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Abstract

In this paper, a subspace method for the identification of bilinear systems is developed. A
two-block subspace method is developed in the deterministic system case and a three-block one
is set up for the combined deterministic-stochastic system. An extended non-steady state bi-
linear Kalman filter is also derived. The input signal to the system does not have to be white,
which is a major advantage over an existing subspace method for bilinear systems. Simulation
results also show that the new algorithm converges much more rapidly (with sample size) than
the existing method, and hence is more effective with small sample sizes. The faster conver-
gence is presumably due to the insensitivity of the algorithm to the sample-spectrum of the
input signal. These advantages are achieved by a different arrangement of the input-output
equations into ‘blocks’, and projections onto different spaces than the ones used in the existing
method. A further advantage of our algorithm is that the dimensions of the matrices involved
are significantly smaller, so that the computational complexity is lower.
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1 Introduction

Bilinear systems are attractive models for many dynamical processes, because they allow a sig-

nificantly larger class of behaviours than linear systems, yet retain a rich theory which is closely

related to the familiar theory of linear systems [14, 8]. They exhibit phenomena encountered in

many engineering systems, such as amplitude-dependent time constants. Many practical system

models are bilinear, and more general nonlinear systems can often be well approximated by bilinear

models [16].

Most studies of the identification problem of bilinear systems have assumed an input-output formu-

lation. Standard methods such as recursive least squares, extended least squares, recursive auxiliary

variable and recursive prediction error algorithms, have been applied to identifying bilinear systems.

Simulation studies have been undertaken [13], and some statistical results (strong consistency and

parameter estimate convergence rates) are also available [7].

In this paper, we consider the identification of MIMO bilinear systems in state-space form. There

are many advantages of using state-space models, particularly in the multivariable case [3]. In

recent years ‘subspace’ methods have been developed which have proved to be extremely effective

for the identification of linear systems [4, 17, 18, 20]. In [9, 10, 12] extension of such methods were

given for bilinear systems, but the algorithm presented there was effective only if the measured input

signal to the system being identified is white. To our knowledge this was the first extension of the

subspace approach to bilinear systems. In [11] another subspace algorithm for bilinear systems was

presented by the same authors, which apparently does not require a white input signal. However

this algorithm is known to give biased results, and it must therefore be questioned whether it can

really be considered to be an effective algorithm for the case of non-white inputs.

In this paper an alternative subspace algorithm for identifying bilinear systems is proposed. It

does not require the measured input to be white, and the matrices which need to be constructed

and operated upon are much smaller than those which appear in [11, 12]. Simulations show that

it works well when the input signal is not white; they also show that if the input signal is white,

then good results are obtained with much smaller sample sizes than are required for the algorithm

of [11, 12]. The theoretical and simulation results are shown in [1] and [2] for deterministic system

and combined deterministic-stochastic system respectively.

The paper is organised as follows. Section 2 introduces a considerable, but apparently unavoidable,

amount of notation. Section 3 develops new subspce system identification methodologies for bilinear

systems, which consists of a ‘two-block’ one for the deterministic bilinear system and a ‘three-block’

one for the combined deterministic-stochastic system. In the new algorithms, ‘two-block’ and ‘three-

block’ form of the data equations was established and some relations between the spaces spanned

by the rows of the data matrices which appear in these equations. Section 4, contains a extended

blinear Kalman filter which is established under the condition that the system input does not have

to be white noise sequence. Section 5 contains some examples which demonstrate that the algorithm
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does indeed work with non-white input signals, and that it requires much smaller sample sizes to

obtain comparable results, than the algorithm presented in [9, 11], when the input is white.

All proofs are included in the appendix. Some references to earlier (non-subspace) work on identi-

fication of bilinear systems are also given.

2 Notations

The use of much specialised notation seems to be unavoidable in the current context. Mostly we

follow the notation used in [11], but we introduce all the notation here for completeness.

We use ⊗ to denote the Kronecker product and � the Khatri-Rao product of two matrices with

F ∈ Rt×p and G ∈ Ru×p defined in [15, 19]:

F �G , [f1 ⊗ g1, f2 ⊗ g2, . . . , fp ⊗ gp]

+,⊕, ∩ and \ denote the sum, the direct sum, the intersection and set minus of two vector spaces,

·⊥ denotes the orthogonal complement of a subspace with respect to the predefined ambient space,

the Moore-Penrose inverse is written as ·†, and the transpose as ·T .

In this paper we consider combined deterministic-stochastic time-invariant bilinear system of the

form:

xt+1 = Axt +Nut ⊗ xt +But +wt

yt = Cxt +Dut + vt (1)

where xt ∈ Rn, yt ∈ Rl, ut ∈ Rm, and N = [N1 N2 ...Nm] ∈ Rn×nm, Ni ∈ Rn×n (i = 1, ...,m).

The input ut is assumed to be indepedent of the measurement noise vt and the process noise

wt. The covariance matrix of wt and vt is

E

( wp

vp

)(
wq

vq

)T =

[
Q S

ST R

]
δpq ≥ 0

We assume that the sample size is Ñ , namely that input-output data {u(t), y(t) : t = 0, 1, . . . , Ñ}
are available. For arbitrary t we define

Xt , [xt xt+1 ... xt+j−1] ∈ Rn×j

but for the special cases t = 0 and t = k we define, with some abuse of notation,

Xp , [x0 x1 ... xj−1] ∈ Rn×j

Xf , [xk xk+1 ... xk+j−1] ∈ Rn×j

Xr , [x2k x2k+1 ... x2k+j−1] ∈ Rn×j
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where k is the row block size. The suffices p, f and r are supposed to be mnemonic, representing

‘past’, ‘future’ and ‘remote future’ respectively.

We define Ut, Up, Uf , Ur, Yt, Yp, Yf , Yr, Wt, Up, Wf , Wr, Vt, Vp, Vf , Vr, similarly:

Ui , [ui ui+1 ... ui+j−1] ∈ Rm×j

Up , [u0 u1 ... uj−1] ∈ Rm×j

Uf , [uk uk+1 ... uk+j−1] ∈ Rm×j

Ur , [u2k u2k+1 ... u2k+j−1] ∈ Rm×j

Yi , [yi yi+1 ... yi+j−1] ∈ Rl×j

Yp , [y0 y1 ... yj−1] ∈ Rl×j

Yf , [yk yk+1 ... yk+j−1] ∈ Rl×j

Yr , [y2k y2k+1 ... y2k+j−1] ∈ Rl×j

Wi , [wi wi+1 ... wi+j−1] ∈ Rn×j

Wp , [w0 w1 ... wj−1] ∈ Rn×j

Wf , [wk wk+1 ... wk+j−1] ∈ Rn×j

Wr , [w2k w2k+1 ... w2k+j−1] ∈ Rn×j

Vi , [vi vi+1 ... vi+j−1] ∈ Rl×j

Vp , [v0 v1 ... vj−1] ∈ Rl×j

Vf , [vk vk+1 ... vk+j−1] ∈ Rl×j

Vr , [v2k v2k+1 ... v2k+j−1] ∈ Rl×j

These matrices will later be used to construct larger matrices with a ‘generalised block-Hankel’

structure. In order to use all the available data in these, the number of columns j is such that

Ñ = 3k + j − 1 for the three-block combined deterministic-stochastic case and Ñ = 2k + j − 1 for

the two-block deterministic case.

