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Abstract

A conceptual scheme for reconfiguring control systems in the event
of major failures is advocated. This addresses a ‘big problem’ which is
understandable by the man in the street, delivers enormous benefits if it
can be made to work, and requires interesting and challenging research
from control and systems theorists and practitioners. The scheme relies
on the convergence of several technologies which are currently emerging:
Constrained predictive control, High-fidelity modelling of complex sys-
tems, Fault detection and identification, and Model approximation and
simplification. Much work is needed, both theoretical and algorithmic,
to get this scheme to work, but we believe that there is enough evidence,
especially from existing industrial practice, for the scheme to be consid-
ered achievable. After outlining the problem and proposed solution, the
paper briefly reviews constrained predictive control, object-oriented mod-
elling, which is an essential ingredient for practical implementation, and
the prospects for automatic model simplification. The paper emphasises
some emerging trends in industrial practice, as regards modelling and
control of complex systems. Examples from process control and flight
control are used to illustrate some of the ideas.

Keywords: Control reconfiguration, Fault tolerance, Predictive control, Mod-
elling, Model approximation, Fault detection.
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1 Introduction

We are interested in reconfiguring control systems when a major failure occurs.
For example the partial or complete loss of a control surface on an aircraft, or
failure of an important compressor in a process plant. In the event of such a
failure, at least three inter-related questions arise:

1. Is it possible to continue to control the plant closely enough to the original
specification that continuation of the original mission, or of the usual
product, is possible?

2. Is it possible to control the plant, but with a much reduced specification,
so that modifying the original mission, or production of a lower-quality
product, is necessary?

3. Is it possible to abandon the mission, or to shut down the plant, without
incurring disaster (‘Get me home’ mode)?

We make an initial assumption that it is not possible to anticipate all possible
failure modes, so that an approach involving switching to precomputed control
strategies is not possible. Most proposals for reconfigurable control systems
take the ‘precomputed’ approach [27, 29, 31], although [33] detects a trend
towards the kind of approach advocated in this paper and [16] makes the same
assumption as ours. Of course it is sensible to precompute strategies for a set
of failure modes which are relatively likely to occur, so our interest is in what
to do if the failure mode is outside this anticipated set. The reasons for doing
so are, firstly, that the set of anticipated failure modes, such as those revealed
by a FMECA assessment, can be very large, and it is impractical or too expen-
sive to precompute strategies for all the eventualities. Secondly, unanticipated
failures also occur. Thirdly, a subjective impression is that single-mode failures
are generally handled successfully, for example in aircraft operations; disasters
generally occur when an initial failure is associated with other collateral dam-
age, so that two or more of the anticipated failure modes occur simultaneously.
In this case the number of possibilities grows combinatorially with the number
of single-mode failures, and of course it becomes quite impossible to anticipate
more than a small proportion of them.

The problem we have defined is outside the usual paradigms of adaptive or
robust control, in that the sets of available inputs and outputs can change,
and that the control specifications may change. The dynamics of the plant
can change drastically and discontinuously, which is outside the usual robust
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control paradigm but within that of some adaptive control research. Of course
it is also true that the problem is well beyond the range of any control theory
we currently have. We are proposing it as a ‘Grand Challenge’ problem to the
control community. It has the following characteristics, which are desirable for
such a challenge:

• The problem is generic and of great importance.

• The problem is immediately understood by the general public, and efforts
to solve it are generally supported.

• Virtually every branch of control research can potentially contribute to
solving it.

It is not enough to propose a problem; there should be at least some prospect
of being able to solve it, before it becomes interesting. Our belief is that
technologies are currently emerging, and entering industrial practice, which
make it plausible to envision a general approach to the solution of the problem
we have posed. There are 4 technologies which we have in mind:

1. Constrained Model-Based Predictive Control (MBPC), increasingly widely
used in the petrochemical sector, and being introduced into other process
industries.

2. ‘High-fidelity’ first-principles nonlinear simulation models, sufficiently de-
tailed to contain representations of individual components.

3. Effective approximation/identification algorithms for multivariable sys-
tems.

4. Fault detection and identification (FDI) capability.

In addition to these technologies, it seems that research in Hybrid Systems is
reaching a stage at which really useful results for our problem can be antici-
pated, so that analysis of some of the apparently most intractable aspects of the
problem might be achieved. (We have in mind particularly the approach being
pioneered by Morse [30], in which the set-up is quite close to that involved in
the reconfigurable control problem.)

