z, to |ly||,.

9 Conclusions

In this work we have shown that systems which fail
the Small-Gain test for global stability are nevertheless
locally stable to small-energy disturbances, providing
the condition in Equation 3 is satisfied. Such systems
then exhibit a “graceful degradation” in performance
for small excursions into the saturated regime.

The applicability of this analysis to a system compris-
ing an unstable linear plant, stable linear controller and
input saturation has been demonstrated.
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