For arbitrary q and i ≥ q + 2, we define

Xq|q ,
(

Xq

Uq �Xq

)
∈ R(m+1)n×j

Xi−1|q ,
(

Xi−2|q

Ui−1 �Xi−2|q

)
∈ R(m+1)i−qn×j

Yq|q , Yq

Yi−1|q ,


Yi−1

Yi−2|q

Ui−1 � Yi−2|q

 ∈ Rdi−q×j
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Uq|q , Uq

Ui−1|q ,


Ui−1

Ui−2|q

Ui−1 � Ui−2|q

 ∈ Rei−q×j

Wq|q , Wq

Wi−1|q ,


Wi−1

Wi−2|q

Ui−1 �Wi−2|q

 ∈ Rfi−q×j

Vq|q , Vq

Vi−1|q ,


Vi−1

Vi−2|q

Ui−1 � Vi−2|q

 ∈ Rdi−q×j

U+
q|q , Uq

U+
i−1|q ,


U+
i−2|q
Ui−1

Ui−1 � U+
i−2|q

 ∈ R((m+1)i−q−1)×j

U++
q|q ,



Uq(1, :) � Uq
Uq(2, :) � Uq(2 : m, :)

Uq(3, :) � Uq(3 : m, :)
...

Uq(m, :)� Uq(m, :)


∈ R

m(m+1)
2

×j

U++
i−1|q ,

(
U++
i−2|q

Ui−1 � U++
i−2|q

)
∈ R

m
2

(m+1)i−q×j

Uyi−1|q , U+
i−1|q � Yq

Uu,yi−1|q ,


Ui−1|q

U++
i−1|q

Uyi−1|q


where Uq(i, :) and Uq(i : m, :) denote the submatrix of Uq, which contains ith row and from the ith

row to the mth row of the matrix Uq respectively, i = 1, 2, ...,m.

Remark 1. The meaning of U+
i−1|q is different from that in [9]. U++

i−1|q is newly introduced here.

Xp , Xk−1|0 ∈ R(m+1)kn×j

Xf , X2k−1|k ∈ R(m+1)kn×j

Xr , X3k−1|2k ∈ R(m+1)kn×j
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Up , Uk−1|0 ∈ Rek×j

Uf , U2k−1|k ∈ Rek×j

U r , U3k−1|2k ∈ Rek×j

Y p , Yk−1|0 ∈ Rdk×j

Y f , Y2k−1|k ∈ Rdk×j

Y r , Y3k−1|2k ∈ Rdk×j

W p , Wk−1|0 ∈ R(m+1)kn×j

W f , W2k−1|k ∈ R(m+1)kn×j

W r , W3k−1|2k ∈ R(m+1)kn×j

V p , Vk−1|0 ∈ Rdk×j

V f , V2k−1|k ∈ Rdk×j

V r , V3k−1|2k ∈ Rdk×j

U+p , U+
k−1|0 ∈ R[(m+1)k−1]×j

U+f , U+
2k−1|k ∈ R[(m+1)k−1]×j

U+r , U+
3k−1|2k ∈ R[(m+1)k−1]×j

U++p , U++
k−1|0 ∈ R

m
2

(m+1)k×j

U++f , U++
2k−1|k ∈ R

m
2

(m+1)k×j

U++r , U++
3k−1|2k ∈ R

m
2

(m+1)k×j

Up,y , U+p � Yp ∈ Rl[(m+1)k−1]×j

Uf,y , U+f � Yf ∈ Rl[(m+1)k−1]×j

U r,y , U+r � Yr ∈ Rl[(m+1)k−1]×j

Up,u,y ,


Up

U++p

Up,y

 ∈ Rfk×j

Uf,u,y ,


Uf

U++f

Uf,y

 ∈ Rfk×j

U r,u,y ,


U r

U++r

U r,y

 ∈ Rfk×j

where di = Σi
p=1(m + 1)p−1l, ei = Σi

p=1(m + 1)p−1m and fk = ek + m
2 (m + 1)k + l[(m + 1)k − 1].

We denote by Up the space spanned by all the rows of the matrix Up. That is,

Up := span{α∗Up, α ∈ Rkm}
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Uf , Yp, Yf , Up, Yp, Uf , Yf , Up,u,y, Uf,u,y etc are defined similarly. Finally, U+p � Xp, U+f � Xf
and U+r�Xr can be defined as the space spanned by all the rows of the matrix U+p�Xp, U

+f�Xf

and U+r �Xr and so on.

3 New subspace identification algorithms

In this section, first some system description and analysis is given as a priminary knowledge for

the latter two subsections. Secondly, a ‘two-block’ algorithm for deterministic bilinear system is

presented. In the last subsection, a ‘three-block’ algorithms for combined deterministic-stochastic

bilinear system is proposed.

3.1 System description and analysis

Every bilinear system of the form (1) can be considered as the sum of two subsystems, one only

containing deterministic variables (index d) and the other containing all stochastic variables (index

s). The state and output of (1) are then simply the sum of states and the outputs of both subsystems

respectively:

xt = xdt + xst

yt = ydt + yst

where the two subsystems are decribed as follows respectively.

xdt+1 = Axdt +Nut ⊗ xdt +But

ydt = Cxdt +Dut (2)

and

xst+1 = Axst +Nut ⊗ xst +wt

yst = Cxst + vt (3)

with the state covariance matrix ubder the assumption that alll the relevant processes are second

order statistical stationary processes.