Basically the idea is that the following sequence of steps occurs:
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1. When a failure occurs, the FDI system pinpoints the nature of the failure.

2. The ‘high-fidelity’ model is updated to reflect the failure.

3. Approximation/identification algorithms are run on data generated from
the updated high-fidelity model, and/or from the failed system, to get a
simple linearised model — probably augmented by linear inequalities —
which captures the new external behaviour.

4. Constrained MBPC is run on the resulting model; it is given enough
degrees of freedom (a big enough set of manipulated variables) to allow
it to find a feasible control strategy.

5. The resulting system is analysed to determine whether the objectives
need to be modified. (Some iteration of this step and the previous two
is needed in general. This is the step in which hybrid systems theory, or
something like it, is needed.)

In this paper we will briefly review 3 of the 4 technologies listed above (omitting
FDI), and explain their relevance to the overall scheme. We will then present
a brief example, which will illustrate some aspects discussed in the paper.

2 Constrained MBPC

2.1 Review of MBPC

Constrained Model Based Predictive Control (MBPC), also known by several
other names, such as Receding Horizon Control (RHC) [28], Generalised Pre-
dictive Control (GPC), [5] Dynamic Matrix Control (DMC), [7] etc, is now the
most widely used advanced control technique in the process industries, and it
is the control methodology at the heart of this proposal. It is distinguished
from other control methodologies by the following three key ideas:

• An explicit ‘internal model’ is used to obtain predictions of system be-
haviour over some future time interval, assuming some trajectory of con-
trol variables.

• The control variable trajectory is chosen by optimizing some aspect of
system behaviour over this interval.
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• Only an initial segment of the optimized control trajectory is imple-
mented; the whole cycle of prediction and optimization is repeated, typ-
ically over an interval of the same length. The necessary computations
are performed on-line.

It naturally handles the control of multivariable plant, and takes account of
information on constraints arising from equipment limitations, safety require-
ments, etc. In its usual form it does this by combining linear dynamic models
with linear inequalities, which seems to be a very powerful combination, since
the linear model keeps the dynamics simple, while the inequalities can be used
to represent important nonlinearities, as well as constraints. The usual for-
mulation of MBPC also has a quadratic cost functional; when combined with
a linear model and linear inequalities this leads to a Quadratic Programming
optimization problem. Since this problem must be solved on-line, the fact that
the problem is convex is most important, and the additional structure available
in a QP problem is important for predicting properties such as solution time.

To be specific, the cost to be minimised typically has the form

J(k) =
N2∑
i=N1

||Mx̂(k + i|k)− r(k + i)||2Q(i) +
Nu∑
i=1

||∆u(k + i)||2R(i) (1)

and the minimisation is performed subject to constraints such as

|∆uj(k + i)| ≤ Vj (2)
|uj(k + i)| ≤ Uj (3)

|(Mx̂)j(k + i|k)| ≤ Xj (4)

where u(k) is the (control) input vector at time k, ∆u(k) = u(k)−u(k−1), and
Mx(k) is the vector of variables which are to be controlled; x(k) is the state of
the plant. x̂(k+i|k) is a prediction of x(k+i) made at time k, M is some matrix
(for example, M = C in the usual linear state-space model if only outputs are
to appear in J(k)), and r(k) is some reference (desired) trajectory for Mx(k).
The integers N1, N2 and Nu, as well as the weighting matrices Q(i) and R(i),
are in principle chosen to represent some real performance objectives (such as
profit maximisation in a process application [32]), but in practice they are often
tuning parameters for the controller. It is assumed that the control signals are
constant after the end of the optimization horizon, namely that ∆u(k + i) = 0
for i > Nu. In the inequalities uj(k) denotes the j’th component of the vector
u(k), etc, and Vj , Uj , Xj are problem-dependent nonnegative values.

The predicted values Mx̂(k + i) which appear in the cost function are usually
obtained from a linear ‘internal model’, which is a predictor derived from a
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linear approximation to the plant. The predictions usually assume a constant
output disturbance over the prediction horizon, the level of this disturbance
being estimated from the initial one-step prediction error. This disturbance
model results in a kind of integral action being present in the controller: a
persistent error between the output and set-point vectors is attributed by the
controller to an increasing disturbance, and consequently an increasing control
signal is generated, until the error is removed.

