
A New Subspace Identification Method for Bilinear

Systems

Huixin Chen and Jan Maciejowski ∗

Department of Engineering

University of Cambridge

Cambridge CB2 1PZ U.K.

Revised 23 April 2001

Abstract

In this paper, asymptotically unbiased subspace algorithms for the identification of bilinear
systems are developed. Two three-block subspace algorithms are developed for the determin-
istic system case and two four-block ones for the combined deterministic-stochastic case. The
input signal to the system does not have to be white, which is a major advantage over an
existing subspace method for bilinear systems. All the identification algorithms give asymp-
totically unbiased estimates with general inputs, and the rate of reduction of bias with block
size is estimated. Simulation results show that the new algorithms converge much more rapidly
(with sample size) than existing methods, and hence are more effective with small sample sizes.
The faster convergence is presumably due to the insensitivity of the algorithms to the sample-
spectrum of the input signal. These advantages are achieved by a new arrangement of the
input-output equations into ‘blocks’, and projections onto different spaces than the ones used in
earlier methods. A further advantage of our algorithms is that the dimensions of the matrices
involved are significantly smaller, so that the computational complexity is lower, though still
large.

Keywords:

System identification, Bilinear system, Subspace method.
∗Corresponding author. Tel. +44 1223 332732 Fax. +44 1223 332662 Email: jmm@eng.cam.ac.uk

1

1 Introduction

Bilinear systems are attractive models for many dynamical processes, because they allow a sig-

nificantly larger class of behaviours than linear systems, yet retain a rich theory which is closely

related to the familiar theory of linear systems [15, 8]. They exhibit phenomena encountered in

many engineering systems, such as amplitude-dependent time constants. Many practical system

models are bilinear, and more general nonlinear systems can often be approximated well by bilinear

models [17].

Most studies of the identification problem of bilinear systems have assumed an input-output for-

mulation. Standard methods such as recursive least squares, extended least squares, recursive

instrumental variable and recursive prediction error algorithms, have been applied to identifying

bilinear systems. Simulation studies have been undertaken [14], and some statistical results (strong

consistency and parameter estimate convergence rates) are also available [7].

In this paper, we consider the identification of MIMO bilinear systems in state-space form. There

are many advantages of using state-space models, particularly in the multivariable case [5]. In

recent years ‘subspace’ methods have been developed which have proved to be extremely effective

for the identification of linear systems [6, 18, 20, 22]. In Favoreel et al [10, 11, 13] an extension of

such methods was given for bilinear systems, but the algorithm presented there is effective only if

the measured input signal to the system being identified is white. To our knowledge this was the

first extension of the subspace approach to bilinear systems. In [12] another subspace algorithm

for bilinear systems was presented by the same authors, which apparently does not require a white

input signal. However Verdult and Verhaegen [24] pointed out that this algorithm gives biased

results, and proposed an alternative algorithm, which involved a nonlinear optimization step.

In this paper alternative subspace algorithms for identifying bilinear systems are proposed. They

do not require the measured input to be white, and the matrices which need to be constructed

and operated upon are much smaller than those which appear in [12, 13]. Simulations show that

they work well when the input signal is not white; they also show that if the input signal is white,

then good results are obtained with much smaller sample sizes than are required for the algorithm

of [12, 13].

The paper is organised as follows. Section 2 defines the problems that we consider, including as-

sumptions and admissible solution algorithms. Section 3 introduces a considerable, but apparently

unavoidable, amount of notation. Section 4 contains four lemmas which together are the key to the

algorithms developed later in the paper. These lemmas concern firstly a rewriting of the system

equations in ‘block-form’, that is involving contiguous blocks (across time) of input, state, and

output variables; this is a standard first step in all subspace algorithms, and the only difference

here from [10] is that we include the proof for the stochastic case. Secondly, these lemmas present

approximate linear relationships between state sequences and input-output data sequences, and

quantify the approximation involved. Section 5 then develops new ‘three-block’ subspace identi-

2

fication algorithms for the deterministic case. These algorithms make use of ‘past’, ‘current’ and

‘future’ data, and in that sense are ‘three-block’. Algorithm I makes more complete use of the bi-

linear structure of the system, and is hence expected to be more accurate than Algorithm II, but at

the expense of greater computational complexity. Section 6 develops corresponding algorithms (III

and IV) for the stochastic case. These are ‘four-block’ algorithms, the additional block of ‘remote

future’ data being required to allow the stochastic noise effects to be averaged out — in this case

the ‘current’ data block can be regarded as providing a kind of ‘instrumental variable’. Section 7

contains several examples which demonstrate that the algorithms presented here do indeed work

with non-white input signals, and that they require much smaller sample sizes to obtain comparable

results, than the algorithms presented in [10, 12], when the input is white.

2 Problem set-up

In this paper we consider deterministic time-invariant bilinear systems of the form:

xt+1 = Axt +N(ut ⊗ xt) +But

yt = Cxt +Dut (1)

and combined deterministic-stochastic time-invariant bilinear systems of the form:

xt+1 = Axt +N(ut ⊗ xt) +But + wt

yt = Cxt +Dut + vt (2)

where xt ∈ Rn is the state, ut ∈ Rm is a measured input, and yt ∈ Rl is a measured output,

N = [N1 N2 ...Nm] ∈ Rn×nm, and Ni ∈ Rn×n (i = 1, ...,m).

We assume that the sample size is Ñ , namely that input-output data {u(t), y(t) : t = 0, 1, . . . , Ñ−1}
are available.

The system input, output, state, and noise sequences, {ut}, {yt}, {xt}, {wt}, {vt} are assumed to

be realisations of stationary stochastic processes ut,yt,xt,wt,vt. In fact we assume slightly more

than this, that these processes are ergodic [19]. In particular we assume that for any two processes

as and bt, with (finite segments of) realisations (as, as+1, . . . , aN+s−1) and (bt, bt+1, . . . , bN+t−1),

respectively, and with as ∈ Rm, bt ∈ R`,

lim
N→∞

1
N

N−1∑
i=0

as+ib
T
t+i = E[asbt

T] w.p.1 (3)

The input process ut is assumed to be independent of the processes wt and vt, and the joint

covariance matrix of wt and vt is assumed to be:

E

(ws

vs

)(
wt

vt

)T =

[
Q S

ST R

]
δst ≥ 0

3

For linear systems the ergodicity of the output would be equivalent to ergodicity of the input and

noise processes, together with stability of the system. But for bilinear systems the equivalence is

not so complete. We need the following assumption, which is a kind of stability condition:

λ = max
t
σ(A+ Σn

i=1ut,iNi) < 1, (0 ≤ t ≤ Ñ − 1) (4)

where ut,i denotes the i’th element of ut and σ(.) denotes the greatest singular value of a matrix.

Note that this assumption is additional to the assumption of ergodicity; it is a sufficient condition

for our theorems to hold, but probably not necessary for the algorithms to work.

Our objective is to estimate the state dimension n, the system matrices A,B,C,D,N , and possibly

the covariance matrices Q,R, S, from the input-output data. As with linear systems, the state

coordinate transformation z = Tx leaves the input-output relation unchanged, if T is invertible;

this is seen most easily by rewriting the state transition equation in (1) in the form

xt+1 = Axt +
m∑
i=1

(Nixt)ut,i +But

Since no particular state coordinates are specified, the system and covariance matrices can only be

estimated up to such a transformation. In section 7 we shall judge the success of estimation by

comparing the eigenvalues of the ‘true’ and estimated A and Ni matrices (which remain invariant

under such transformations).

As usual in system identification, we shall need some assumption that the input excites the system

sufficiently. In this paper the exact assumption needed depends on the particular algorithm being

considered, and appears in slightly different form in conditions (25), (37), (47), (58), (71) and (83).

Each of these is a condition on the rank of a matrix constructed from the input-output data.

We restrict ourselves to certain kinds of solution algorithms. The objective of our research is to

find non-iterative methods, based on linear algebra, which are analogous to those used in subspace

methods for the identification of linear systems.

3 Definitions and Notations

The use of much specialised notation seems to be unavoidable in the current context. Mostly we

follow the notation used in [12, 3], but we introduce all the notation here for completeness.

For arbitrary t we define

Xt , [xt xt+1 ... xt+j−1] ∈ Rn×j

4

but for the special cases t = 0, t = k, t = 2k and t = 3k we define, with some abuse of notation,

Xp , X0 = [x0 x1 ... xj−1] ∈ Rn×j

Xc , Xk = [xk xk+1 ... xk+j−1] ∈ Rn×j

Xf , X2k = [x2k x2k+1 ... x2k+j−1] ∈ Rn×j

Xr , X3k = [x3k x3k+1 ... x3k+j−1] ∈ Rn×j

where k is the row block size. The suffices p, c, f and r are supposed to be mnemonic, representing

‘past’, ‘current’, ‘future’ and ‘remote future’ respectively. We define Ut, Up, Uc, Uf , Ur, Yt, Yp,

Yc, Yf , Yr, Wt, Wp, Wc, Wf , Wr, Vt, Vp, Vc, Vf , Vr, similarly. These matrices will later be used

to construct larger matrices with a ‘generalised block-Hankel’ structure. In order to use all the

available data in these, the number of columns j is such that Ñ = 2k + j − 1 in the ‘three-block’

case (section 5) and Ñ = 3k + j − 1 in the ‘four-block’ case (section 6).

We use ⊗ to denote the Kronecker product and � the Khatri-Rao product of two matrices with

F ∈ Rq×p and G ∈ Rr×p, as defined in [16, 21]: F �G , [f1 ⊗ g1, f2 ⊗ g2, . . . , fp ⊗ gp] ∈ Rqr×p.

Lemma 1 For F,G,H, J of compatible dimensions, F ∈ Rk×l, G ∈ Rl×m, H ∈ Rp×l, J ∈ Rl×m:

(FG⊗HJ) = (F ⊗H)(G⊗ J) (5)

(FG�HJ) = (F ⊗H)(G� J) (6)

Proof: see appendix.

The following integers will be useful for denoting the dimensions of various matrices. (Recall that

m is the number of inputs and l the number of outputs.)

di = Σi
p=1(m + 1)p−1l

ei = Σi
p=1(m + 1)p−1m

In the following definitions, notation of the form Mi|j (i ≥ j) denotes that the matrix Mi|j contains

input-output (and in a few cases, state) data blocks starting at times j, j + 1, . . . , i. Note that

many of these definitions are recursive, and consequently that the row-dimensions of some of the

defined matrices grow very quickly with the ‘row block size’ k.

5

For arbitrary q ≥ 0 and i ≥ q + 2, we define

Xq|q ,
(

Xq

Uq �Xq

)
∈ R(m+1)n×j

Xi−1|q ,
(

Xi−2|q

Ui−1 �Xi−2|q

)
∈ R(m+1)i−qn×j

Uq|q , Uq ∈ Rm×j

Ui−1|q ,


Ui−1

Ui−2|q

Ui−1 � Ui−2|q

 ∈ Rei−q×j

Yq|q , Yq ∈ Rl×j

Yi−1|q ,


Yi−1

Yi−2|q

Ui−1 � Yi−2|q

 ∈ Rdi−q×j

U+
q|q , Uq ∈ Rm×j

U+
i−1|q ,


U+
i−2|q
Ui−1

Ui−1 � U+
i−2|q

 ∈ Rei−q×j

In the following definition the notation (derived from Matlab) Uq,(i:j) is used to denote the sub-

matrix of Uq formed by rows i to j (inclusive), and Uq,j denotes the j’th row of the matrix Uq.