Σs , E[xsk(x
s
k)
T ]

Gs , E[xsk+1(ysk)
T ]

Λs0 , E[ysk(y
s
k)
T ] (4)

The three lemmas are given in this subsection as the priminary knowledge for the future uses in

this section. For simplicity, some of the lemmas are given in the form of three block and they are

hold for two block form obviously.
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Lemma 1 For F,G,H, J of compatible dimensions, F ∈ Rk×l, G ∈ Rl×m, H ∈ Rp×l, J ∈ Rl×m:

(FG⊗HJ) = (F ⊗H)(G⊗ J) (5)

(FG�HJ) = (F ⊗H)(G� J) (6)

Proof: see appendix.

Lemma 1 states some properties of bilinear algebra operator, which will be used in our paper

later.

Lemma 2 For any integer i ≥ 1 and q

U+
i+q|q � Uq \ U

++
i+q|q = U+

i+q|q+1 � Uq

Lemma 2 states the row space relationship between the U+
i+q|q �Uq and U++

i+q|q, which will be used

in our paper later.

Lemma 3

Xp =

(
Xp

U+p �Xp

)
(7)

Xf =

(
Xf

U+f �Xf

)
(8)

Xr =

(
Xr

U+r �Xr

)
(9)

Proof: see appendix.

Lemma 3 states that X p,X f and X r can be represented as Xp + U+p � Xp,Xf + U+f � Xf and

Xr + U+r �Xr respectively.

Lemma 4 Let F ∈ Rm×n, and F− is a generlized inverse matrix of F . Let G be an arbitrary

generlized matrix of F , G can be represented as the following form:

G = F− +H − F−FHFF−

where H ∈ Rn×m is an arbitrary matrix

Proof: see [19]

Lemma 5 From (1) we have, modulo a state coordinate transformation,

Xp = C†(Yp −DUp − Vp) (10)

Xf = C†(Yf −DUf − Vf ) (11)

Xr = C†(Yr −DUr − Vr) (12)
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Proof: see appendix.

Lemma 5 shows that Xp,Xf and Xr are contained in the space of Yp + Up + Vp,Yf + Uf + Vf and

Yr + Ur + Vr respectively.

Remark 2 In the case of l = n, the presentations of Xp,Xf and Xr are unique if the system

is observable. If l < n, this holds for any right inverse of C. Different choices of right inverse

correspond to different choices of state coordinates. Note that the spaces Xp, Xf and Xr do not

depend on this choice from Lemma 5. We will assume that the Moore-Penrose pseudo-inverse of

C is used.

3.2 Deterministic system identification

In this subsection, a so-called two-block subspace method for the identification of deterministic

bilinear systems is developed. In [9], an input-output equation relevant to the output, input and

state block data matrix is set up in the case of deterministic case as follows:

Lemma 6 (Input-Output Equation) The system (2) can be written in the following ‘input-

output equation’ form:

Y p
k−1|0 = ΓkX

p
k−1|0 +HkU

p
k−1|0 (13)

Xf = AkX
p
k−1|0 +4U

k U
p
k−1|0 (14)

where

Γi ,



CAi−1 0 . . . 0

Γi−1 0 . . . 0

0 Γi−1 . . . 0
...

...
. . .

...

0 0 . . . Γi−1


∈ Rdi×(m+1)in (i > 1)

Γ1 , (C 0l×(m+1)n)

Hi ,



D C4U
i−1 0 . . . 0

0 Hi−1 0 . . . 0

0 0 Hi−1 . . . 0
...

...
...

. . .
...

0 0 0 . . . Hi−1


∈ Rdi×ei (i > 1)

H1 , D,
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where

4U
n ,

[
B A4U

n−1 N14U
n−1 . . . , Nm4U

n−1

]
4U

1 , B

Ai , (AAi−1 N1Ai−1 . . . NmAi−1),

A0 , In×n

Proof: see [9].

The data equation and state equation linking the past and future data equation can be written in

the following way:

Theorem 1 (Input-Output Equation in Two Block Form) The system (2) can be written

in the following ‘two block’ form:

Y p = CkXp +DkUp,u,y (15)

Y f = CkXf +DkUf,u,y (16)

Xf = AkXp + BkUp,u,y (17)

Proof: see appendix.

¿From Theorem 1, we deduct that all the block data matrix have a linear relationship with the

state block matrix Xp and Xf . Also Xf is linear to Xp. This is achieved by putting all the bilinear

factors of the system into the newly created data matrices Up,u,y and Uf,u,y. In such a way, the

bilinear system can be transfered into an similar to linear system representation and the restriction

that system input has to be white can be removed.

It is well known that the quality of a model obtained from an identification experiment depends

highly on the degree of excitation of the input signal. ‘Informative experiments’ for linear system

are standard, for example. For bilinear system, we need some alternative conditions including the

input, output and their Khatri-Rao product.

Theorem 2 If 
Y p

Up,u,y

Uf,u,y

 (18)

is a full row rank matrix, then

Xf ⊂ Yp + Up,u,y

Xf + Uf,u,y = Xf ⊕ Uf,u,y

⊂ (Yp + Up,u,y)⊕ Uf,u,y (19)
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Proof: see appendix.

Theorem 2. states that the space Xf are contained by Yp + Up,u,y, has empty intersection with

Uf,u,y. Therefore Yf in equation (16) has a unique decomposition into CkXf and DkUf,u,y. Conse-

quently, Dk can be determined by projecting both sides of equation (16) on to a suitable subspace.

Once Dk has been determined, it is possible to estimate state sequences X̂k and X̂k−1, and hence

estimate the system parameters.

The main procedures of the two-block subspace identification algorithm are given as follows:

1. Decompose Y f into CkXf and DkUf,u,y using orthogonal projection: from (16) and (19) it

follows that

ΠΩ⊥Y
f = DkΠΩ⊥U

f,u,y (20)

where Ω = Yp + Up,u,y. Determine Dk ∈ Rdk×(ek+m
2

(m+1)k+l[(m+1)k−1]) from

Dk =
(

ΠΩ⊥Y
f
)(

ΠΩ⊥U
f,u,y

)†
(21)

2. Obtain the SVD decomposition and partition, retaining singular values and selecting a model

order.

[
Y2k−2|k−1 Y2k−1|k

]
−Dk

[
Uu,y2k−2|k−1 Uu,y2k−1|k

]
=: ΓΣΩT =

[
Γ1 Γ2

] [ Σ1 0

0 Σ2

][
ΩT

1

ΩT
2

]
(22)

Since we expect

ΓΣΩT = Γ1Σ1ΩT
1 = Ck [Xk−1 Xk] (23)

from (15) and (16) (rank(Σ1) = n and rank(Σ2) = 0), form the estimates Ĉk = Γ1Σ1/2
1 and

[X̂k−1 X̂k] = Σ1/2
1 ΩT

1 , retaining only significant singular values in Σ1. (Ĉk is not needed later.)