Relatively little is known about constrained MBPC theoretically, but it is now
receiving a lot of attention. Nominal stability has been well investigated, even
when constraints are active [6]. There are several parameters to be chosen when
an MBPC scheme is implemented (principally prediction and control horizons,
and weights for the cost functional) and there are now some reliable guidelines
for choosing these so as to assure nominal stability. Essentially, the prediction
horizon has to be made large enough, and theorems exist which specify how
large it has to be. Alternatively, terminal constraints have to be imposed on
the controlled variables. The use of infinite horizons is attractive, except that
the imposition of constraints is then difficult, but some proposals have been
made even in this direction [15].

It is still not really known how tolerant MBPC is to mis-modelling, or how
to improve its robustness to modelling errors. One suggestion for obtaining
robustness is to replace the quadratic optimization by a min-max formulation,
but this gives a much harder optimization problem. Nevertheless Allwright has
shown [6] that even this problem can be solved relatively efficiently. Progress
has also been made on tuning the various parameters in the standard MBPC
formulation so as to obtain robustness [18].

This usual MBPC formulation results in a piecewise-constant linear control law,
with switching between laws occurring whenever the set of active constraints
changes. Some research in hybrid systems emphasises the analysis of piecewise-
constant linear systems. Putting this another way, it may be fruitful to consider
a constrained MBPC controller as a hybrid system which switches between
various linear control laws, depending on the active constraints.

It is important to point out that constrained MBPC is now an established
control technique which is used routinely, particularly in the petrochemical
sector, and on very large problems — tens of controlled variables, hundreds of
manipulated variables, and thousands of constraints in some applications. On
the other hand, it is typically used to implement a higher-level control layer
on top of existing conventional controllers, and in an industry with very slow
dynamics. This probably explains why it was brought into use even before any
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kind of stability proof was developed, since it was always possible to disable
it if there were any signs of developing problems. For the application to re-
configurable control which we are proposing this is probably unacceptable, and
some theoretical advances to provide reassurance of correct functioning will be
necessary.

2.2 MBPC as a tool for reconfiguration

Constrained MBPC has some inherent ‘self-reconfiguration’ capability [23], if
there are redundant actuators and one of these actuators fails. In systems with
redundant actuators, a ‘daisy-chaining’ arrangement in which one actuator is
used in normal operation, but another one is brought into operation if the
first one saturates or fails, is shown in figure 1. This figure shows the use
of a model of the saturation characteristic of an actuator. Such a scheme is
usually intended to deal with actuator saturation. But it is also effective in
case the actuator used for normal operation (Actuator 1) fails, for example by
getting stuck at a constant value, providing that integral action is present in the
controller. The back-up actuator is not brought into operation immediately,
but a persistent error in the controlled output leads to an increasing control
signal from the integral action, until the daisy-chaining system ‘thinks’ that
the normal actuator has become saturated, whereupon the back-up actuator
(Actuator 2) is brought into play.

- To actuator 2

To actuator 1

+

Figure 1: ‘Daisy-chaining’ of redundant actuators

Constrained MBPC exhibits essentially the same behaviour, providing that ac-
tuator saturation is modelled by suitable hard constraints, and that integral
action is present (which it is in the standard problem formulation). Suppose
that a plant has redundant actuators, and that one of these actuators becomes
stuck at a position other than its correct equilibrium position. The controller
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‘thinks’ that all the actuators are set to correct equilibrium positions but,
because of the failure, the output does not approach the set-point. In the con-
troller, this discrepancy is attributed to an output disturbance; this disturbance
is assumed to persist at the same level into the future, and the actuator settings
are therefore changed in order to compensate for the estimated disturbance.
Now the setting of the failed actuator does not really change, so a discrepancy
in the output vector remains. But, since a similar error persists in the face of
an apparently ‘larger’ actuator signal, the controller attributes this error to a
larger disturbance than it estimated previously. Consequently a greater change
in the setting of the i’th actuator is demanded. This process is repeated until
the controller ‘thinks’ that the failed actuator has reached its saturation level.
It now moves the other actuators more vigorously to combat the perceived very
large disturbance. The output approaches the set-point more closely, and as it
does so, the estimated error is reduced, although not to zero. If the failure is
compatible with the set-point specification, enough control action is eventually
applied to return the plant to the correct set-point.