U++
q|q ,



Uq,1 � Uq
Uq,2 � Uq,(2:m)

Uq,3 � Uq,(3:m)

...

Uq,m � Uq,m


∈ R

m(m+1)
2

×j

U++
i−1|q ,

(
U++
i−2|q

Ui−1 � U++
i−2|q

)
∈ R

m
2

(m+1)i−q×j

6

Xp , Xk−1|0, X
c , X2k−1|k, X

f , X3k−1|2k, X
r , X4k−1|3k

Up , Uk−1|0, U
c , U2k−1|k, U

f , U3k−1|2k, U
r , U4k−1|3k

U+p , U+
k−1|0, U

+c , U+
2k−1|k, U

+f , U+
3k−1|2k, U

+r , U+
4k−1|3k

Up,y , U+p � Yp, U c,y , U+c � Yc, Uf,y , U+f � Yf , U r,y , U+r � Yr,

U c,u ,
(

U c

U+c � Up

)
, Uf,u ,

(
Uf

U+f � U c

)
, U r,u ,

(
U r

U+r � Uf

)
U++p , U++

k−1|0, U
++c , U++

2k−1|k, U
++f , U++

3k−1|2k, U
++r , U++

4k−1|3k

U c,u,y ,


U c

U++c

U c,y

U+c � Up

 , Uf,u,y ,


Uf

U++f

Uf,y

U+f � U c

 , U r,u,y ,


U r

U++r

U r,y

U+r � Uf

 ,

Ũp,u,y ,


Up

U++p

Up,y

 , Ũ c,u,y ,


U c

U++c

U c,y

 , Ũf,u,y ,


Uf

U++f

Uf,y

 , Ũ r,u,y ,


U r

U++r

U r,y


Y p, Y c, Y f , Y r, W p, W c, W f , W r, V p, V c, V f , V r, Ui−1|q, Wi−1|q and Vi−1|q are defined similarly.

Row space: Finally, we denote by A the space spanned by the rows of the matrix A. That is, if

A ∈ Rm×n then A = span{αTA, α ∈ Rm}. Similarly Up, Uc, Uf , Ur, Yp, Yc, Yf , Yr, Up, Yp, Uf ,

Yf , Ũp,u,y, Ũf,u,y and Ur,u etc are defined as the spaces spanned by the rows of the corresponding

matrices.

Remark 1. The meaning of U+
i−1|q is different from that in [10]. U++

i−1|q, U
c,u etc are newly

introduced in this paper.

As usual, +,⊕ and ∩ will denote the sum, the direct sum and the intersection of two vector spaces,

·⊥ will denote the orthogonal complement of a subspace with respect to the predefined ambient

space, \ will denote set difference, the Moore-Penrose inverse will be written as ·†, and the Hermitian

as ·∗.

Let U+
i+q|q �Uq, U

++
i+q|q, U

+
i+q|q+1�Uq and Ui+q|q be the spaces spanned by the rows of the matrices

U+
i+q|q � Uq, U++

i+q|q, U
+
i+q|q+1 � Uq, and Ui+q|q, respectively. Then we have the following useful

lemmas.

Lemma 2 For any integer i ≥ 1 and q ≥ 0,

(U+
i+q|q � Uq) \ U

++
i+q|q = U+

i+q|q+1 � Uq ⊂ Ui+q|q

Proof: see appendix.

7

Lemma 3 For j ≥ 0, and row block size k, we have

Xk−1+j|j =

(
Xj

U+
k−1+j|j �Xj

)

Proof: see appendix.

4 Block-form equations

In this section we state four key lemmas which allow us to develop subspace-like identification

algorithms in the following sections.

Lemma 4 The system (2) can be rewritten in the following ‘block form’:

Xt+1 = AXt +N(Ut �Xt) +BUt +Wt

Yt = CXt +DUt + Vt (7)

Proof: The Lemma follows immediately from the structure of Xt, Yt, Ut,Wt, Vt, and the definition

of the operators ⊗ and �.

Lemma 5 (Input-Output Equation) For system (2), we have, for all k > 0, q ≥ 0:

Xk+q = AkXk+q−1|q +4U
k Uk+q−1|q +4W

k Wk+q−1|q (8)

Yk+q−1|q = LXk Xk+q−1|q + LUk Uk+q−1|q + LWk Wk+q−1|q + LVk Vk+q−1|q (9)

where

Ak , [AAk−1, N1Ak−1, . . . , NmAk−1]

A1 , [A,N1, . . . , Nm]

4U
k ,

[
B A4U

k−1 N14U
k−1 . . . , Nm4U

k−1

]
4W
k , [Ik×k, A4W

k−1, N14W
k−1, . . . , Nm4W

k−1]

LXk ,



C4X
k−1 0 ... 0

LXk−1 0 ... 0

0 LXk−1 ... 0
...

...
. . .

...

0 0
... LXk−1



LUk ,



D C4U
k−1 0 . . . 0

0 LUk−1 0 . . . 0

0 0 LUk−1 . . . 0
...

...
...

. . .
...

0 0 0
... LUk−1



8

LWk ,



0 C4W
k−1 0 . . . 0

0 LWk−1 0 . . . 0

0 0 LWk−1 . . . 0
...

...
...

. . .
...

0 0 0
... LWk−1



LVk ,


Il 0 . . . 0

0 LVk−1 . . . 0
...

...
. . .

...

0 0 . . . LVk−1


with

4U
1 , B, 4W

1 , Ik, LX1 , [C, 0l×mn] , LU1 , D, LW1 , 0l×n, LV1 , Il

Proof: For the special (deterministic) case wt = 0, vt = 0, the proof is already given in [10]. Here

we give the proof for the general case.

The proof is by induction. For k = 1,

X1+q = AXq +N(Uq �Xq) +BUq +Wq

= (A,N)

(
Xq

Uq �Xq

)
+BUq +Wq

= A1Xq|q +4U
1 Uq|q +4W

1 Wq|q

Yq|q = Yq = CXq +DUq + Vq = [C 0]

(
Xq

Uq �Xq

)
+DUq|q + Vq|q

Hence both (8) and (9) hold for k = 1. We assume that (8), (9) hold for k = M . Suppose that

k = M + 1. Then

XM+1+q = AXM+q +N(UM+q �XM+q) +BUM+q +WM+q

= A(AMXM−1+q|q +4U
MUM−1+q|q +4W

MWM−1+q|q)

+N(UM+q � (AMXM−1+q|q +4U
MUM−1+q|q +4W

MWM−1+q|q)) +BUM+q +WM+q

= A(AMXM−1+q|q +N(I ⊗AM)(UM+q �XM−1+q|q))

+A(4U
MUM−1+q|q +N(I ⊗4U

M)(UM+q � UM−1+q|q)) +BUM+q

+A(4W
MWM−1+q|q +N(I ⊗4W

M)(UM+q �WM−1+q|q)) +WM+q (10)

Notice that N(I ⊗ AM) = [N1AM , N2AM , ..., NmAM], N(I ⊗4U
M) = [N14U

M , N24U
M , ..., Nm4U

M]

and N(I ⊗4W
M) = [N14W

M , N24W
M , ..., Nm4W

M]. From (10), we have that (8) holds for k = M + 1.

YM+q|q =


YM+q

YM−1+q|q

UM+q � YM−1+q|q


9

YM+q = CXM+q +DUM+q + VM+q

= C(AMXM−1+q|q +4U
MUM−1+q|q +4W

MWM−1+q|q) +DUM+q + VM+q

= CAMXM−1+q|q + C4U
MUM−1+q|q + C4W

MWM−1+q|0 +DUM+q + VM+q

YM−1+q|q = LXMXM−1+q|q + LUMUM−1+q|q + LWMWM−1+q|q + LVMVM−1+q|q

UM+q � YM−1+q|q = UM+q � (LXMXM−1+q|q + LUMUM−1+q|q

+LWMWM−1+q|q + LVMVM−1+q|q)

= (I ⊗LXM)(UM+q �XM−1+q|q) + (I ⊗ LUM)(UM+q � UM−1+q|q)

+(I ⊗ LWM)(UM+q �WM−1+q|q) + (I ⊗ LVM)(UM+q � VM−1+q|q)

so equation (9) holds for k = M + 1.

Hence (8) and (9) hold. This proves Lemma 5.

Lemma 6 For the system (2), if condition (4) holds, then

Xc = 4U
k U

p +4W
k W

p + ε(λk−1) (11)

Xf = 4U
k U

c +4W
k W

c + ε(λk−1) (12)

Xr = 4U
k U

f +4W
k W

f + ε(λk−1) (13)

where ε(λk−1) denotes a matrix such that ‖ε(λk−1)‖1 = o(λk−1), and k is the block size.

Proof: For system (2), for i ≥ k − 1, we have:

xi+1 = [
i∏

t=0

(A+
n∑
j=1

ut,jNj)]x0 +
i−1∑
l=0

[
i∏

s=l+1

(A+
n∑
j=1

us,jNj)](Bul +wl) +Bui + wi

= [
i∏

t=0

(A+
n∑
j=1

ut,jNj)]x0 +
i−1∑

l=i−k+1

[
i∏

s=l+1

(A+
n∑
j=1

us,jNj)](Bul + wl) +Bui + wi

+
i−k∑
l=0

[
i∏

s=l+1

(A+
n∑
j=1

us,jNj)](Bul + wl)

where
∏n
i=1Ai = AnAn−1 . . . A1.

For any q ≥ 0, i > q + 1, we define

uq|q , uq

ui−1|q ,


ui−1

ui−2|q

ui−1 ⊗ ui−2|q


10

and prove the fact that for any i ≥ k,

4U
k ui|i−k+1 =

i−1∑
l=i−k+1

[
i∏

s=l+1

(A+
n∑
j=1

us,jNj)]Bul +Bui (14)

We prove equation (14) by induction. First, for k = 1, 4U
1 = B,ui|i = ui and the right hand side

of equation (14) is Bui, so (14) holds for k = 1.

Suppose that (14) holds for k = N , then for k = N + 1,

4U
N+1ui|i−N = [B,A4U

N , N14U
N , ..., Nm4U

N]


ui

ui−1|i−N

ui ⊗ ui−1|i−N


= Bui +A4U

Nui−1|i−N + [N14U
N , ..., Nm4U

N](ui ⊗ ui−1|i−N)

= Bui + (A+
n∑
j=1

ui,jNj)(4U
Nui−1|i−N)

= Bui + (A+
n∑
j=1

ui,j)(
i−2∑

l=i−N
[
i−1∏
s=l+1

(A+
n∑
j=1

us,jNj)]Bul +Bui−1)

=
i−1∑

l=i−N
[

i∏
s=l+1

(A+
n∑
j=1

us,jNj)]Bul +Bui

So equation (14) holds.