3. Estimate the parameters A,B,C,D,N by solving

[
X̂k

Yk−1

]
=

[
A N B

C 0 D

]
X̂k−1

Uk−1 � X̂k−1

Uk−1

 (24)

in a least-squares sense.

3.3 Combined deterministic-stochastic system identification

In this section, a ‘three-block’ subspace method for the identification of stochastic bilinear systems

is developed. As shown in the previous section, a two-block configuration, splitting the data into
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‘past’ (·p) and ‘future’ (·f ) blocks, is adequate to identify the parameters in the deterministic case.

However, when it comes to the combined deterministic-stochastic case, a two-block configuration

cannot determine the parameter matrices of a system since there exists some stochastical noises

effects. In the remaining part of this paper, we proposed a three-block configuration to estimate

system parameter matrices in stochastical environment.

Lemma 7 (Input-Output Equation) For the combined deterministic-stochastic system (1), we

have the following Input-Output Equation

Xk = 4X
k Xk−1|0 +4U

k Uk−1|0 +4W
k Wk−1|0 (25)

Yk−1|0 = LXk Xk−1|0 + LUk Uk−1|0 + LWk Wk−1|0 + LVk Vk−1|0 (26)

where

4X
n , [A4X

n−1, N14X
n−1, . . . , Nm4X

n−1]

4X
1 , [A,N1, . . . , Nm]

4U
n , [B,A4U

n−1, N14U
n−1, . . . , Nm4U

n−1]

4U
1 , B

4W
n , [In×n, A4W

n−1, N14W
n−1, . . . , Nm4W

n−1]

4W
1 , In×n

LXk ,


C4X

k−1 0

LXk−1 0

0 LXk−1



LUk ,


D C4U

k−1 0

0 LUk−1 0

0 0 LUk−1



LWk ,


0 C4W

k−1 0

0 LWk−1 0

0 0 LWk−1



LVk ,


Il×l 0 0

0 LVk−1 0

0 0 LVk−1


with

LX1 , [C, 0l×m] , LU1 , D, LU1 , 0l×n, LV1 , Il×l

Proof: see appendix.
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¿From Lemma 7, the data equations and state equations linking the state sequences can be written

in the following three-block form.

Theorem 3 (Three Block Form Equation) The system (1) can be written in the following

‘three block’ form:

Y p = OkXp + T uk Up,u,y

+T vk U+p � Vp + LWk W p + LVk V p (27)

Y f = OkXf + T uk Uf,u,y

+T vk U+f � Vf + LWk W f + LVk V f (28)

Y r = OkXr + T uk U r,u,y

+T vk U+r � Vr + LWk W r + LVk V r (29)

Xf = FkXp + GukUp,u,y + GvkU+p � Vp +4W
k W

p (30)

Xr = FkXf + GukUf,u,y + GvkU+f � Vf +4W
k W

f (31)

Proof: see appendix.

We make an assumption of ergodicity and stationarity of the variables. Then all the covariances

used in this paper can be estimated by replacing ensemble means by time means. Therefore, if an

infinite amount of data is available, the estimated value operator E is equivalent to the operator

Ej which is defined as follows:

Ej [
j∑

k=0

•] , 1
j

[
j∑

k=0

•]

and

lim
j→∞

Ej [
j∑

k=0

•] = E[•]

The orthogonal projection operator Π is defined as [9] as follows:

ΠBA , E[ABT ]E−1[BBT ]B

Due to the presence of noise, a stronger condition than (18) is needed for experiments to be

informative in the combined deterministic-stochastic case.

Theorem 4 If 
Y p

Up,u,y

Uf,u,y

U r,u,y

 (32)
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is a full row rank matrix, then

ΠSXr ⊂ ΠSYf + Uf,u,y

ΠSXr + Ur,u,y = ΠSXr ⊕ Ur,u,y

⊂ (ΠSYf + Uf,u,y)⊕ Ur,u,y

where S := Yp + Up,u,y + Uf,u,y + Ur,u,y. Denote R = ΠSYf + Uf,u,y, then,

ΠR⊥ΠSYr = T uk ΠR⊥U
r,u,y (33)

Proof: see appendix.

In this three-block algorithm, the projection space will be S := Yp + Up,u,y + Uf,u,y + Ur,u,y. Due

to the uncorrelated property of past, future and remote future noises, we can remove all the noise

effects by projecting on the subspace S and the ‘past’ block can be regarded as an auxiliary variable

block reminiscent of our instrumental variable. In such a way, the parameter matrix T uk can be

determined. The following summarises the algorithm for the combined deterministic-stochastic

case,

1. Decompose Y r into OkXr and T uk U r,u,y using orthgonal projection: from (33) of Theorem 4,

it follows that

T uk = (ΠR⊥ΠSYr)(ΠR⊥U r,u,y)† (34)

2. Obtain the SVD decompositon and partition, remaining singular values and selecting a model

order.

[
ΠSY2k−1|k ΠS1Y2k|k+1

]
− T uk

[
Uu,y2k−1|k U

u,y
2k|k+1

]
=: ΓΣΩT =

[
Γ1 Γ2

] [ Σ1 0

0 Σ2

][
ΩT

1

ΩT
2

]

Since we expect

ΓΣΩT = Γ1Σ1ΩT
1 = Ok [Xk−1 Xk]

from (27-29) (rank(Σ1) = n and rank(Σ2) = 0), form the estimates Ôk = Γ1Σ1/2
1 and [X̂k−1 X̂k] =

Σ1/2
1 ΩT

1 , retaining only significant singular values in Σ1. (Ôk is not needed later.)

3. Estimate the parameters A,B,C,D,N by solving

[
X̂k

Yk−1

]
=

[
A N B

C 0 D

]
X̂k−1

Uk−1 � X̂k−1

Uk−1

 (35)
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in a least-squares sense.

Remark 3 The make of retained singular values, n̂, will be the order of the estimated model.

In this paper, we do not discuss how n̂ should be determined.

Remark 4 Other estimates could be obtained by using other right-inverses in steps 1 and 3, and

another factorisation in step 2. In [11] it is suggested that constrained least-squares could be used

in step 3, because of the known structure of the solution. Our initial simulation experience is that

this does not have much effect on the resulting estimates.

Remark 5 Our new algorithm has considerably lower computational complexity than the one

given in [11]. The major computational load is involved in finding the right-inverse in (34). The

matrix involved here has dimensions fk × j, where fk = ek + (m/2)(m + 1)k + l[(m + 1)k − 1].