It is noteworthy that this behaviour occurs without the need to anticipate cer-
tain patterns of actuator failure, or to design schemes to handle them — it
comes ‘for free’ with constrained MBPC. (We have assumed asymptotic sta-
bility of the MBPC scheme in the presence of the failure, in this scenario.) In
this scenario the response of the MBPC controller occurs only after it has ‘de-
duced’ from feedback information that the gain of the usual actuator has been
reduced. No Fault Detection information is assumed to be available. Clearly
availability of external information about the problem would allow corrective
action to be taken sooner, and thus more effectively.

Failures which can occur can be of three types:

1. Actuator failures — reduced range of actuator, possibly to zero, or ‘hard-
over’ failures (where an actuator remains at one of its extreme positions).

2. ‘Internal’ failures — those in which some some part of the plant fails, with
the consequence of changing significantly the plant dynamics and gains.
(An actuator failure which changed only the dynamics of the actuator
itself, but not its steady-state effectiveness, would be an ‘internal’ failure.)

3. Sensor failures — some measurements become unavailable, or incorrect,
or unusually noisy.

Of course many failures will be combinations of these. For instance, losing
some of the tail structure of an aircraft due to metal fatigue or battle damage
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may cause a control surface (actuator) to disappear, significant changes in
moments of inertia (hence an ‘internal’ failure), and perhaps loss of a dynamic
pressure measurement (sensor). But to keep life tolerably simple, disregard
such combinations for the moment. This is not entirely unrealistic. One of
the most widely-publicised examples of control reconfiguration in recent years
was the Sioux City incident [13], in which a rear engine and most hydraulic
systems were lost, with the pilot flying the aircraft by controlling thrust to
the two surviving engines. Although this was an example of an initial failure
causing further collateral failures, only actuator failures were involved.

Actuator failures are probably the easiest to deal with, providing there is some
degree of redundancy. As argued above, constrained MBPC accommodates
such failures to some extent, even if there is no explicit FDI information to
say that a failure has occurred. The situation is of course improved if such
information is available, and it is easy to incorporate the information in the
MBPC framework, primarily by modifying the explicit constraints on the cor-
responding actuator levels, or constraining the appropriate element of ∆u to
be zero if the actuator is jammed.

‘Internal’ failures are more difficult to handle, unless their effects are sufficiently
small to be dealt with by the inherent robustness of the normal control system.
Otherwise, FDI information is essential, in order to update the internal model
used by MBPC. Conceptually this is straightforward and we shall argue below
that we have the modelling technology available to do this in practice. The
major difficulty is that of obtaining correct FDI information.

Sensor faults are potentially the most difficult to deal with, from the point
of view of correcting for them within MBPC. If a sensor provides the only
measurement of a controlled output variable, then it will not be possible to
continue control without modifying the MBPC cost function. At the very least
the control of that variable will have to be abandoned. It may be possible to
substitute the control of another variable for the unavailable one, if required, or
perhaps to replace the cost function by one specifying higher-level objectives.
But this is moving into much deeper waters than in the cases considered earlier.
Some higher-level supervisor is now required to adjust the MBPC formulation
— and to decide whether it needs adjustment. It is not clear to what extent such
a supervisor could be generic, in the sense that it could deal with unanticipated
failures. Not all sensor failures need have such drastic consequences. If the
measurement which is lost does not appear directly in the cost function, but
is used to improve the quality of some estimated variable (as in a data fusion
scheme), then it is the internal model used by MBPC which must be updated;
in this case the position is similar to that after an ‘internal’ fault.
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It is simplistic to believe that it is enough to change the internal model, or
to change the constraints, in order to represent a fault, and that the MBPC
controller will thereafter issue satisfactory control inputs. In some cases this will
work. But in general the controller will need to be re-tuned to give satisfactory
performance. ‘Tuning’ here means adjusting the horizons and weights which
appear in the cost function, and possibly active management of constraints — it
seems to be necessary to ‘soften’ certain constraints in order to retain feasibility,
which is necessary to ensure stability in some cases. We believe that it is not
too fanciful to expect general tuning strategies to be developed, which will
be satisfactory for the majority of cases. (It is important to remember that in
the context of recovery from failures, emphasis is on ‘satisfactory’ performance,
which may be much worse than the performance one would design for in normal
operation.)

3 High-fidelity complex models

‘High-fidelity’ dynamic models are increasingly being built of complex plant.
They have been built and used in the aircraft and space industries for many
years, but they are now being used also in the process industries. For example,
every oil platform operating in the North Sea has an extremely complex first-
principles dynamic model of its gas and/or oil processing operations. These
models are typically not built for the purpose of designing controllers in the first
instance. They are usually built for training and safety certification purposes;
but since they exist, why not exploit them also for control purposes?