Similarly,

4U
k wi|i−k+1 =

i−1∑
l=i−k+1

[
i∏

s=l+1

(A+
n∑
j=1

us,jNj)]wl + wi (15)

Hence

xi+1 −4U
k ui|i−k+1 −4W

k wi|i−k+1 = xi+1 −
i−1∑

l=i−k+1

[
i∏

s=l+1

(A+
n∑
j=1

us,jNj)](Bul + wl)−Bui − wi

= [
i∏
t=0

(A+
n∑
j=1

ut,jNj)]x0

+
i−k∑
l=0

[
i∏

s=l+1

(A+
n∑
j=1

us,jNj)](Bul + wl)

and

‖xi+1 −4U
k ui|i−k+1 −4W

k wi|i−k+1‖2 = ‖[
i∏

t=0

(A+
n∑
j=1

ut,jNj)]x0

+
i−k∑
l=0

[
i∏

s=l+1

(A+
n∑
j=1

us,jNj)](Bul +wl)‖2

≤ L

i∑
t=k

λt = o(λk−1)

11

where L = maxt(‖But + wt‖2, ‖x0‖2), and (4) has been used in the last step.

Taking i = k−1, we haveXc = Xk = [xk, xk+1, ..., xk+j−1], Up = Uk−1|0 = [uk−1|0, uk|1, ..., uk+j−2|j−1],

and W p = Wk−1|0 = [wk−1|0, wk|1, ..., wk+j−2|j−1]. Hence (11) is proved. (12) and (13) are proved

similarly, by taking i = 2k − 1 and i = 3k − 1, respectively. Hence Lemma 6 is proved.

Lemma 7 For the system (2), if condition (4) holds, then

Xc = E(Yc −DUc − Vc) + (I − EC)4U
k U

p + (I − EC)4W
k W

p + ε(λk−1)

Xf = E(Yf −DUf − Vf) + (I − EC)4U
k U

c + (I − EC)4W
k W

c + ε(λk−1)

Xr = E(Yr −DUr − Vr) + (I − EC)4U
k U

f + (I − EC)4W
k W

f + ε(λk−1) (16)

for any matrix E of compatible dimensions.

Proof: We start from the identities:

Xc = ECXc + (I − EC)Xc

Xf = ECXf + (I − EC)Xf

Xr = ECXr + (I − EC)Xr

But from (2) we have:

CXc = Yc −DUc − Vc
CXf = Yf −DUf − Vf
CXr = Yr −DUr − Vr

Now applying Lemma 6, Lemma 7 follows immediately.

Remark 2 Note that Lemmas 4 – 7 specialise to the deterministic case (1) in the obvious way, by

setting Wt = 0, Vt = 0, etc.

Remark 3 If E = 0, then Lemma 6 is a special case of Lemma 7.

Remark 4 If l ≥ n, and rank(C) = n, then In−C†C = 0, where C† denotes the pseudo-inverse of

C. Consequently, setting E = C† in Lemma 7 makes expressions (16) exact; this follows directly

from Lemma 4:

Xc = C†(Yc −DUc − Vc)

Xf = C†(Yf −DUf − Vf)

Xr = C†(Yr −DUr − Vr) (17)

Remark 5 Lemma 7 generalises the approach followed in [23], where a decomposition of the form

MXt = M1(Yt −DUt) +M2C̃Xt is obtained.

12

5 The deterministic case

In this section, two ‘three-block’ subspace algorithms for the identification of deterministic bilinear

systems are developed.

We now introduce the symbol Π to denote orthogonal projection. The orthogonal projection of the

rows of a matrix A onto the row space of matrix B will be denoted by ΠBA. It is defined by

ΠBA , ABT (BBT)†B (18)

Lemma 8 Let X,Y,M,P be such that X = PY + M , where Y has full row rank, δ is a small

positive number and ‖M‖1 = o(δ). Define Y as the space spanned by the rows of Y , then

‖ΠY⊥X‖1 = o(δ) (19)

Proof: See Appendix.

5.1 Algorithm I

The key to algorithm I is the use of Lemma 7 to linearise the bilinear system. The data equations,

and the state equation linking current and future data, can be written as shown in Theorem 1.

We refer to this as a ‘three-block’ form of the equations, because data from ‘past’, ‘current’ and

‘future’ blocks are used (as can be seen from the definitions given in section 3). Most subspace

algorithms for linear systems are based on a ‘two-block’ form of the equations at this point. The

inspiration for the ‘three-block’ form is taken from [6], in which a third block is used to estimate

some initial Markov parameters, which are then used in the estimation of the system matrices. In

the bilinear case the introduction of a third block allows the estimation, in Step 1 of Algorithm I,

of the matrix Dk which appears in Theorem 1. In Algorithm II this is replaced by the estimation

of the matrix Dk,2 (Dk,1) which appears in Theorem 3 (Theorem 5). (In the linear case each of

these matrices would simplify to a Toeplitz matrix containing Markov parameters.) Step 2 of each

algorithm then uses this estimate to estimate two consecutive state sequences, and these are used

in Step 3 to estimate the system matrices.

Theorem 1 (Three Block Form 1) The system (1) can be written in the following form, if

condition (4) holds:

Y c = CkXc +DkU c,u,y + ε(λk−1) (20)

Y f = CkXf +DkUf,u,y + ε(λk−1) (21)

Xf = AkXc + BkU c,u,y + ε(λk−1) (22)

where Ak,Bk, Ck and Dk are system-dependent constant matrices.

13

Proof: Recall that Y c = Y2k−1|k. From Lemmas 5 and 3 (specialised to the deterministic case),

we know that

Y c = LXk Xc + LUk U c

= LXk

(
Xc

U+c �Xc

)
+ LUk U c (23)

Let LXk =
[
Ck,LXk,2

]
, where Ck is the first n columns of the matrix LXk , and LXk,2 is the last[

(m+ 1)k − 1
]
n columns of LXk . Then equation (23) can be written as follows

Y c = CkXc + LXk,2(U+c �Xc) + LUk U c

= CkXc + LXk,2
(
U+c � [C†(Yc −DUc) + (I − C†C)Xc]

)
+ LUk U c (by Lemma 4)

= CkXc + LXk,2
(
U+c �

[
C†Yc − C†DUc + (I − C†C)(4U

k U
p + ε(λk−1))

])
+ LUk U c

(by Lemma 7)

= CkXc + LXk,2
(

(I ⊗ C†)(U+c � Yc)− (I ⊗ C†D)(U+c � Uc) + [I ⊗ (I − C†C)4U
k](U+c � Up)

)
+LUk U c + ε1(λk−1) (by Lemma 1) (24)

Note that the second and third terms of equation (24) form a linear combination of vectors in

the row space of the matrices U+c � Yc, U+c � Uc , U+c � Up and Uc. We divide (U+c � Uc)
into two parts, namely U++c ⊕ [(U+c � Uc) \ U++c] and according to Lemma 2, we know that

[(U+c � Uc \ U++c)] = U+
2k−1|k+1 � Uk ⊂ U

c. Hence there exists a matrix Dk such that

DkU c,u,y = LXk,2
(

(I ⊗ C†)(U+c � Yc)− (I ⊗ C†D)(U++c) + [I ⊗ (I −C†C)4U
k](U+c � Up)

)
+ LUk U c

so equation (20) holds. (21) and (22) of Theorem 1 can be proved similarly.

From Theorem 1 we deduce that the block data matrices Y c and Y f are asymptotically linearly

related to the state block matrices Xc and Xf . Also Xf is asymptotically linearly related to Xc.

This is achieved by putting all the bilinear terms of the system into the data matrices U c,u,y and

Uf,u,y (which are defined in this paper for the first time). Note that the system equations have now

been written in a quasi-linear form. This is the key to lifting the restrictions on the input which

were required by earlier algorithms. As a result of this quasi-linear form, we do not require the

input to be white, or even have zero mean value. In contrast with equations (20)–(22), equations

(3.32)–(3.34) in [9] contain input-state products such as Up�Xp, and the ‘whiteness’ of the input

is required precisely in order to deal with such products.

Theorem 2 If the pair (A,C) in (1) is observable, condition (4) holds, and
Y c

U c,u,y

Uf,u,y

 has full row rank, (25)

14

then, denoting S := Yc + Uc,u,y,

‖ΠS⊥Y f −DkΠS⊥Uf,u,y‖1 = o(λk−1) (26)

Proof: Substituting (22) into (21), we have

Y f = Ck(AkXc + BkU c,u,y) +DkUf,u,y + ε1(λk−1) (27)

Since the linear part of the system is observable, then from (20), we have

Xc = C†k(Y
c −DkU c,u,y) + ε2(λk−1) (28)

Substituting (28) into (27) shows that there exist two matrices C1, C2 such that

Y f −DkUf,u,y = C1Y
c + C2U

c,u,y + ε3(λk−1) (29)

Since S = Yc + Uc,u,y we have, from Lemma 8:

‖ΠS⊥Y f −DkΠS⊥Uf,u,y‖1 = o(λk−1)

This proves Theorem 2.

Remark 6: It is well known that the quality of a model obtained from an identification experiment

depends on the degree of excitation of the input signal. Condition (25) of Theorem 2 is a kind of

‘persistent excitation’ condition. It guarantees that the matrix ΠS⊥Uf,u,y has full row rank, and

therefore (ΠS⊥Uf,u,y)(ΠS⊥Uf,u,y)† = I.

Algorithm I:

Step 1. On the basis of (26), estimate Dk as:

D̂k = (ΠS⊥Y
f)(ΠS⊥U

f,u,y)† (30)

Step 2. Choose a threshold τ . Obtain the following SVD decomposition and partition as

[
ΠS+Y3k−1|2k ΠS++Y3k|2k+1

]
− D̂k

[
Uu,y3k−1|2k U

u,y
3k|2k+1

]
=: ΓΣΩ∗ =

[
Γ1 Γ2

] [Σ1 0

0 Σ2

][
Ω∗1
Ω∗2

]

where S+ = S + Uf,u,y, S++ := Y2k|k+1 + U2k|k+1 + U3k|2k+1 and ‖Σ2‖ < τ.

Since we expect from (20) and (21) that rank(Σ1) = n and rank(Σ2) = 0, and hence that

ΓΣΩ∗ = Γ1Σ1Ω∗1 = Ck [X2k X2k+1] , (31)

form the estimates Ĉk = Γ1Σ1/2
1 and [X̂2k X̂2k+1] = Σ1/2

1 ΩT
1 . (Ĉk is not needed later.)

Step 3. Estimate the parameters A,B,C,D,N on the basis of equation (7), by solving the equation

[
X̂2k+1

Y2k

]
=

[
A N B

C 0 D

]
X̂2k

U2k � X̂2k

U2k

 (32)

15

in a least-squares sense.

Remark 7 Other estimates could be obtained by using other right-inverses in steps 1 and 3, and

another factorisation in step 2. In [12] it is suggested that constrained least-squares could be used

in step 3, because of the known structure of the solution. Our experience to date is that this does

not have much effect on the estimated eigenvalues of matrices A and N (see Table 4).

Remark 8 The presence of the ε(λk−1) terms in (20)-(22) implies that this algorithm gives inexact

results, even if the data is generated by a bilinear system of the form (1). The error decreases

as the block size k increases, providing that λ < 1 and that k ≥ n. The value of k is limited by

the amount of data available, and by computational complexity and memory requirements, both

of which grow very rapidly with k — see section 7.3.