For example, with k = 2, n = m = l = 2, we have fk = 33. In [11], equation (9), the matrix

whose right-inverse has to be found has dimensions (dk + 2ek + ekdk + e2
k)× j. The row dimension

increases exponentially quickly with k. For example, with k = 2, n = m = l = 2 this row dimension

is 152. Furthermore, since our algorithm seems to require much smaller values of j for comparable

performance, the column dimension is also much smaller for our algorithm in practice.

Estimate the covariance matrix by calculating[
εw

εv

]
=

[
X̂k+1

Yk

]

−
[
A N B

C 0 D

]
X̂k

Uk � X̂k

Uk


[
Q S

ST R

]
=

[
Σw Σwv

Σvw Σv

]

= E

( εw

εv

)(
εw

εv

)T

4 Bilinear Kalman filter

In this section, we derive the equation of the bilinear Kalman filter of the system (1). The derivation

is done in a similaar way as done for the linear Kalman filter as well as in [10]. The difference

betweem the linear and bilinear Kalman filter is an addition term depending on the system matrix

N and unlike in [10], we have no assumption here that the system input ut is a white noise.

Theorem 5 (Bilinear kalman filter) 1. The non-steady state bilinear Kalman filter state esti-
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mates of the system (1) can be found by solving the following recursive formulas:

x̂k+1 = Ax̂k +Nuk ⊗ x̂k +Buk +Kk(yk − Cx̂k −Duk) (36)

where

Kk = (Gs − (
m∑
p=1

µpNp)PkCT −APkCT )(Λ0 − CPkCT )−1 (37)

Pk = APk−1A
T +

m∑
p=1

m∑
q=1

µp,qNpPk−1N
T
q

+APk−1(
m∑
p=1

µpN
T
p ) + (

m∑
p=1

µpNp)Pk−1A
T

+

Gs − (
m∑
p=1

µpNp)PkCT −APkCT
 (Λs0 − CPkCT )−1

Gs − (
m∑
p=1

µpNp)PkCT −APkCT
T (38)

where µ = Eut = [µ1, . . . , µm] and µi,j = Eut,iut,j under the assumption that input ut is a

stationary input.

Proof: see appendix.

Theorem 6 If the condition

λ(I −A−
m∑
i=1

µiNi) < 1 (39)

then set EX = Exk

EX = (I −A−
m∑
i=1

µiNi)−1Bµ. (40)

Proof: see appendix.

Theorem 7 The algebriac equation

P = APAT +AP (
m∑
i=1

µiN
T
i ) +AEXµTBT

+(
m∑
i=1

µiNi)PAT +
m∑
p=1

m∑
q=1

µp,qNpPN
T
q +

m∑
i=1

NiEXΛTi.B
T

+BµEXTAT +B
m∑
i=1

Λi.EXTNT
i +Q (41)
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where Λi. = Eukuk,i. has a solution P ≥ 0 if and only if

λ

I −A⊗A− (
m∑
i=1

µiNi)⊗A−A⊗ (
m∑
i=1

µiNi)−
m∑
p=1

m∑
q=1

µp,qNp ⊗Nq

 < 1 (42)

Proof: see appendix.

5 Examples

This section is organised as two subsections. The first section, the examples and comparisons with

the existing bilinear subspace algorithm are given in the deterministic system case by using ‘two-

block’ algorithm. In the last subsection, the examples and comparisons with the existing algorithm

are given in the case of combined deterministic-stochastic bilinear system.

5.1 Deterministic bilinear system case

In this subsection, two second-order bilinear systems introduced in [9, 12] are used to see how the

new algorithm works, and how it compares with existing algorithms.

Example 5.1.1 The system matrices are

A =

(
0 0.5

−0.5 0

)
, B =

(
1

1

)
, C =

(
1 1

)
,

D = 2, N1 =

(
0.4

0

)
N2 =

(
0

0.3

)
Table 1 shows the eigenvalues of the estimated A and N in various cases. The row labelled ‘N4SID’

gives the results obtained in [9], with a white input and k = 3, j = 8191. ‘Case I’ is for a white

input, with uniform distribution in the interval [0,0.01] and k = 2. ‘Case II’ is for a white input

with normal distribution N(0, 0.12) and k = 6. ‘Case III’ is for a coloured input u with mean 0,

standard deviation 3.3e-05 and rq = Eukuk+q = 0.5q, q = 0, 1, 2, ... and k = 2. ‘Case IV’ is for

a white input with exponential distribution with parameter λ = 0.04 and k = 2. In all the cases

I–IV the number of columns is only j = 597, compared with j = 8191 for the N4SID case. It is

seen that the eigenvalues of the true and estimated matrices are very close to each other. Table 2

shows how the eigenvalues of the estimated A and N depend on j, in each case with k = 2.

Example 5.1.2 The system matrices are

A =

(
0.5 0

0 0.3

)
, B =

(
0 1

−1 0

)
, C =

(
1 0

0 2

)

D =

(
1 0

0 1

)
, N1 =

(
0.6 0

0 0.4

)
, N2 =

(
0.2 0

0 0.5

)
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A N

True ±0.5i 0.4, 0.3

N4SID −0.0027 ± 0.4975i 0.4011, 0.3055

Case I 0.0000 ± 0.5001i 0.3994, 0.2952

Case II 0.0000 ± 0.4993i 0.4019 0.3064

Case III 0.0000 ± 0.5000i 0.3953 0.3085

Case IV 0.0006 ± 0.5011i 0.3934, 0.3007

Table 1: Example 5.1.1: Results with different inputs and algorithms

A N

True ±0.5i 0.4, 0.3

j=97 0.0000 ± 0.5003i 0.4092, 0.2789

j=297 0.0000 ± 0.5002i 0.4043, 0.2914

j=597 0.0000 ± 0.5001i 0.3994, 0.2952

Table 2: Example 5.1.1: Effect of sample size

Table 3 shows the results obtained in [12] with j = 4095 and k = 2, but with stochastic inputs, and

the results obtained by our ‘two-block’ algorithm with j = 597 and k = 2 in the deterministic case.

A fairer comparison is available in [1, 2]. In both cases the input signal was white, with a uniform

two-dimensional distribution.