For our purposes it is necessary to have models which are detailed enough to
be able to represent failures. This means that the entities which are liable
to failure, such as valves, sensors, compressors, control surfaces, etc, must be
represented as entities in the model, so that it is possible either to remove the
corresponding entity or to modify it appropriately. The models referred to in
the previous paragraph typically meet this requirement, but they are generally
embedded in proprietary software, without open external interfaces. Fortu-
nately there is an emerging open methodology for building and maintaining (ie
modifying) models of the kind we need, best represented by the object-oriented
modelling languages Omola and Dymola and their associated tools [26, 8, 25].
(A long-standing methodology with similar properties is based on bond-graphs,
but these do not appear to be suitable for modelling very complex systems, es-
pecially those involving multi-property streams such as fluid flows.)
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These languages result from the realisation that modelling is quite distinct
from simulation [2]. Simulation languages such as Simulink rely on a pre-
analysis of the internal causality of a model by the model builder, which is
why they typically use block diagram representations with fixed distinctions
between the input and output variables of each block. (Note that this is not
a point about graphical interfaces, but about the conceptual representation of
simulation models. All simulation languages adhering to the so-called CSSL
standard, such as ACSL or ESL, suffer from the same limitation, whether they
are provided with a graphical interface or not.) In general it is impossible,
in such languages, to represent a single real-world entity by a single entity in
the model description. This is due to the fact that even a small change in the
connectivity of real-world entities — such as removing a single entity — can
lead to a radical change of causalities.

A simple example of this is provided by a resistor. In Simulink it is impos-
sible to have a single block which will represent even the humble resistor in
all circumstances. In fact infinitely many blocks are necessary. In addition to
the obvious representations of R and 1/R in case the resistor is connected to
a perfect current or perfect voltage source, every passive circuit in which the
resistor is a component requires a two-port transfer matrix in which the ‘R’
appears more than once, and inextricably mixed up with other circuit com-
ponents. Contrast this with an Omola representation, in which an individual
resistor is associated with a single ‘object’:

R138 ISA Resistor WITH R=10 ohms;

and the generic model of a resistor states the defining relationships without
implying causalities:

Resistor ISA TwoPort WITH
...
V = I * R;
...
END;

Note that the ‘=’ here denotes equality rather than assignment, so that no
computational sequence is implied. It is not necessary for I to be known
first, and then to compute V. Indeed, they will in general both be computed
‘simultaneously’, after the ‘V=I*R’ relation has been combined with all the
relations defining the other components in the circuit and their connections.
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Separate Omola statements describe how R138 is connected to other compo-
nents. Furthermore, hierarchical model descriptions are supported, so that one
can build reusable modules such as filters or phase-locked loops, parametrized
by component values. In fact, the methodology of model-building in such a lan-
guage is the same as that of defining classes in object-oriented programming
languages, namely top-down stepwise refinement of behaviour definitions. So,
for electric circuit models, Omola has classes such as Two-port which can then
be given more specialised behaviours:

Bridged-T-Filter ISA Two-port
WITH
...
END;

Similarly, for chemical process models, basic classes such as Tank can be defined,
and then used to define more specialised classes such as Pressure-Vessel.

It is worth re-emphasising that such reusable modules are possible only because
relations are described, rather than computation flow. When a complete model
is assembled, its hierarchical description is ‘flattened’, so that a large set of
relations is obtained, which can then be analysed and the appropriate solution
sequence determined. The key fact is that once a model description is complete,
it is possible to obtain a simulation automatically, whereas translation in the
reverse direction, from a simulation to a model, is not possible. Hence it is
also true that, in the event of a failure, it is possible to update an Omola-
type description and then obtain the resulting simulation model automatically,
whereas this is not possible if one starts with a typical simulation language
description.

Figure 2 shows a simplified version of an ‘auto-cascade’ refrigeration process
used for liquefying natural gas [11]. A mixture of two refrigerants (propane
and methane) is compressed by the compressor A and partially condensed in
the condenser B. The remaining vapour (mostly methane) is cooled in the
heat exchanger C and condensed in heat exchanger D. The condensate from
B (mostly propane) is cooled in heat exchanger C and expanded to low pres-
sure through valve E, causing its temperature to fall to about −42 ◦C. The
condensed methane is expanded to low pressure through valve F , its tempera-
ture falling to about −161 ◦C in consequence. After expansion, the resulting
two-phase (vapour/liquid) methane passes through heat exchanger D again,
where the liquid phase evaporates, obtaining the required enthalpy of evap-
oration from the natural gas and from the methane vapour coming from C,
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thus cooling them. The methane vapour is then mixed with the two-phase
propane coming from valve E and passes through heat exchanger C, where
the liquid propane evaporates, cooling the incoming natural gas, the methane
vapour flowing from B, and the propane liquid flowing from B. Finally the
vapour mixture is returned to the compressor A.