5.2 Algorithm II

Here we propose an alternative algorithm for identifying deterministic bilinear systems, which

consists of two sub-algorithms. The two sub-algorithms deal with the two cases l < n and l ≥ n,

respectively. There are two possible advantages of Algorithm II over Algorithm I. One is that

in the case l ≥ n, Algorithm II.2 is exact. The other is that, in the case l < n, Algorithm II.1

has a lower computational cost, due to using (11) and (12) of Lemma 6, instead of Lemma 7, to

linearise the bilinear system. But this lower cost arises from the use of a cruder approximation of

the bilinear system’s input-ouptut relationship, so one can expect Algorithm II.1 to be less accurate

than Algorithm I.

5.2.1 The case l < n

If l < n, (11) and (12) of Lemma 6 give the following block-form equations:

Theorem 3 (Three Block Form 2) The system (1) can be written in the following ‘three block’

form, if condition (4) holds:

Y c = CkXc +Dk,2U c,u + ε(λk−1) (33)

Y f = CkXf +Dk,2Uf,u + ε(λk−1) (34)

Xf = AkXc + Bk,2U c,u + ε(λk−1) (35)

where Ak,Bk,2, Ck and Dk,2 are system-dependent constant matrices.

Proof: From (23) we have,

Y c = CkXc + LXk,2(U+c �Xc) + LUk U c

= CkXc + LXk,2(I ⊗4U
k)(U+c � Up) + LUk U c + ε(λk) (36)

16

The second and third terms of equation (36) are a linear combination of vectors in the row spaces

of the matrices U+c � Up and U+c. As before, it follows that there exists a matrix Dk,2 such that

Dk,2U c,u = LXk,2(I ⊗ 4U
k)(U+c � Up) + LUk U c + ε(λk), so equation (33) holds. (34) and (35) of

Theorem 3 can be proved similarily.

Theorem 4 If the pair (A,C) in (1) is observable, condition (4) holds, and
Y c

U c,u

Uf,u

 has full row rank, (37)

then, denoting S2 := Yc + Uc,u,

‖ΠS⊥2 Y
f −Dk,2ΠS⊥2 U

f,u‖1 = o(λk−1) (38)

Proof: Substituting (35) into (34) gives

Y f = Ck(AkXc + Bk,2U c,u) +Dk,2Uf,u,y + ε1(λk−1) (39)

Since the linear part of the system is observable, we have, from (33),

Xc = C†k(Y
c −Dk,2U c,u) + ε2(λk−1) (40)

Substituting (40) into (39) shows that there exist two matrices C1, C2 such that

Y f −Dk,2Uf,u = C1Y
c + C2U

c,u + ε3(λk−1) (41)

Since S2 = Yc + Uc,u we have, from Lemma 8,

‖ΠS⊥2 Y
f −DkΠS⊥2 U

f,u‖1 = o(λk−1)

This proves Theorem 4.

Algorithm II.1:

Step 1. Decompose Y f into CkXf and Dk,2Uf,u using orthogonal projection. From (38), estimate

Dk,2 as:

D̂k,2 = (ΠS⊥2 Y
f)(ΠS⊥2 U

f,u)† (42)

Step 2. Obtain the SVD decomposition and partition by selecting a model order, as in Algorithm

I.[
ΠS+

2
Y3k−1|2k ΠS++

2
Y3k|2k+1

]
− D̂k,2

[
Uu3k−1|2k U

u
3k|2k+1

]
=: ΓΣΩ∗ =

[
Γ1 Γ2

] [Σ1 0

0 Σ2

][
Ω∗1
Ω∗2

]
where S+

2 = S2 + Uf,u and S++
2 = Y2k|k+1 + Uu2k|k+1 + Uu3k|2k+1.

Form the estimates Ĉk and [X̂2k X̂2k+1], as in Algorithm I.

Step 3. Estimate the parameters A,B,C,D,N on the basis of equation (7), as in step 3 of Algorithm

I.

17

5.2.2 The case l ≥ n

As mentioned in Remark 4, (17) holds when l ≥ n. This results in the following theorem:

Theorem 5 (Three Block Form 3) If l ≥ n and rank(C) = n, system (1) can be written in the

form, :

Y c = CkXc +Dk,1Ũ c,u,y (43)

Y f = CkXf +Dk,1Ũf,u,y (44)

Xf = AkXc + Bk,1Ũ c,u,y (45)

where Ak,Bk,1, Ck and Dk,1 are system-dependent constant matrices.

Proof: From (23), we have

Y c = CkXc + LXk,2(U+c �Xc) + LUk U c

= CkXc + LXk,2(U+c � [C†(Yc −DUc)]) + LUk U c

= CkXc + LXk,2
(

(I ⊗C†)(U+c � Yc)− (I ⊗ C†D)(U+c � Uc)
)

+ LUk U c (46)

The last two terms of the equation (46) are a linear combination of vectors in the row spaces of the

matrices U+c�Yc, U+c�Uc and U+c. From the above, and as in the proof of Theorem 1, there exists

a matrix Dk,1 such that Dk,1Ũ c,u,y = LXk,2
(
(I ⊗ C†)(U+c � Yc)− (I ⊗ C†D)(U+c � Uc)

)
+ LUk U c,

so (43) holds. (44) and (45) of Theorem 5 can be proved similarly.

Theorem 6 If l ≥ n, the pair (A,C) of (1) is observable, and
Y c

Ũ c,u,y

Ũf,u,y

 has full row rank, (47)

then , denoting S1 := Yc + Ũc,u,y,

ΠS⊥1 Y
f = Dk,1ΠS⊥1 Ũ

f,u,y (48)

Proof: From Theorem 5, we know that Xf ⊂ X c + Ũc,u,y ⊂ Yc + Ũc,u,y.
Since condition (47) holds, Xf + Ũf,u,y = Xf ⊕ Ũf,u,y ⊂ (Yc + Uc,u,y)⊕ Ũf,u,y. By projecting both

sides of equation (44) onto S⊥1 the statement of Theorem 6 is obtained.

Algorithm II.2:

Step 1. Decompose Y f into CkXf and Dk,1Ũf,u,y using orthogonal projection. From (48), estimate

Dk,1 as:

D̂k,1 = (ΠS⊥1 Y
f)(ΠS⊥1 Ũ

f,u,y)† (49)

18

Step 2. Obtain the SVD decomposition and partition by selecting a model order, as in Algorithm

I.[
ΠS+

1
Y3k−1|2k ΠS++

1
Y3k|2k+1

]
− D̂k,1

[
Ũu,y3k−1|2k Ũ

u,y
3k|2k+1

]
=: ΓΣΩ∗ =

[
Γ1 Γ2

] [Σ1 0

0 Σ2

][
Ω∗1
Ω∗2

]

where S+
1 = S1 + Ũf,u,y and S++

1 = Y2k|k+1 + Ũu,y2k|k+1 + Ũu,y3k|2k+1.

Form the estimates Ĉk and [X̂2k X̂2k+1], as in Algorithm I.

Step 3. Estimate the parameters A,B,C,D,N on the basis of equation (7), as in step 3 of Algorithm

I.

Remark 9 We envisage that one would usually start by using Algorithm II.1. If the singular values

(in step 2) indicated that l ≥ n might be a possibility, then one could try Algorithm II.2.

Remark 10 Although Algorithms I and II.1 give the same results asymptotically as k increases,

with a given k one should expect a trade-off between greater accuracy of Algorithm I, due to its

more complete use of the assumed bilinear structure of the system, and the lower computational

complexity of Algorithm II.1.

Remark 11 The ‘full row rank’ requirement in Theorems 2, 4 and 6 can only be met if k ≥ n.

6 The stochastic case

In this section, two ‘four-block’ subspace algorithms for the identification of stochastic bilinear

systems are developed. The fourth block of data which is used here is the ‘remote future’ data

block (matrices Ur, Xr, Yr, and matrices constructed from these).

Lemma 9 Let {xn;n ∈ Z+} be a sequence of independent identically distributed random variables

with Ex0 = 0, {yn;n ∈ Z+} be a sequence, which is uncorrelated with {xn;n ∈ Z+}, and with

E‖y0‖ <∞, E‖y2
0‖ <∞. Let Xi = [xi, xi+1, ..., xi+j] and Yi = [yi, yi+1, ..., yi+j]. Then

ΠYiXi → 0 w.p.1 as j →∞ (50)

Proof: See Appendix.

19

6.1 Algorithm III

Theorem 7 (Four Block Form 1) The system (2) can be written in the following form if con-

dition (4) holds:

Y c = OkXc + T uk U c,u,y + T vk (U+c � Vc) + LWk W c + LVk V c + ε(λk−1) (51)

Y f = OkXf + T uk Uf,u,y + T vk (U+f � Vf) + LWk W f + LVk V f + ε(λk−1) (52)

Y r = OkXr + T uk U r,u,y + T vk (U+r � Vr) + LWk W r + LVk V r + ε(λk−1) (53)

Xf = FkXc + GukU c,u,y + Gvk(U+c � Vc) +4W
k W

c + ε(λk−1) (54)

Xr = FkXf + GukUf,u,y + Gvk(U+f � Vf) +4W
k W

f + ε(λk−1) (55)

where Ok,T uk ,T vk ,Fk,Guk and Gvk are system-dependent constant matrices.

Proof: From equation (9) of Lemma 5 and from Lemma 3, we know that

Y c = LXk Xc + LUk U c + LWk W c + LVk V c

= LXk

(
Xc

U+c �Xc

)
+ LUk U c + LWk W c + LVk V c (56)

Let LXk =
[
Ok,LXk,2

]
, where Ok is the first n columns of the matrix LXk and LXk,2 is the last

(m+ 1)k − 1 columns of LXk . Then, as in the proof of Theorem 1, equation (56) can be written as:

Y c = OkXc + LXk,2(U+c �Xc)

+LUk U c + LWc W c + LVk V c

= OkXc + LXk,2
(
U+c �

[
C†(Yc −DUc − Vc) + (I − C†C)Xc

])
+LUk U c + LWk W c + LVk V c

= OkXc + LXk,2
(
U+c �

[
C†(Yc −DUc − Vc) + (I − C†C)4U

k U
p
])

+LUk U c + LWk W c + LVk V c + ε(λk−1)

= OkXc + LXk,2
(
I ⊗ C†)(U+c � Yc)− (I ⊗ C†D)(U+c � Uc) + [I ⊗ (I − C†C)4U

k](U+c � Up)
)

+LXk,2(I ⊗ C†)(U+c � Vc) + LUk U c + LWk W c + LVk V c + ε(λk−1) (57)

The second term of equation (57) is a linear combination of vectors in the spaces spanned by the

rows of the matrices U+c � Yc,U+c � Uc,U+c � Up and U+c. According to Lemma 2, (U+c � Uc)
can be decomposed into the direct sum of two subspaces, namely U++c ⊕

(
U+

2k−1|k � Uc
)

and the

latter subspace is contained in Uc. Hence there exists a matrix T uk such that

T uk U c,u,y = LXk,2
(
(I ⊗ C†)(U+c � Yc)− (I ⊗ C†D)(U++c) + (I ⊗ (I − C†C4U

k)(U+c � Up) + LUk U c
)
.