True N4SID Two block

A 0.5, 0.3 0.5001, 0.2979 0.5000, 0.3000

N1 0.6, 0.4 0.5994, 0.4020 0.6000, 0.4000

N1 0.2, 0.5 0.1914, 0.5016 0.2000, 0.5000

Table 3: Example 5.1.2: Results with different inputs and algorithms

5.2 Combined deterministic-stochastic case

In this section, two simple second order bilinear systems introduced in [9, 11] are given to see how

the new algorithm works and some comparison of the simulation results are also presented.
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Example 5.2.1 The system matrices are

A =

(
0 0.5

−0.5 0

)
, B =

(
1

1

)
, C =

(
1 1

)
,

D = 2, N1 =

(
0.4

0

)
, N2 =

(
0

0.3

)

and the noise covariance matrices

Q =

(
0.16 0

0 0.04

)
, R = 0.09, S =

(
0

0

)

In [9], the input is a white noise series and k = 3, j = 8191. In both of the Table 4 and Table 5,

system input of case I is a uniform distribution with mean value equals zero and variance equals to

1. In the case II, we adjust the system noise as follows:

Q =

(
0.0016 0

0 0.0004

)
, R = 0.0009, S =

(
0

0

)

to increase the noise ratio between the input signal and system noise, the simulation results

are also given in the Table 4. It is shown that the greater the ratio, the better convergence

results will be achieved. For the case of III and IV we introduce a colored noise input sig-

nal to have a test, u is a colored noise series with the mean 0, standard deviation 1.1664 and

rq = Eukuk+q = 0.5q, q = 0, 1, 2, ... and the system noise is taken as the same as the case I and

II respectively, the simulation results are also shown in Table 4.

It is noticed that the parameter j = 595 is applied in all the simulation both in Table 4 and

Table 5, which is quite small compare to j = 8191 and we take k = 2 all in our simulations. The

A N

Original ±0.5i 0.4, 0.3

N4SID −0.0027 ± 0.4975i 0.4011, 0.3055

Case I −0.0076 ± 0.4960i 0.3838, 0.2829

Case II 0.0000 ± 0.5000i 0.4005, 0.3030

Case III 0.0044 ± 0.4847i 0.4048, 0.2688

Case IV 0.0089 ± 0.4945i 0.3906, 0.3149

Table 4: Example 5.2.1: Results with different inputs, noise ratios and algorithms

simulation results with different sample number in the case of I and II is given in Table 5 to show

the relationship between the preciseness with the increase of the sample number.
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A N

Original ±0.5i 0.4, 0.3

j=95 (I) −0.0103 ± 0.4725i 0.3872, 0.2791

j=95 (II) 0.0066 ± 0.4956i 0.3749, 0.2997

j=295 (I) 0.0323 ± 0.4789i 0.4267, 0.3030

j=295 (II) 0.0084 ± 0.4965i 0.3997, 0.3012

j=595 (I) 0.0076 ± 0.4960i 0.3838, 0.2829

j=595 (II) 0.0000 ± 0.5000i 0.4005, 0.3030

Table 5: Example 5.2.1: Effect of sample size

Example 5.2.2 The system matrices and the noise covariance matrices are

A =

(
0.5 0

0 0.3

)
, B =

(
0 1

−1 0

)
, C =

(
1 0

0 2

)

D =

(
1 0

0 1

)
, N1 =

(
0.6 0

0 0.4

)
, N2 =

(
0.2 0

0 0.5

)

Q =

(
0.01 0

0 0.01

)
, R =

(
0.01 0

0 0.01

)

S =

(
0 0

0 0

)

The input we selected here two-dimensional uniform distribution notation as case V and VI and

colored noise input u with Euiui+q = 0.9iI2 as case VII and case VIII with j = 595, k = 2. The

difference between case V and case VI, case VII and case VIII is that, the ordinary LS method is

used to solve (35) in case V, VII, while the constrained LS method is used in case VI and VIII. It

should be pointed that in the N4SID simulation case (j = 4095, k = 2) and the comparison of the

simulation results are given in Table 6.

The identified model is validated by comparing the eigenvalues of A and N of the model and the

original system. It is shown that the eigenvalues of the system matrices of the model and the

original system are very close to each other. If the parameter j approches to infinite, they would

be identical. It is noticed that the parameter j ¿From the Table 4 and Table 6, it is shown that the

algorithm presented here has a quicker convergence convergence rate and smaller sample number

requirement compared to the N4SID algorithm. As shown in [9, 11], the noise covariance matrix

in here is also not very accurate since the k-parameter here is too small.
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A N1 N2

Original 0.5, 0.3 0.6, 0.4 0.2, 0.5

N4SID 0.5001 0.4020 0.1914

(j=4095) 0.2979 0.5994 0.5016

case V 0.4998 0.5998 0.5000

(j=595) 0.3002 0.4000 0.2001

case VI 0.5004 0.5998 0.4999

(j=595) 0.2990 03997 0.1997

case VII 0.4992 0.6028 0.5070

(j=595) 0.2968 0.4007 0.2019

case VIII 0.4992 0.6035 0.5080

(j=595) 0.2973 0.3990 0.2027

Table 6: Example 5.2.2: Comparisons with different algorithms, LS and constrained LS

6 Conclusion

A new subspace algorithm for the identification of bilinear systems and bilinear Kalman filter have

been developed. Its main advantage is that the system input does not have to be white. It also has

lower computational complexity than the previously proposed algorithm, because the dimensions

of the matrices involved in it are much smaller. Its wider applicability has been demonstrated by

two examples, which also show that even when coloured inputs are available the new algorithm

converges to correct estimates relatively quickly. The presumed reason for this is that, since the

algorithm does not depend on whiteness of the input, it is insensitive to the large errors in the

sample spectrum which are inevitable with small sample sizes.
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8 Appendix

The proof of Lemma 1:

The proof of (5) is in [19].

Now we prove (6) in Lemma 1. From (5), the definition of Kronecker product and the Khatri-Rao

product, we can derive that

(FG�HJ) = [FG1 ⊗HJ1, FG2 ⊗HJ2, . . . , FGl ⊗HJl]

= (F ⊗H) [G1 ⊗ J1, G2 ⊗ J2, . . . , Fl ⊗ Jl]

= (F ⊗H)(G� J)

This proves the Lemma 1.

The proof of Lemma 2:

We prove the Lemma 2 by induction.

¿From the definition of U+
q|q and U++

q|q , we know that U+
q|q � Uq = U++

q|q . First we prove that the

Lemma 2 holds for i = 1.