Natural gas

Figure 2: Natural gas liquefaction process

This simplified process is not,in fact, thermodynamically feasible, because the
range of temperatures is too great to be attained by only two stages of heat
exchange with practical refrigerants. In practice at least one more refrigerant —
ethylene — and hence at least one more stage of heat exchange and expansion
is needed. Furthermore, greater efficiency is obtained by using from 6 to 10
such stages, which is typical for an actual process. Each stage, comprising a
heat exchanger and an expansion valve, is a good example of an entity that
could be modelled as a reusable Omola module.

It is not feasible to react to every possible kind of failure by automatic update
of a model, even if FDI information correctly identifies the failure. Suppose
that one of the heat exchangers ruptures, for example. The change in its be-
haviour is quite drastic, as it ceases to be a heat exchanger and becomes a tank
filling with liquid instead, with expansion occurring inside it as well. Repre-
senting this change would require understanding the physics governing the new
behaviour, and formulating the appropriate relations — not something which
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could be automated. On the other hand, suppose that the pipe connecting heat
exchanger C to the expansion valve E ruptures. This phenomenon is much eas-
ier to represent, by connecting the pipe to an infinite reservoir at atmospheric
pressure. It would be feasible to have a pre-defined model of a pipe rupture
available for use in such cases, since this is a kind of failure which could be
expected to occur. (Note that this does not imply anticipating specific failures,
since the location of a rupture would not be assumed in advance — the module
could be connected to whatever section of pipe was affected.) In practice a
simpler solution would be available, since the ruptured section of pipe would
almost certainly be isolated from the rest of the process by valves (not shown
in the figure). This is easily represented as a model update, either by closing
the isolation valves, if they exist as entities in the model, or by reducing the
diameter of that pipe to zero, etc.

Correct management of the interface between the FDI system and the high-
fidelity model, in order to allow such updates to be performed correctly, is
not trivial, and requires some research. But it is probably one of the easier
achievements required by our scheme.

An important consideration for our application is the speed of solution of com-
plex high-fidelity models, which are necessarily nonlinear and therefore do not
admit analytical solutions. It appears that some of the proprietary models
mentioned earlier can be run very quickly on high-performance workstations
without requiring special-purpose hardware [19]. This is achieved by modular-
isation of the models, with independent solution of each model and periodic
reconciliation between modules. This approach currently depends on under-
standing of the model, however, and cannot be fully automated. On the other
hand, advances in hardware performance will probably make such special tech-
niques unnecessary, at least for low-bandwidth applications such as process
control.

4 Approximation and identification

While complex high-fidelity models are needed for representing particular fail-
ure conditions in detail, they are not suitable for direct use as internal models
in the constrained MBPC. It is a commonplace that control typically requires
only simple models, which approximate the input-output behaviour of the plant
to a ‘reasonable’ extent. Not only are complex models not required, but they
are harmful because they impair the real-time performance of MBPC schemes.
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For high solution speeds MBPC needs a linear model, in order to solve nothing
more complicated than a QP problem. A simple model is desirable for the same
reason.

The obvious way of obtaining a simple linear model is to linearise the complex
nonlinear model about an operating condition and then simplify it by model
reduction. However the initial linearisation is impractical by either symbolic
differentiation, or by numerical differentiation as performed in typical simula-
tion software. (Although symbolic differentiation is possible using computer
algebra, even for very complex systems, high-fidelity models used in the pro-
cess industries are very far from being in the f(x, ẋ, u, t) = 0 form, with ‘nice’
functions f — they often contain elements such as thermodynamic databases,
for instance. Numerical differentiation is prone to major problems, for example
missing dynamics which involve time delays.)

A more practical and effective way of obtaining a simple linear model is to per-
form some simulation experiments on the complex model, and to ‘identify’ a
model for the data obtained from such experiments. This method of obtaining
linearised models has been used for many years, for example for econometric
models [20]. In addition to overcoming the problems mentioned above, this
method can actually produce more accurate models than the theoretically lin-
earised model, because the level of perturbation can be controlled, which allows
some aspects of nonlinearities to be captured, whereas the theoretical approach
is valid only for infinitesimal perturbations.