So (51) holds, if we take T vk = LXk,2(I ⊗C†). (52), (53), (54) and (55) can be proved similarily.

20

Theorem 8 If the pair (A,C) in system (2) is observable, condition (4) holds, and
Y c

U c,u,y

Uf,u,y

U r,u,y

 has full row rank, (58)

then, denoting S3 := Yc + Uc,u,y + Uf,u,y + Ur,u,y and R1 = ΠS3Yf + Uf,u,y, =

‖ΠR⊥1 ΠS3Yr − T uk ΠR⊥1 U
r,u,y‖1 → o(λk−1) w.p.1 as j →∞ (59)

Proof: From its structure, we know that all the rows of W r are generated by sequences of the

form Πµ
ν=1uiν × wi where 3k ≤ i ≤ 4k − 1, µ ≤ k, 3k ≤ iν ≤ 4k − 1. S3 is independent of wi, hence

from Lemma 9 we have ΠS3W
r → 0 w.p.1 as j →∞. From the the structure of V r and U+r � Vr

we have

ΠS3V
r = ΠS3(U+r � Vr)

and hence, by a similar argument,

ΠS3V
r → 0 w.p.1 as j →∞

Hence, using (53) and (55), we have

ΠS3Y
r → OkΠS3Xr + T uk U r,u,y + ε(λk−1) w.p.1 as j →∞

→ OkΠS3(FkXf + GukUf,u,y) + T uk U r,u,y + ε1(λk−1) w.p.1 as j →∞ (60)

Since the linear part of the system is observable, we have

ΠS3Xf → O†kΠS3(Y f − T uk Uf,u,y) + ε2(λk−1) w.p.1 as j →∞ (61)

Substituting (61) into (60), we deduce that there are matrices C1, C2 such that

ΠS3Y
r − T uk U r,u,y → C1Y

f + C2U
f,u,y + ε3(λk−1) w.p.1 as j →∞ (62)

Now applying Lemma 8 proves Theorem 8.

Theorem 8 uses two consecutive projections to remove the effects of the stochastic disturbances wt
and vt. The ‘current’ data block can be regarded as providing an instrumental variable for this

purpose, the remaining three data blocks being available for the estimation of the system matrices,

as before. Algorithm III, based on this result, has four steps; the matrix T uk is estimated in Step

1, by using the two projections. Steps 2 and 3 are used to estimate state sequences and the system

matrices, respectively, as in the deterministic case. Step 4 is concerned only with estimating the

covariance matrix of the stochastic disturbances, if this is required. Algorithm IV differs from

Algorithm III only in that the projections are on slightly different spaces (see Theorems 9 and 11),

and therefore different matrices (Tk,2, Tk,1) are estimated.

21

Algorithm III:

Step 1. Decompose Y r into OkXr and T uk U r,u,y using orthogonal projection: from (59) of Theorem

8, estimate T uk as:

T̂ uk = (ΠR⊥1 ΠS3Yr)(ΠR⊥1 U
r,u,y)† (63)

Step 2. Obtain the SVD decomposition and partition by selecting a model order as in Algorithm I.

[
ΠS3Y4k−1|3k ΠS+

3
Y4k|3k+1

]
−T̂ uk

[
Uu,y4k−1|3k U

u,y
4k|3k+1

]
=: ΓΣΩ∗ =

[
Γ1 Γ2

] [Σ1 0

0 Σ2

][
Ω∗1
Ω∗2

]

where S+
3 := Y2k|k+1 + Uu,y2k|k+1 + Uu,y3k|2k+1 + Uu,y4k|4k+1. Form the estimates Ĉk and [X̂3k X̂3k+1], as

in Algorithm I.

Stepm 3. Estimate the parameters A,B,C,D,N on the basis of equation (7)

[
X̂3k+1

Y3k

]
=

[
A N B

C 0 D

]
X̂3k

U3k � X̂3k

U3k

 (64)

in a least-squares sense, as in step 3 of Algorithm I. Denote the resulting estimates by Â, B̂, Ĉ, D̂

and N̂ .

Step 4. Estimate the covariance matrix (if needed) by calculating

[
εw

εv

]
=

[
X̂3k+1

Y3k

]
−
[
Â N̂ B̂

Ĉ 0 D̂

]
X̂3k

U3k � X̂3k

U3k


[
Q̂ Ŝ

ŜT R̂

]
=

1
j

[(
εw

εv

)(
εw

εv

)∗]

6.2 Algorithm IV

Here we propose an alternative algorithm for the stochastic case. As for the deterministic case,

this consists of two sub-algorithms, one for the case l < n, and the other for the case l ≥ n.

There are similar advantages and trade-offs for Algorithm IV, relative to Algorithm III, as regards

computational complexity and accuracy, as in the deterministic case for Algorithms II and I. In

particular, Algorithm IV gives unbiased results if l ≥ n.

6.2.1 The case l < n

In the case of l < n, equations (11-13) of Lemma 6 give the following block-form equations:

22

Theorem 9 (Four Block Form 2) The system (2) can be written in the following form if con-

dition (4) holds:

Y c = OkXc + T uk,2U c,u + T vk,2(U+c � Vc) + LWk W c + LVk V c + ε(λk−1) (65)

Y f = OkXf + T uk,2Uf,u + T vk,2(U+f � Vf) + LWk W f + LVk V f + ε(λk−1) (66)

Y r = OkXr + T uk,2U r,u + T vk,2(U+r � Vr) + LWk W r + LVk V r + ε(λk−1) (67)

Xf = FkXc + Guk,2U c,u + Gvk,2(U+c � Vc) +4W
k W

c + ε(λk−1) (68)

Xr = FkXf + Guk,2Uf,u + Gvk,2(U+f � Vf) +4W
k W

f + ε(λk−1) (69)

where Ok,T uk,2,T vk,2, Fk,Guk,2 and Gvk,2 are system-dependent constant matrices.

Proof: From (56) we have:

Y c = OkXc + LXk,2(U+c �Xc)

+LUk U c + LWc W c + LVk V c

= OkXc + LXk,2
(
U+c � (4U

k U
p +4W

k W
p)
)

+LUk U c + LWk W c + LVk V c + ε(λk−1)

= OkXc + LXk,2
(
I ⊗4U

k (U+c � Up)
)

+LXk,2(I ⊗ C†)(U+c � Vc) + LUk U c + LWk W c + LVk V c + ε(λk−1) (70)

The second term of equation (70) is a linear combination of vectors in the spaces spanned by the

rows of the matrices U+c � Up and U+c. According to Lemma 2, (U+c � Uc) can be decomposed

into the direct sum of two subspaces: U++c ⊕
(
U+

2k−1|k � Uc
)

and the latter subspace is contained

in Uc. Hence there exists a matrix T uk,2 such that T uk,2U c,u = LXk,2
(
(I ⊗4U

k)(U+c � Up) + LUk U c
)
.

So (65) holds, if we take T vk = LXk,2(I ⊗ C†). (66), (67), (68) and (69) can be proved similarly.

Theorem 10 Suppose that the pair (A,C) of the system (2) is observable, and that condition (4)

holds, and 
Y c

U c,u

Uf,u

U r,u

 has full row rank, (71)

then, denoting S5 = Yc + Uc,u + Uf,u + Ur,u and R3 = ΠS5Yf + Uf,u. we have:

‖ΠR⊥3 ΠS5Yr − T uk,2ΠR⊥3 U
r,u‖1 → o(λk−1) w.p.1 as j →∞ (72)

Proof: From Lemma 9 it follows that

ΠS5W
r → 0 and ΠS5V

r → 0 w.p.1 as j →∞

23

From (67) and (69), we have

ΠS5Y
r → OkΠS5Xr + T uk U r,u + ε(λk−1) w.p.1 as j →∞

→ OkΠS3(FkXf + Guk,2Uf,u) + T uk,2U r,u + ε1(λk−1) w.p.1 as j →∞ (73)

Since the linear part of the system is observable, we have

ΠS5Xf → O†kΠS5(Y f − T uk,2Uf,u) + ε2(λk−1) w.p.1 as j →∞ (74)

Substituting (74) into (73) shows that there are matrices C1, C2 such that

ΠS5Y
r − T uk,2U r,u → C1Y

f + C2U
f,u + ε3(λk−1) w.p.1 as j →∞ (75)

Now applying Lemma 8 proves Theorem 10.

Algorithm IV.1:

Step 1. Decompose Y r into OkXr and T uk,2U r,u using orthogonal projection. From (72) of Theorem

10, estimate T uk,2 as

T̂ uk,2 = (ΠR⊥3 ΠS5Yr)(ΠR⊥3 U
r,u)† (76)

Step 2. Obtain the SVD decomposition and partition by selecting a model order as in Algorithm I.

[
ΠS5Y4k−1|3k ΠS+

5
Y4k|3k+1

]
−T̂ uk,2

[
Uu4k−1|3k U

u
4k|3k+1

]
=: ΓΣΩ∗ =

[
Γ1 Γ2

] [Σ1 0

0 Σ2

][
Ω∗1
Ω∗2

]

where S+
5 := Y2k|k+1 + Uu2k|k+1 + Uu3k|2k+1 + Uu4k|4k+1.

Form estimates Ĉk and [X̂3k X̂3k+1], as in Algorithm III.

Step 3. Estimate the parameters A,B,C,D,N as in step 3 of Algorithm III.

Step 4. Estimate Q,R, S (if needed) as in step 4 of Algorithm III.

6.2.2 The case l ≥ n

As before, when l ≥ n then (17) holds, which results in:

Theorem 11 (Four Block Form 3) If l ≥ n, the system (2) can be written in the following

form:

Y c = OkXc + T uk,1Ũ c,u,y + T vk U+c � Vc + LWk W c + LVk V c (77)

Y f = OkXf + T uk,1Ũf,u,y + T vk U+f � Vf + LWk W f + LVk V f (78)

Y r = OkXr + T uk,1Ũ r,u,y + T vk U+r � Vr + LWk W r + LVk V r (79)

24

Xf = FkXc + Guk,1Ũ c,u,y + GvkU+c � Vc +4W
k W

c (80)

Xr = FkXf + Guk,1Ũf,u,y + GvkU+f � Vf +4W
k W

f (81)

where Ok,T uk,1,T vk ,Fk,Guk,1 and Gvk are system-dependent constant matrices.

Proof: From (56), we have:

Y c = OkXc + LXk,2(U+c �Xc)

+LUk U c + LWc W c + LVk V c

= OkXc + LXk,2
(
U+c �

[
C†(Yc −DUc − Vc)

])
+LUk U c + LWk W c + LVk V c

= OkXc + LXk,2
(
U+c �

[
C†(Yc −DUc − Vc)

])
+LUk U c + LWk W c + LVk V c

= OkXc + LXk,2
(
I ⊗ C†)(U+c � Yc)− (I ⊗ C†D)(U+c � Uc)

)
+LXk,2(I ⊗ C†)(U+c � Vc) + LUk U c + LWk W c + LVk V c (82)

The second term of equation (82) is a linear combination of vectors in the spaces spanned by the

rows of the matrices U+c �Yc,U+c � Uc and U+c. Hence, as above, there exists a matrix T uk,1 such

that

T uk,1Ũ c,u,y = LXk,2
(
(I ⊗ C†)(U+c � Yc)− (I ⊗ C†D)(U++c) + LUk U c

)
. T vk = LXk,2(I ⊗ C†). So (77)

holds if we take T vk = LXk,2(I ⊗ C†). (78), (79), (80) and (81) can be proved similarly.