U+
1+q|q � Uq =


U+
q|q � Uq
Uq+1 � Uq

Uq+1 � Uq � Uq


and

U++
1+q|q =

(
U++
q|q

Uq+1 � U++
q|q

)
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We can derive that

U+
1+q|q � Uq \ U

++
1+q|q =

(
Uq+1 � Uq

)
= U+

q+1|q+1 � Uq

We suppose that the Lemma 2 holds for i = n. Then for i = n+ 1,

U+
n+1+q|q � Uq =


U+
n+q|q � Uq
Un+q+1 � Uq

Un+q+1 � U+
n+q|q � Uq


and

U++
n+1+q|q =

(
U++
n+q|q

Un+q+1 � U++
n+q|q

)

We can derive that

U+
n+q+1|q � Uq \ U

++
n+1+q|q =


U+
n+q|q+1 � Uq
Un+q+1 � Uq

Un+q+1 � U+
n+q|q+1 � Uq


= U+

n+q+1|q+1 � Uq

This proves the Lemma 2.

The proof of Lemma 3

We prove the Lemma 3 by induction.

First we prove the Lemma 3 holds for i = 1:

X1|0 =

(
X0|0

U1 �X0|0

)

=


X0

U0 �X0

U1 �X0

U1 � U0 �X0


=

(
X0

U+
1|0 �X0

)
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We suppose that the Lemma 3 holds for i = n. Then, for i = n+ 1,

Xn+1|0 =

(
Xn|0

Un+1 �Xn|0

)

=


X0

U+
n|0 �X0

Un+1 �X0

Un+1 � U+
n|0 �X0


=

(
X0

U+
n+1|0 �X0

)

This proves the Lemma 3.

The proof of Lemma 5:

From the notation given in the paper and system (1), we have the block form equation as fol-

lows:

Yp = CXp +DUp + Vp (43)

Yf = CXf +DUf + Vf (44)

Yr = CXr +DUr + Vr (45)

¿From (43), we have CXp = Yp − DUp − Vp. Therefore there exists a matrix C−, which is a

generilized inverse matrix of C, such that Xp = C−(Yp−DUp−Vp). This states that Xp is definitly

contained in the row space spanned by Yp + Up + Vp. As we mentioned in remark 2, we can select

the Moore-Penrose pseudo-inverse of C as C− here for instance, similarily for equations (44) and

(45), the Lemma 5 is then proved.

The proof of Theorem 1: ¿From Lemma 6., we know that

Y p = ΓkXp +HkU
p

= Γk

(
Xp

U+p �Xp

)
+HkU

p (46)

Let Γk =
[
Ck,Γk,2

]
, where Ck is the first n columns of the matrix Γk and Γk,2 is the last

[
(m+ 1)k − 1

]
n

columns of Γk. In suach a way, the equation (46) can be written as follows

Y p = CkXp + Γk,2U+p �Xp +HkU
p

= CkXp + Γk,2U+p � (C†(Yp −DUp) +HkU
p

= CkXp + (Γk,2 ⊗ C†)(U+p � Yp)− (Γk,2 ⊗ C†D)(U+p � Up) +HkU
p (47)

It is noticed that the last three term of the equation (47) can be regarded as the linear combination

of the row vecters spanned by the row space of the matrix U+p�Yp,U+p�Up and U+p. We divide
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the item (U+p � Up) into two parts i.e. (U++p ⊕ [(U+p � Up \ U++p)] and according to Lemma 2,

we know that [(U+p � Up \ U++p)] = U+
k|1 ⊂ U

p. From the above analysis, there exists a matrix Dk
such that DkUp,u,y = (Γk,2 ⊗ C†)(U+p � Yp) − (Γk,2 ⊗ C†D)(U++p) + HkU

p, so the equation (15)

holds. (16) and (17) of Theorem 1 can be proved similarily.

The proof of Theorem 2:

¿From (14) and Lemma 5, we know that Xf ⊂ Xp + Up,u,y ⊂ Yp + Up,u,y

Since the condition (18) holds, Xf + Uf,u,y ⊂ Xf ⊕ Uf,u,y ⊂ (Yp + Up,u,y)⊕ Uf,u,y.

The proof of Lemma 7:

The proof is by induction.

For n = 1, both (25) and (26) are true from the structure of the system, deinitions and notations.

We make an assumption that (25), (26) hold for n = k. Suppose that n = k + 1. Then

Xk+1 = AXk +NUk �Xk +BUk +Wk

= A(4X
k−1Xk−1|0 +4U

k−1Uk−1|0 +4W
k−1Wk−1|0)

+NUK � (4X
k−1Xk−1|0 +4U

k−1Uk−1|0 +4W
k−1Wk−1|0) +BUk +Wk

= (A4X
k−1Xk−1|0 +

[
N14X

k−1, N24X
k−1, . . . , Nl4X

k−1

]
UK �Xk−1|0)

+(A4U
k−1Uk−1|0 +BUk +

[
N14U

k−1, N24U
k−1, . . . , Nl4U

k−1

]
Uk � Uk−1|0)

+(Wk +A4W
k−1Wk−1|0 +

[
N14U

k−1, N24U
k−1, . . . , Nl4U

k−1

]
Uk �Wk−1|0)

= 4X
k Xk|0 +4U

k Uk|0 +4W
k Wk|0

so equation (25) holds for n = k + 1.

Yk+1|0 =


Yk+1

Yk|0

UK+1 � Yk|0


Yk+1 = CXk+1 +DUk+1 + Vk+1

= C(4X
k Xk|0 +4U

k Uk|0 +4W
k Wk|0) +DUk+1 + Vk+1

= C4X
k Xk|0 + C4U

k Uk|0 + C4W
k Wk|0 +DUk+1 + Vk+1

Yk|0 = LXk Xk|0 + LUk Uk|0 + LWk Wk|0 + LVk Vk|0

Uk+1 � Yk|0 = Uk+1 � (LXk Xk|0 + LUk Uk|0 + LWk Wk|0 + LVk Vk|0)

= Uk+1 �LXk Xk|0 + Uk+1 �LUk Uk|0 + Uk+1 � LWk Wk|0 + Uk+1 � LVk Vk|0)

so equation (26) holds for n = k + 1. This proves Lemma 7.
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The proof of Theorem 3:

¿From equation (26) of Lemma 5, we know that

Y p = LXk Xp + LUk Up + LWk W p + LVk V p

= LXk

(
Xp

U+p �Xp

)
+ LUk Up + LWk W p + LVk V p (48)

Let LXk =
[
Ok,LXk,2

]
, where Ok is the first n columns of the matrix LXk and LXk,2 is the last

(m+ 1)k − 1 columns of LXk . Then equation (48) can be written as:

Y p = OkXp + LXk,2U+p �Xp + LUk Up + LWk W p + LVk V p

= OkXp + LXk,2U+p �
[
C†(Yp −DUp − Vp)