A very effective way of performing identification on data obtained from com-
plex models is to use the so-called ‘subspace methods’ developed in recent years
[17, 36, 35], and closely-related approximate realization algorithms developed
rather earlier (which are reviewed in [22]). These are very effective for mul-
tivariable systems, generally giving very good reproduction of input-output
behaviour with relatively simple models (as measured by the state dimension).
One of their great advantages is that they can be run automatically, without
user intervention and decision making. (The only essential decision needed is
on the state dimension, and that can be automated. The author’s recent expe-
rience includes a 2-input, 3-output, 10-section high-fidelity model of a pipeline
carrying two-phase flow, being approximated very well by a linear model with
fewer than 20 states, and the linearised model being obtained by a fourth-
year undergraduate with almost no assistance — which is pretty close to being
‘automatically’.) For use in MBPC schemes it is important that the simpli-
fied model should be stable (if the process being controlled is), and we now
know how to guarantee stable models when using these methods [4, 21]. There
are also variations of the subspace methods suitable for use when the plant is
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operating under feedback.

Once a subspace or similar method has been used to obtain an initial model
from a complex model, parameter estimation on real plant data can be used
to improve the model, or to ‘track’ gradual changes in the plant. Balanced
parametrizations may be particularly suitable for this purpose, since they are
well-conditioned numerically, and they ensure stability of the estimated model
[3, 22]. Another interesting idea which fits well into the scenario envisaged here
is that of just-in-time models, which are obtained (by approximation and/or
estimation) as they are needed, at times and operating conditions which cannot
be predicted [34].

A further question to be considered is which linearised model to use. Recall
that the model required by MBPC is a long-range predictor. Furthermore, this
predictor needs to perform well when operating in a feedback loop. The issues
raised in [10] are relevant here.

5 Fault detection and identification

Fault detection and identification (FDI) is the key element of this whole pro-
posal, and probably the most difficult one to make successful. We will, however,
say less about it than about the other elements, due to lack of expertise in this
area. There is intense activity on FDI and progress is being made, but it must
be admitted that neither of these facts guarantees eventual success. The prob-
lem is inherently very difficult, particularly as the plant will be operating in
closed loop, so that the controller may to some extent be compensating for the
effect of a failure — the classic dilemma of ‘dual control’.

But there are also some reasons for optimism:

1. The advent of self-validating components [9, 12] will make the FDI task
easier, and trivial for some failures. The greatest scope for self-validation
seems to be with sensors.

2. This proposal is particularly aimed at sudden and major failures, which
are easier to detect and identify than gradual deterioration of components.

3. The availability of high-fidelity models (and corresponding measurements)
in effect makes more information available to the FDI task, which allows
the sensitivity/false alarm trade-off to be shifted to a better level.
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While it may not be essential to provide guaranteed levels of performance of
a reconfigurable control scheme in the event of a failure (since one may not
be too choosy when trying to avoid disaster), it is certainly essential to ensure
that a reconfigurable control system does not erroneously decide that a fault
has occurred and then proceed to implement a relatively high-risk strategy.
Therefore the question of false alarm occurrence is a key one for the present
proposal.

6 Example

We present an example of reconfiguration performed by an MBPC flight con-
troller, when the rudder of an aircraft jams, and it is required to change the
aircraft heading (yaw angle). A linearised model of a civil airliner, derived
from the ‘RCAM’ model used in the recent GARTEUR Flight Control Design
Challenge [24], is used for this example. The internal model used by the MBPC
controller is the same linear model. (So exact modelling is assumed initially.)
There are 3 controlled variables: the yaw angle, the roll angle, and the sideslip,
and 4 actuators: the rudder, the ailerons, the tailplane, and the engine thrust.
A rudder jam (at the neutral position) is simulated by disconnecting the rudder
demand signal (issued by the controller) from the rudder. A step demand is
then made on the yaw angle. The results are shown in Figures 3 and 4. Each
of the sub-figures in these figures shows 5 cases:

Case 1 Normal operation of the rudder. The rudder and aileron positions are
constrained to be within ±2 units on the graphs, which represents ±20◦

in each case.