We also have:

Theorem 12 If l ≥ n and rank(C) = n, the pair (A,C) in (2) is observable, and if
Y c

Ũ c,u,y

Ũf,u,y

Ũ r,u,y

 has full row rank, (83)

then, denoting S4 := Yc + Ũc,u,y + Ũf,u,y + Ũr,u,y and R2 = ΠS4Yf + Ũf,u,y, we have

ΠR⊥2 ΠS4Yr → T uk,1ΠR⊥2 Ũ
r,u,y w.p.1 as j →∞ (84)

Proof: From Lemma 9, and arguing as before, it follows that

ΠS4W
r → 0 and ΠS4V

r → 0 w.p.1 as j →∞

From (80) and (78) we have

ΠS4Xr ⊂ ΠS4Xf + Ũf,u,y ⊂ ΠS4Yf + Ũf,u,y w.p.1 as j →∞ (85)

25

and from (80) and (77) we get

ΠS4Yf ⊂ ΠS4Xf + Ũf,u,y ⊂ ΠS4Xc + Ũc,u,y + Ũf,u,y w.p.1 as j →∞

⊂ ΠS4Yc + Ũc,u,y + Ũf,u,y ⊂ Yc + Ũc,u,y + Ũf,u,y w.p.1 as j →∞ (86)

Hence

ΠS4Xr + Ũr,u,y = ΠS4Xr ⊕ Ũr,u,y

⊂ (ΠS4Yf + Ũf,u,y)⊕ Ũr,u,y w.p.1 as j →∞

But ΠS4Xr ⊂ R2 w.p.1 as j →∞ so, since (83) holds, projecting both sides of equation (79) onto

S4 and then onto R⊥2 proves Theorem 12.

Algorithm IV.2:

Step 1. Decompose Y r into OkXr and T uk,1Ũ r,u,y using orthgonal projection. From (84) of Theorem

12, estimate T uk,1 as:

T̂ uk,1 = (ΠR⊥2 ΠS4Yr)(ΠR⊥2 Ũ
r,u,y)† (87)

Step 2. Obtain the SVD decomposition and partition by selecting a model order as in Algorithm I:

[
ΠS4Y4k−1|3k ΠS+

4
Y4k|3k+1

]
− D̂k,2

[
Ũu4k−1|3k Ũ

u
4k|3k+1

]
=: ΓΣΩ∗ =

[
Γ1 Γ2

] [Σ1 0

0 Σ2

][
Ω∗1
Ω∗2

]

where S+
4 := Y2k|k+1 + Ũu2k|k+1 + Ũu3k|2k+1 + Ũu4k|4k+1.

Form estimates Ĉk and [X̂3k X̂3k+1], as in Algorithm III.

Step 3. Estimate the parameters A,B,C,D,N on the basis of equation (7) as in step 3 of Algorithm

III.

Step 4. Estimate Q,R, S, as in step 4 of Algorithm III.

Remark 12 As with Algorithm II, we envisage that one would usually start by using Algorithm

IV.1. If the singular values indicated that l ≥ n might be a possibility, then one could try Algorithm

IV.2.

Remark 13 The ‘full row rank’ requirement in Theorems 8, 10 and 12 can only be met if k ≥ n.

7 Examples

In this section we compare the performance of the algorithms introduced in this paper with each

other and with the bilinear N4SID algorithm introduced in [10], using both white and non-white

inputs applied to known systems to generate the data. The results shown in Tables 1, 2, 4, and 6

26

are each based on 100 realisations of the input process ut. The values given in these tables are the

sample means obtained, and are followed in parentheses by the sample standard deviations (of the

modulus in those cases for which the values are complex).

We examine first the performance of Algorithms I and II in the deterministic case (wt = 0 and

vt = 0). Then we examine the performance of Algorithms III and IV in the stochastic case.

7.1 The deterministic case: Algorithms I and II

We consider two second-order bilinear systems which were introduced in [10, 13], and one third-

order system newly introduced here.

Example 1 The true system is

A =

(
0 0.5

−0.5 0

)
, B =

(
1

1

)
, C =

(
1 1

)
, (88)

D = 2, N = [N1 N2], N1 = [0.4 0]T , N2 = [0 0.3]T (89)

Table 1 shows the eigenvalues of the true and estimated A and N in various cases. The row labelled

‘[10]’ gives the result reported in [10] using the bilinear N4SID algorithm, with a white input,

k = 3, and j = 8191. (This result appears to have been based on a single realisation of the input

process.) ‘Case I’ is for a white input with uniform distribution, mean 0, standard deviation 0.5 and

λ = 0.83 (see (4)). ‘Case II’ is for a white input with normal distribution N(0, 0.01) and λ = 0.73.

‘Case III’ is for a coloured input with mean 0, standard deviation σu = 0.08, autocovariance

rq = Eutut+q = 0.5qσ2
u, and λ = 0.93. ‘Case IV’ is for a white input with exponential distribution

with standard deviation 0.05 and λ = 0.77.

In all the cases I–IV the row block size is again k = 3, but the number of columns is only j = 595

(hence the sample size is Ñ = 2k + j − 1 = 600), compared with j = 8191 (Ñ = 8196), which was

used in [10]. It can be seen that, with the smaller sample size, the bilinear N4SID algorithm gives

significantly worse results than our Algorithms I and II, even when the input is white.

Table 2 shows how the eigenvalues of the estimated A and N depend on the ‘row block size’ k and

on the number of columns j when the input of case I is used.

Step 2 of each algorithm we have proposed includes the selection of a suitable state dimension n. In

principle this can be done by examining the singular values obtained in this step, since the number

of non-zero singular values should indicate the correct state dimension. However, it is known from

experience with the application of linear subspace methods that this is not a very reliable indicator

in practice when noise is present, or when the data has not been generated by a system in the

assumed model class. In this example there is no noise and the data has been generated by a

bilinear system, but both Algorithms I and II.1 are known to be inaccurate (as shown by Theorems

2 and 4). It is therefore of interest to see the effect on the relative output error of various choices

27

Algorithms Eigenvalues of A Eigenvalues of N

True ±0.5i 0.4, 0.3

[10] N4SID −0.0027 ± 0.4975i 0.4011, 0.3055

N4SID −0.0003 ± 0.4923i(0.0108) 0.1857(0.0474), 0.1409 (0.0325)

Case I Algorithm I 0.0001 ± 0.4998i(0.0058) 0.3988(0.0087), 0.2996(0.0147)

Algorithm II.1 0.0041 ± 0.4998i(0.0347) 0.3959(0.0259), 0.2945 (0.0239)

N4SID −0.0012 ± 0.4813i(0.0138) 0.2800(0.0412), 0.2206(0.0237)

Case II Algorithm I 0.0000 ± 0.5000i(0.0047) 0.3993(0.0129) 0.3009(0.0113)

Algorithm II.1 0.0002 ± 0.4999i(0.0086) 0.3962(0.0235), 0.2963(0.0127)

N4SID −0.0002 ± 0.47742i(0.0387) 0.3046(0.0358), 0.2446(0.0236)

Case III Algorithm I −0.0000 ± 0.5000i(0.0456) 0.3993(0.0102) 0.3018(0.0097)

Algorithm II.1 −0.0001 ± 0.5000i(0.0637) 0.4091(0.0237), 0.3004(0.0132)

N4SID −0.0003 ± 0.4927i(0.0382) 0.1857(0.0397), 0.1409(0.0272)

Case IV Algorithm I −0.0002 ± 0.4999i(0.0157) 0.3996(0.0147), 0.3089(0.0129)

Algorithm II.1 0.0002 ± 0.4997i(0.0316) 0.4104(0.0527), 0.3024(0.0321)

Table 1: Example 1: Results with different inputs and algorithms

of n, and compare these with the singular values. Table 3 shows, for different block sizes and

algorithms, the effects of different choices of n̂ (estimates of n) on the relative output-error. The

singular values which are significantly different from 0 are also shown (as determined by the default

criterion of Matlab’s ‘rank(M)’ function for this purpose: σi is taken to be 0 if σi < j × ‖M‖2 × ε,
where ε is the machine precision). The system input in this case was the same as for Case I, but

these results were obtained from only one realisation.

As to the order selection, apart from the method mentioned in Algorithm I, the relative output error

is another criterion for choosing the model order. We take an example here for illustration. The

system is the same as in Example 5.1.1 and two system inputs are used. In case I, the system input

is u1with mean -2.7691e-16, standard deviation 0.5 and ‖u1‖ = 12.2372 and output y1 with mean

-0.0012, standard deviation 1.4454 and ‖y1‖ = 35.3742. In case II, the system input is u2 with mean

0.0051, standard deviation 0.0029 and ‖u2‖ = 0.1430 and output y2 with mean 0.0183, standard

deviation 0.0083 and ‖y2‖ = 0.4919. The effects of different order selections on the relative output

error given in the following Table 3. In Table 3, only those singular values which are significantly

different from 0 are shown. We use the default criterion of Matlab’s ‘rank(M)’ function for this

purpose: σi is taken to be 0 if σi < j × ‖M‖2 × ε, where ε is the machine precision.

28

(k, j) Algorithms Eigenvalues of A Eigenvalues of N

True ±0.5i 0.4, 0.3

(2,297) Algorithm I 0.0008 ± 0.5004i(0.0041) 0.3980(0.0077), 0.2994(0.0059)

Algorithm II.1 −0.0121 ± 0.4974i(0.0329) 0.3926(0.0198), 0.3014(0.0177)

(3,295) Algorithm I 0.0002 ± 0.4996i(0.0085) 0.3976(0.0095), 0.2984(0.0104)

Algorithm II.1 0.0065 ± 0.4993i(0.0423) 0.3918(0.0317), 0.2922(0.273)

(2,597) Algorithm I −0.0001 ± 0.5005i(0.0027) 0.3929(0.0043), 0.2961(0.0038)

Algorithm II.1 0.0030 ± 0.5008i(0.0077) 0.3761(0.0120), 0.2700(0.0087)

(3,595) Algorithm I 0.0001 ± 0.4998i(0.0058) 0.3988(0.0087), 0.2996(0.0147)

Algorithm II.1 0.0041 ± 0.4998i(0.0347) 0.3959(0.0259), 0.2945(0.0239)

Table 2: Example 1: Effect of block size and sample size

Example 2 The true system is:

A =

(
0.5 0

0 0.3

)
, B =

(
0 1

−1 0

)
, C =

(
1 0

0 2

)
,

D =

(
1 0

0 1

)
, N = [N1 N2], N1 =

(
0.6 0

0 0.4

)
, N2 =

(
0.2 0

0 0.5

)

For this example the input was two-dimensional and coloured, with Euiui+q = 0.9qσ2
uI2, and

λ = 0.63. The sample size was Ñ = 600 and the row block size was k = 2 (hence j = 597). Table 4

summarises the results, including a comparison with the results obtained in [12], where Ñ = 4095

and k = 2 were used. Since l = n, Algorithm II.2 can be used in this case. The rows labelled ‘OLS’

show the results obtained by using ordinary least-squares to solve (32) in Algorithms I and II.2,

while those labelled ‘CLS’ show results obtained using constrained least-squares to take account of

the known structure of the solution (the zero block). It can be seen that in this case the results

do not depend much on either the choice of Algorithms I or II.2, or on the version of least-squares

which is employed.