]
+ LUk Up + LWk W p + LVk V p

= OkXp + (LXk,2 ⊗ C†)(U+p � Yp)− (LXk,2 ⊗ C†D)(U+p � Up) + LXk,2C†(U+p � Vp)

+LUk Up + LWk W p + LVk V p (49)

The sum of the second, third term and fifth term of the equation (49) is a linear combination of

row vectors in the span of the row spaces of the matrices U+p �Yp,U+p �Up and U+p. According

to Lemma 2, (U+p � Up) can be decomposed into two subspace i.e. U++p ⊕
(
U+
k|1 � Up

)
and

the latter subspace is contained in Up. From above analysis, there exists a matrix T uk such that

T uk Up,u,y = (LXk,2 ⊗ C†)(U+p � Yp) − (LXk,2 ⊗ C†D)(U++p) + LUk Up, and let T vk = LXk,2C†, so the

equation (27) of Theorem 3 holds. Equations (28), (29, (30) and (31) of Theorem 3 can be proved

similarily.

The proof of Theorem 4:

¿From (31), (28) and Lemma 2, we have

ΠSXr ⊂ ΠSXf + Uf,u,y ⊂ ΠSYf + Uf,u,y

and from (30) and (27), we get

ΠSYf ⊂ ΠSXf + Uf,u,y ⊂ ΠSXp + Up,u,y + Uf,u,y

⊂ ΠSYp + Up,u,y + Uf,u,y ⊂ Yp + Up,u,y + Uf,u,y

so

ΠSXr + Ur,u,y = ΠSXr ⊕ Ur,u,y

⊂ (ΠSYf + Uf,u,y)⊕ Ur,u,y

Since

ΠSXr ⊂ R

and from (29), we know that (34) holds due to the last three terms in (29) are orthogonal to S.
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The proof of Bilinear Kalman Filter

The aim of the Kalman filter is to find a matrix Kk such that the trace of the error covariance

matrix P̃k is minimized: minKk trP̃k. Let us first define the estimate state error x̃k, the error

covariance matrix P̃k and the estimate covariance matrix Pk.

x̃k , xk − x̂k
P̃k , E[x̃kx̃Tk ]

Pk , E[x̂kx̂Tk ]

Let us now look for an expression of trP̃k. From the filter equation (36) and the state space

description we find that

x̃k+1 = Ax̃k +Nuk ⊗ x̃k −KkCx̃k −Kkvk +wk

trP̃k then becomes :

tr(P̃k+1) = trE[x̃k+1x̃
T
k+1]

= trE[(xk+1 − x̂k+1)(xk+1 − x̂k+1)T ]

= trE[(Ax̃k +Nuk ⊗ x̃k −KkCx̃k −Kkvk + wk)

(Ax̃k +Nuk ⊗ x̃k −KkCx̃k −Kkvk + wk)T ]

= tr{AP̃kAT +AP̃k(
m∑
p=1

µpN
T
p )−AP̃kCTKT

k + (
m∑
p=1

µpNp)P̃kAT

+(
m∑
p=1

m∑
q=1

Λp,qNpP̃kN
T
q )− (

m∑
p=1

µpNp)P̃kCTKT
k −KkCP̃kA

T

−KkCP̃k(
m∑
p=1

µpNp) +KkCP̃kC
TKT

k +KkRK
T
k −KkS

T − SKT
k +Q}

= tr{[Kk(R+ CP̃kC
T )−AP̃kCT − (

m∑
p=1

µpNp)P̃kCT − S](R + CP̃kC
T )−1

[Kk(R+ CP̃kC
T )−AP̃kCT − (

m∑
p=1

µpNp)P̃kCT − S]T }

+tr{AP̃kAT +AP̃k(
m∑
p=1

µpN
T
p ) + (

m∑
p=1

µpNp)P̃kAT + (
m∑
p=1

m∑
q=1

Λp,qNpP̃kN
T
q )

+Q}

−tr{AP̃kCT (R + CP̃kC
T )−1CP̃kA

T +AP̃kC
T (R+ CP̃kC

T )−1CT P̃k(
m∑
p=1

µpN
T
p )

+AP̃kCT (R +CP̃kC
T )−1ST + (

m∑
p=1

µpNp)P̃kCT (R+ CP̃kC
T )−1CP̃kA

T
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+(
m∑
p=1

µpNp)P̃kCT (R + CP̃kC
T )−1CT P̃k(

m∑
p=1

µpN
T
p )

+(
m∑
p=1

µpNp)P̃kCT (R + CP̃kC
T )−1ST + S(R + CP̃kC

T )−1CP̃kA
T

+S(R+ CP̃kC
T )−1CT P̃k(

m∑
p=1

µpN
T
p ) + S(R+ CP̃kC

T )−1ST }

The last equation consists of two terms of which the second one is independent of Kk. Therefore

our criterion will be minimized when this first term becomes zero i.e.

Kk = (AP̃kCT − (
m∑
p=1

µpNp)P̃kCT − S)(R + CP̃kC
T )−1

Using the definitions of Λs0, G
s, Pk and the fact that P̃k = Σs − Pk we finally find that

Kk = (Gs − (
m∑
p=1

µpNp)PkCT −APkCT )(Λs0 − CPkCT )−1, (50)

Pk = APk−1A
T + (

m∑
p=1

m∑
q=1

µp.qNpPk−1N
T
q

+APk−1(
m∑
p=1

µpN
T
p ) + (

m∑
p=1

µpNp)Pk−1A
T

+(Gs − (
m∑
p=1

µpNp)PkCT −APkCT )(Λs0 − CPkCT )−1

(Gs − (
m∑
p=1

µpNp)PkCT −APkCT )T (51)

The proof of Theorem 6.

Since both uk and wk are stationary process, we can make an assumption that xk is a second

order statistics stationary process as well. We take expection on both sides of the first equation of

(1) and from the condition (39), we have

EX = (I −A−
m∑
i=1

µiNi)−1Bµ.

where EX = Exk.

The proof of Theorem 7.
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¿From equation (41), we haveI −A⊗A− (
m∑
i=1

µiNi)⊗A−A⊗ (
m∑
i=1

µiNi)−
m∑
p=1

m∑
q=1

Λp,qNp ⊗Nq

 vec(P )

= vec(AEXµTBT +
m∑
i=1

NiEXΛTi.B
T +BµEXTAT +B

m∑
i=1

Λi.EXTNT
i +Q)

Since the condition (42) meets, we can complete the proof of theorem 7.
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