Case 2 Jammed rudder. No FDI information supplied to the controller, so
that the controller is not aware of the failure. The constraints on the
rudder position demand are removed, in order to see the effects of actu-
ator constraints (known to the controller) in this scenario. (The rudder
demand has been reduced by a factor of 300 in the figure for this case.)
Of all the cases, this gives the slowest yaw angle response.

Case 3 Jammed rudder. No FDI information supplied to the controller, but
the usual ±20◦ constraints are restored on the rudder position. The yaw
response is significantly faster in this case, because the controller stops
relying on the rudder sooner, and makes more use of the ailerons, as can
be seen from the larger roll angle.
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Case 4 Jammed rudder. FDI information supplied — the constraint on the
rudder demand has now been tightened to ±0◦, so that the controller
knows that it cannot move the rudder. In fact this makes so little differ-
ence that the plots for Cases 3 and 4 cannot be distinguished from each
other. The reason for this is that in each case the controller moves the
rudder demand to its constraint almost immediately, and then uses the
ailerons and other actuators. Since the actual rudder position is the same
in both cases, the two behaviours are virtually identical.

Case 5 Jammed rudder. FDI information supplied, as in Case 4. But now the
weight on roll errors in the cost function has been reduced by a factor of
3, approximately. This leads to a much faster response of the yaw angle.
It can be seen that a much larger roll angle develops during the first 10
seconds of the manoeuvre when this weight has been reduced, and the
lift then has a larger component in the horizontal plane, which changes
the aircraft’s heading.

The manoeuvre simulated here is rather artificial. A more practical require-
ment than changing only the yaw angle would be to change the aircraft heading,
without much concern for what combination of body angles was most appro-
priate to achieve it. Elsewhere we have argued [14] that a promising role for
MBPC in flight control is at the flight management level, without considering
reconfiguration. This example shows that such a higher level role is also ap-
propriate for reconfiguration, since an MBPC-based flight manager would issue
appropriate yaw, roll and sideslip set-points. In this case, however, the rudder
jam would no longer be just an ‘actuator fault’, but what we earlier called an
‘internal fault’, which implies that a more complicated model update would be
required after receiving FDI information.

7 Conclusion

The objective of our proposal is to find systematic ways of reconfiguring control
systems in the event of major failure or damage. Benefits of doing this would
be to enable safe operation or shut-down of industrial complexes following
component failure, safe return to base of an aircraft following battle damage,
etc.

Of course there are many problems with getting the scheme we have outlined
to work. The main research problems include:
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Figure 3: Yaw angle step demand with failed rudder: Controlled outputs

1. Getting reliable FDI.

2. Developing strategies for tuning the MBPC criterion on-line, and for
constraint management, which will allow provably good reconfiguration
schemes to be developed.

3. Ensuring the approximation/identification algorithms work in closed-loop
and produce models suitable for control.

4. Getting the whole scheme to run quickly enough. (Not a problem for
process applications, but definitely the bottleneck for aerospace.)

5. Automatic updating of the high-fidelity models.

6. Developing an appropriate conceptual ‘system architecture’ for integrat-
ing the 4 technologies successfully. (This probably has to be application-
dependent.)
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Figure 4: Yaw angle step demand with failed rudder: Actuator demands. (Key
as for previous figure.)

We believe that there is a good chance of making the whole scheme work.
The fact that MBPC controllers are used routinely in some industrial sectors,
that complex models are built and run, that we have excellent methods for
simplifying models, and that FDI is a major industrial and academic research
area, together support this hypothesis. The approach may seem rather ‘brute
force’, but it offers a unifying approach to reconfiguration problems, and offers
much scope for good theoretical research which is needed in order to make it
work.

One final thought. If we are prepared to do as much work on-line as suggested
above, other approaches might also become feasible. Why not submit the lin-
earised model of the failed system to a pole-placement algorithm, for instance,
supplemented with some parameter tuning to get reasonable performance? In-
deed, why not? In the control design community our common experience is
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that design is difficult, even in an off-line environment. That may be partly
due to our problem formulations — posing non-convex problems, typically.
But there is also a ‘cultural’ component, in the sense that we usually attempt
inherently difficult problems, trying to optimise performance, to satisfy many
simultaneous objectives, and generally trying to improve on whatever has al-
ready been achieved. For the fault-tolerant / reconfigurable control problem,
a different mind-set is required, as regards the control re-design sub-problem.
‘Good enough’ becomes much less demanding, in terms of performance, and in
terms of performance guarantees. It may well be that, if one approaches the
problem with that view, then several ‘simple’ approaches become feasible.
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