Example 3 The system is

A =


0.0251 0.4923 −0.2620

−0.5560 −0.4083 −0.2044

0.7928 0.3862 0.7832

 , B =


1

1

1

 , C =
(

1 1 1
)

D = 3, N1 =


0.9023

−0.1685

−0.6581

 , N2 =


0.5268

0.0768

−0.6460

 , N3 =


0.5340

−0.1244

−0.4791


A coloured input with mean 0, standard deviation 0.12, Eutut+q = 0.9qσ2

u, and λ = 0.86 was used.

Algorithms I and II.1 were used, since l < n. Results with different block (k) and sample (Ñ) sizes

are given in Table 5. These results were obtained using a single realisation of the input.

29

k n̂ Algorithms Singular values Relative Output-error

2 1 Algorithm I 36.0948 0.0021

2 9.2613 6.3818 × 10−8

1 Algorithm II.1 36.0903 0.0021

2 9.3538 1.9242 × 10−6

3 3.3637 1.7164 × 10−6

3 1 Algorithm I 37.11 0.0107

2 9.22 7.09 × 10−8

3 0.91 6.41 × 10−8

4 0.43 6.4136 × 10−9

1 Algorithm II.1 37.10 0.0107

2 9.21 2.98 × 10−7

3 1.42 2.96 × 10−7

4 1.30 3.0863 × 10−7

5 0.94 3.2179 × 10−7

6 0.62 3.2870 × 10−7

7 0.44 4.0066 × 10−7

Table 3: Example 1: Effects of order selection

Note that with k = 4 and Ñ = 600 the ‘persistent excitation’ rank conditions were not satisfied.

This illustrates that, although a large row block size is desirable for high accuracy, it is limited by

the available sample size. The likelihood of the rank condition failing increases as the row block

size increases.

7.2 The stochastic case: Algorithms III and IV

Example 4 The system matrices are the same as in Example 1, but process and measurement

noises are added. Four cases will be considered. Cases I and II will be with white measured input

ut, while Cases III and IV will be with coloured input (Eukuk+q = 0.5qσ2
u). λ = 0.79 in all cases.

For cases I and III the covariance matrices are:

Q =

(
0.16 0

0 0.04

)
, R = 0.09, S =

(
0

0

)
(90)

while for Cases II and IV they are 100 times smaller.

Table 6 shows the results with k = 3 and Ñ = 600. The Table also shows the results reported in

[10] for a single input realisation, with Ñ = 8191.

Table 7 shows the results obtained from a single input realisation with various block (k) and sample

30

Algorithm eig(A) eig(N1) eig(N2)

True 0.5, 0.3 0.6, 0.4 0.2, 0.5

[10] N4SID 0.5001 0.5994 0.5016

(Ñ = 4095) 0.2979 0.4020 0.1914

OLS Algorithm I 0.5000(0.0001) 0.6000(0.0012) 0.5000(0.0011)

(Ñ = 600) 0.3000(0.0002) 0.4000(0.0011) 0.2000(0.0007)

Algorithm II.2 0.5000(0.0001) 0.6000(0.0011) 0.5000 (0.0012)

0.3000(0.0001) 0.4000(0.0010) 0.2000(0.0009)

CLS Algorithm I 0.5000(0.0001) 0.6000(0.0009) 0.5000(0.0007)

(Ñ = 600) 0.3000(0.0001) 0.4000(0.0008) 0.2000(0.0008)

Algorithm II.2 0.5000(0.0001) 0.6000(0.0012) 0.4000(0.0008)

0.3000(0.0002) 0.4000(0.0009) 0.2000(0.0007)

Table 4: Example 2: Performance with different algorithms

(k, Ñ) Algorithm Eigenvalues of A Eigenvalues of N

True ±0.5i, 0.4 0.5, ±0.2

(3,600) Algorithm I −0.0025 ± 0.4964i, 0.4005 0.4795, 0.2036 , -0.1981

Algorithm II.1 0.0043 ± 0.4896i, 0.4025 0.4120, 0.1410, -0.2102

(4,600) Algorithm I condition (25) not met

Algorithm II.1 condition (37) not met

(3,1000) Algorithm I −0.0005 ± 0.4989i, 0.4016 0.4881, 0.2051, -0.2100

Algorithm II.1 0.0018 ± 0.4911i, 0.4021 0.4268, 0.1482, -0.2095

(4,1000) Algorithm I −0.0019 ± 0.4960i, 0.4007 0.4803, 0.1980, -0.1987

Algorithm II.1 0.0023 ± 0.5006i, 0.3999 0.5149, 0.2170, -0.2100

Table 5: Example 3: Effect of block size and sample size.

(Ñ) sizes.

Example 5 The system is the same as in Example 2. White process and measurement noises are

added with covariances Q = R = 0.01I2, S = 02,2.

Again four cases are considered. For Case V and VI, the input is white, with a two-dimensional

uniform distribution. For Case VII and VIII, the input is coloured with Eutut+q = 0.9qσ2
uI2. In

each case, Ñ = 1000 and k = 2. Algorithm IV.2 is used, since l = n. Ordinary least-squares is used

to solve (32) in Cases V and VII, while constrained least-squares is used in Cases VI and VIII. Note

that in [10], the sample size was Ñ = 4095. Table 8 shows the results for the various cases (for a

single input realisation). Again it is seen that the choice of ordinary or constrained least-squares

has little effect on the estimates. As remarked also in [10, 12], the estimates of Q, R and S are not

31

Algorithms Eigenvalues of A Eigenvalues of N

True ±0.5i 0.4, 0.3

[10] N4SID −0.0027 ± 0.4975i 0.4011, 0.3055

N4SID −0.0171 ± 0.4794i(0.0108) 0.2769(0.0133), 0.2189(0.0102)

Case I Algorithm III −0.0078 ± 0.4864i(0.0192) 0.4128(0.0145), 0.3035(0.0157)

Algorithm IV.1 −0.0076 ± 0.4860i(0.0174) 0.3838(0.0174), 0.2829(0.0105)

N4SID −0.002 ± 0.4817i(0.0137) 0.2798(0.0102), 0.2200(0.0112)

Case II Algorithm III 0.0000 ± 0.5000i(0.0098) 0.4005(0.0078), 0.3030(0.0083)

Algorithm IV.1 0.0043 ± 0.5005i(0.0103) 0.4128(0.0097), 0.2992(0.0085)

N4SID −0.0056 ± 0.4274i(0.0625) 0.2796(0.0138), 0.2063(0.0149)

Case III Algorithm III 0.0089 ± 0.4945i(0.0238) 0.3906(0.0155), 0.3149(0.0234)

Algorithm IV.1 0.0044 ± 0.4947i(0.0302) 0.4048(0.0123), 0.2688(0.0201)

N4SID −0.0155 ± 0.4727i(0.0108) 0.2779(0.0128), 0.2456(0.0137)

Case IV Algorithm III 0.0005 ± 0.4980(0.0057) 0.4006(0.0107), 0.2976(0.0103)

Algorithm IV.1 0.0015 ± 0.4974(0.0098) 0.3876(0.0257), 2893(0.0233)

Table 6: Example 4: Results with different inputs and signal-to-noise ratios

very accurate, because of the small value of k.

Example 6 The system is:

A =


0 0.5 0

−0.5 0 0

0 0 0.4

 , B =


1

1

1

 , C = BT ,

D = 3, N = diag[0.5,−0.2, 0.2]

and the noise is the same as for Case II of Example 4. A single realisation of a coloured input with

mean 0, variance 0.01, Eutut+q = 0.5qσ2
u and λ = 0.87 was applied. Algorithm IV.1 was used, since

l < n. Results with different block and sample sizes are given in Table 9.

7.3 Remarks on computational cost

Our new algorithms have considerably lower computational complexity than the algorithms pro-

posed in [12]. The major computational load is involved in finding the right-inverse in (30) and

(49). The row dimensions of the relevant matrices which appear in the algorithms presented here,

in [12], and in [3], are shown in Table 10 for the three examples, where k = 2 for examples

1 and 2, and k = 3 for example 3. For the bilinear N4SID algorithm of [12] the row dimen-

sion is (dk + 2ek + ekdk + e2
k). In the case of our Algorithms I and III, the row dimension is

gk = ek + (m/2)(m + 1)k + l[(m+ 1)k − 1] + e2
k. For our Algorithms II and IV, the row dimension

32

(k, j) Algorithm Eigenvalues of A Eigenvalues of N

True ±0.5i 0.4, 0.3

(2,297) Algorithm III −0.0543 ± 0.4628i 0.4680, 0.2613

Algorithm IV.1 −0.1182 ± 0.4725i 0.4876, 0.2251

(3,295) Algorithm III −0.0133 ± 0.4744i 0.4597, 0.2504

Algorithm IV.1 0.0163 ± 0.4697i 0.3606, 0.2492

(2,597) Algorithm III 0.0024 ± 0.4966i 0.4298, 0.3022

Algorithm IV.1 0.0038 ± 0.5075 0.3725, 0.2842

(3,597) Algorithm III 0.0005 ± 0.4980i 0.4006, 0.2976

Algorithm IV.1 0.0015 ± 0.4974 0.3876, 0.2893

Table 7: Example 4: Effect of sample size and block size

eig(A) eig(N1) eig(N2) eig(Q) eig(R) eig(S)

Original 0.5, 0.3 0.6, 0.4 0.5, 0.2 0.01, 0.01 0, 0 0.01, 0.01

N4SID [10] 0.5001 0.5994 0.5016 N.A. N.A. N.A.

(Ñ = 4095) 0.2979 0.4020 0.1914

Case V 0.4998 0.5998 0.5000 0.0013 0.0477 0.0001

(Ñ = 1000) 0.3002 0.4000 0.2001 0.0009 0.0197 0.0001

Case VI 0.5004 0.5998 0.4999 0.6732 × 10−3 0.0675 0.0014

(Ñ = 1000) 0.2900 0.3997 0.1997 0.4051 × 10−3 0.0246 -0.0013

Case VII 0.4992 0.6028 0.5070 0.6681 × 10−5 0.0857 0.8975 × 10−4

(Ñ = 1000) 0.2968 0.4007 0.2019 0.0141 × 10−5 0.0403 0.0413 × 10−4

Case VIII 0.5000 0.6000 0.5003 0.7542 × 10−5 0.1030 0.9754 × 10−4

(Ñ = 1000) 0.2996 0.3998 0.2000 0.0006 × 10−5 0.0527 0.0322 × 10−4

Table 8: Example 5: Comparisons with different inputs and least-squares algorithms

is hk = ek + e2
k for Examples 1 and 3 (l < n), and fk = ek + (m/2)(m + 1)k + l[(m + 1)k − 1] for

Example 2 (l = n).

We find the performances of Algorithms I and III are a little better than those of Algorithms II

and IV in the case of l < n, and a little worse in the case of l ≥ n. This is in line with expectations.

In the case of l < n one can trade off the better accuracy of Algorithms I and III against the lower

computational cost of Algorihtms II.1 and IV.1.

Although increasing the block size k should give more accurate estimation, experience shows that

large k not only causes high computational cost, but also increases the likelihood that the persistent

excitation (rank) conditions in Theorems 2, 4, 6, 8, 10, and 12 will not be met.

33

(k, Ñ) Eigenvalues of A Eigenvalues of N

True ±0.5i, 0.4 0.5, ±0.2

(3,800) 0.00 ± 0.49i, 0.29 0.47, 0.17, -0.08

(4,800) −0.01± 0.49i,0.41 0.47, 0.22, -0.12

(3,1200) 0.00 ± 0.50i, 0.40 0.49, 0.19, -0.09

(4,1200) 0.00 ± 0.50i,0.40 0.48, 0.22, -0.20

(3,1500) 0.00 ± 0.50i, 0.40 0.49, 0.18, -0.12

(4,1500) 0.00 ± 0.50i, 0.40 0.51, 0.19, -0.19

Table 9: Example 6: Effect of block size and sample size

Algorithms I and III Algorithms II and IV N4SID

Example 1 17 12 27

Example 2 97 33 152

Example 3 67 56 119

Table 10: Comparison of row dimensions of matrices for Examples 1–3 and various algorithms

8 Conclusion

Some subspace algorithms for the identification of bilinear systems have been developed. Their main

advantage is that the system input does not have to be white. All the algorithms proposed here also

have lower computational complexity than previously proposed algorithms, because the dimensions

of the matrices involved in them are much smaller. Their wider applicability has been demonstrated

by several examples, which also show that even with coloured inputs the new algorithms converge

to correct estimates relatively quickly. The presumed reason for this is that, since the algorithms

do not depend on whiteness of the input, they are insensitive to the large errors in the sample

spectrum which are inevitable with small sample sizes.

9 Acknowledgement

The work reported in this paper was supported by the UK Engineering and Physical Science

Research Council under Research Grant GR/M08332, and by the European Research Network on

System Identification (ERNSI) under TMR contract ERB FMRX CT98 0206. We would like to

thank Vincent Verdult for providing us with his software implementing the bilinear N4SID algorithm

described in [10].

34

References

[1] Caines P.E., Linear Stochastic Systems, Wiley, 1988.

[2] Chen H. and Maciejowski J.M., Subspace identification of deterministic bilinear systems, ACC

2000, Chicago, Illinois, USA, June 2000.

[3] Chen H. and Maciejowski J.M., Subspace identification of combined deterministic-stochastic

bilinear systems, IFAC Symp. on System Identification, SYSID 2000, Santa Barbara, June

2000.

[4] Chen H. and Maciejowski J.M., An Improved Subspace Identification Method for Bilinear

Systems, 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000.

[5] Chou C.T. and Maciejowski J.M., System Identification Using Balanced Parameterizations,

IEEE Trans. Auto. Contr., Vol. 42, No. 7. July, 1997 pp.956-974.

[6] Chui N.L.C. and Maciejowski J. M., Subspace Identification – a Markov Parameter Approach

Technical Report CUED/F-INFENG/TR.337, 1998 Cambridge University

[7] Chen H., Zinober A.S.I. and Ruan R., Strong Consistency and Convergence Rate of Parameter

Identification for Bilinear Systems, Int.J.Control, 1996, vol. 63, No.5 pp. 907-919

[8] Desai U. B., Realization of Bilinear Stochastic Systems IEEE Trans on AC, Vol. AC-31, No.2,

Feb, 1986.

[9] Favoreel W, Subspace Methods for Identification and Control of Linear and Bilinear Systems,

Ph.D Thesis, Katholieke Universiteit Leuven, November, 1999.

[10] Favoreel W, De Moor B. and Van Overschee P., Subspace identification of bilinear systems

subject to white inputs, ESAT-SISTA/TR 1996-53I, Katholieke Universiteit Leuven, 1996.

[11] Favoreel W, De Moor B. and Van Overschee P., Subspace identification of Balanced deter-

ministic bilinear systems subject to white inputs, Proc. European Ccontrol Conf, Brussels,

1997.

[12] Favoreel W and De Moor B, Subspace identification of bilinear systems, Proc. MTNS, Padova,

1998. pp. 787-790.

[13] Favoreel W, De Moor B. and Van Overschee P., Subspace identification of bilinear systems

subject to white inputs, IEEE Trans. Auto. Contr., Vol 44., No. 6, June 1999. pp. 1157–1165.

[14] Fnaiech F. and Ljung L., Recursive Identification of Bilinear System, Int.J. Control, vol. 45,

pp. 453-470., 1987.

[15] Isidori A., Nonlinear Control Systems Springer-Verlag, 1989

35

[16] Khatri C.G. and Rao C.R., Solutions to some functional equations and their applications to

characterization of probability distributions, Sankhya : The Indian J. Stat., series A, 30, pp.

167-180, 1968.

[17] Krener A.J., Bilinear and nonlinear realizations of input-output maps. SIAM Journal on Con-

trol, vol. 13, pp.827-834., 1975.

[18] Larimore,W.E, System identification, reduced-order filtering and modeling via canonical vari-

ate analysis, Proc. American Contr.Conf., San Francisco, (1983).

[19] Papoulis, A, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, 1984.

[20] Van Overschee P and De Moor B, N4SID: subspace algorithms of combined deterministic and

stochastic systems, Automatica, vol.30, No. 1, pp. 75-93, 1994

[21] Suda N., Kodama S. and Ikeda M., Matrix Theory in Automatical Control, Japanese Auto-

matical Control Association, 1973.

[22] Verhaegen,M, and Dewilde,P.M, Subspace model identification, Parts 1 and 2, Int. J. Contr.,

56, 1187-1241, (1992).

[23] Verdult V, Verhaegen M, Chou C.T, Lovera, Proc. IEEE CDC Conf., 1998.

[24] Verdult V., and Verhaegen M., Subspace-based Identification of MIMO Bilinear Systems, ECC

1999, 31.August-3.September, 1999, Karlsruhe, Germany

10 Appendix

Proof of Lemma 1:

The proof of (5) is in [21]. Now we prove (6). Let

G = [g1, g2, ..., gm], J = [j1, j2, ..., jm]

From (5), and the definitions of the Kronecker and Khatri-Rao products, we obtain

(FG�HJ) = [Fg1 ⊗Hj1, Fg2 ⊗Hj2, . . . , Fgm ⊗Hjm]

= (F ⊗H) [g1 ⊗ j1, g2 ⊗ j2, . . . , gm ⊗ jm]

= (F ⊗H)(G� J)

This proves Lemma 1.

36

Proof of Lemma 2:

We prove Lemma 2 by induction.

From the definition of U+
q|q and U++

q|q , we know that U+
q|q � Uq = Uq � Uq. First we prove that

U+
q|q � Uq = Uq � Uq = U++

q|q

Uq � Uq =


Uq,1 � Uq
Uq,2 � Uq

...

Uq,m � Uq



=



Uq,1 � Uq,1
Uq,1 � Uq,2

...

Uq,1 � Uq,m
Uq,2 � Uq,1
Uq,2 � Uq,2

...

Uq,2 � Uq,m
...

Uq,m � Uq,1
Uq,m � Uq,2

...

Uq,m � Uq,m



(91)

Since for any i, j, we have Uq,i � Uq,j = Uq,j � Uq,i, by removing some repeated rows from matrix

(91), we see that U+
q|q � Uq = Uq � Uq = U++

q|q

Now we prove that Lemma 2 holds for i = 1.

U+
1+q|q � Uq =


U+
q|q � Uq
Uq+1 � Uq

Uq+1 � Uq � Uq


and

U++
1+q|q =

(
U++
q|q

Uq+1 � U++
q|q

)
We have

(U+
1+q|q � Uq) \ U

++
1+q|q =

(
Uq+1 � Uq

)
= U+

q+1|q+1 � Uq
= Uq+1|q+1 � Uq ⊂ Uq+1|q

37

Now suppose that Lemma 2 holds for i = n. Then for i = n+ 1,

U+
n+1+q|q � Uq =


U+
n+q|q � Uq
Un+q+1 � Uq

Un+q+1 � U+
n+q|q � Uq


and

U++
n+1+q|q =

(
U++
n+q|q

Un+q+1 � U++
n+q|q

)

Since U+
n+q|q � Uq \ U

++
n+q|q = U+

n+q|q+1 � Uq, hence

(U+
n+q+1|q � Uq) \ U

++
n+1+q|q =


U+
n+q|q+1 � Uq
Un+q+1 � Uq

Un+q+1 � U+
n+q|q+1 � Uq


= U+

n+q+1|q+1 � Uq

From the definition and structure of Ui−1|q, we have the following fact: for all j, j1, j2 such that

q ≤ j1 ≤ j2 ≤ j ≤ i− 1

Uj ⊂ Ui−1|q

Uj2 � Uj1 ⊂ Ui−1|q

since

U+
n+q|q+1 � Uq ⊂ U

+
n+q|q ⊂ U

+
n+q+1|q

Un+q+1 � Uq ⊂ U+
n+q+1|q

Un+q+1 � U+
n+q|q+1 � Uq ⊂ Un+q+1 � U+

n+q|q ⊂ U
+
n+q+1|q

then U+
n+q+1|q+1 � Uq ⊂ U

+
n+q+1|q

This proves Lemma 2.

Proof of Lemma 3

We prove Lemma 3 by induction.

First we prove that Lemma 3 holds for k = 1:

Xj|j =

(
Xj

Uj �Xj

)

=

(
Xj

U+
j|j �Xj

)

38

So,

Xj|j =

(
Xj

Uj �Xj

)

=

(
Xj

U+
j|j �Xj

)
Suppose that Lemma 3 holds for k = n. Then, for k = n+ 1,

Xn+j|j =

(
Xn−1+j|j

Un+j �Xn−1+j|j

)

=


Xj

U+
n−1+j|j �Xj
Un+j �Xj

Un+j � U+
n−1+j|j �Xj


=

(
Xj

U+
n+j|j �Xj

)
This proves Lemma 3.

Proof of Lemma 8:

Since X = PY +M , and Y is full row rank, there exist matrices L,Q, such that

Y = LQ = [L1 0]

[
Q1

Q2

]
(92)

where Q is an orthogonal matrix. From (92), we have Y = Q1 and Y⊥ = Q2, where Y,Q1 and Q2

denote spaces spanned by the rows of matrices Y,Q1 and Q2, respectively.

‖ΠY⊥X‖1 = ‖ΠQ2X‖1
= ‖ΠQ2M‖1 = ‖MQT2 Q2‖1 = o(δ)

Lemma 8 is thus proved.

Proof of Lemma 9:

From (18),

ΠYiXi = XiY
T
i (YiY T

i)−1Yi

=
1

j + 1
XiY

T
i (

1
j + 1

YiY
T
i)−1Yi

Hence, by ergodicity

ΠYiXi → (Ex0y
T
0)(Ey0y

T
0)−1Yi w.p.1 as j →∞

= 0 w.p.1 as j →∞

where the last step follows from the uncorrelatedness of xn and yn.

39

