
Subspace Identification – A Markov Parameter Approach ∗

Nelson L.C. Chui J.M. Maciejowski
Cambridge University Engineering Deptartment

Cambridge, CB2 1PZ, England.

22 December 1998

Technical report CUED/F-INFENG/TR.337
Submitted to IEEE Transactions on Automatic Control.

Abstract

Estimating observability matrices or state sequences is the central component of exist-
ing subspace identification methods. In this paper a different approach, in which Markov
parameters are first estimated under general input excitation, is proposed. The prominent
difference of this approach is that a three-block arrangement of data matrices is used. It
is shown that one advantage of this approach over other subspace algorithms is that sev-
eral unbiased estimating procedures can be carried out. One immediate application is to
obtain balanced or nearly balanced models directly from the estimated Markov parameters.
Another application is that with the estimated Markov parameters, consistently initialised
Kalman filter state sequences can be obtained, from which the system matrices can be easily
determined without bias. Performance of the proposed algorithms is investigated in two case
studies which are based on real data taken from two industrial systems.

Keywords: System Identification, Modeling, Subspace Methods, Markov Parameters.

1 Introduction

Various versions of subspace methods for identifying discrete-time linear systems in state-space
form have been derived in recent years. Commonly known subspace based algorithms include
CVA [19], N4SID [25], MOESP [29, 28], and IV-4SID [30]. All of these methods first estimate
the range space of the observability matrix, and then obtain the matrices of the state-space
form either by estimating the observability matrix, or by estimating the state sequence. A
unified treatment of most of these algorithms has been given in [26], where it is shown that each
variant corresponds to a different choice of certain weighting matrices. Some statistical analysis
of subspace algorithms is available in [23, 31, 2] and references therein.
∗Corresponding author Dr. J.M. Maciejowski. Tel +44 1223 332732 Fax +44 1223 332662; E-mail

jmm@eng.cam.ac.uk.
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The basis of subspace algorithms is exploitation of the concept of the state as a finite-dimensional
‘interface’ between the past and the future; a concept which dates back to [22] in the deterministic
case and to [1] in the stochastic case. An intuitive description of their operation is the following.
The input-output data is arranged into two distinct ‘blocks’, one of which can be thought of as
‘inputs and past outputs’ and the other as ‘future outputs’. (The first block can also be thought
of as ‘regressors’ in the statistical sense, when there are no measured inputs.) The data in the
second block is projected onto the space spanned by the data in the first block. Orthogonal
projection corresponds to least-squares prediction of the output, which can be ‘factorized’ into
estimation of the observability matrix and estimation of the state sequence. If both measured
inputs and unmeasured disturbances are present, further processing of the projected data is
necessary, in order to distinguish between the effects of these two kinds of signal. Thus in [26],
for instance, one finds a relatively simple algorithm which is known to give biased estimates of
the system matrices (unless the measured inputs are white), and a considerably more complex
algorithm which is known to be asymptotically unbiased, as the data ‘blocks’ become doubly
infinite.

In this paper we introduce a class of subspace algorithms in which the data is arranged into three
blocks rather than two. The additional block can be thought of as a source of ‘instrumental
variables’, which are used to remove the effects of the unmeasured noise sources, and thus allow
the estimation of some initial Markov parameters (impulse response coefficients) of the system.
These Markov parameters are used to modify existing approaches, so that unbiased estimates
of the system matrices are obtained, even if the row-dimension of the blocks remains finite.
This dimension can be thought of as the length of a ‘sliding window’ passed over the data,
which limits the correlation or ‘memory’ length used in subspace algorithms. Thus our three-
block approach allows unbiased estimates to be obtained with finite ‘window lengths’, in the
presence of arbitrary measured inputs. The tools used in our approach are essentially the same
(projections, QR factorizations, etc) as in the existing subspace methods.

The introduction of Markov parameters and of instrumental variables into subspace identification
is not new. In particular, the way these appear in [29, 28] is very similar to the way they appear
in this paper. But [29] is limited to the ‘output error’ noise structure, while [28] is limited
to white noise inputs, and deals with the identification of the deterministic part of the system
only. In this paper careful analysis of the relationships between several subspaces which arise
in the combined deterministic-stochastic case, with a general noise structure, allows us to give
a complete solution for the general case.

The paper is organized as follows. The identification problem is defined in Section 2, and
some notations are introduced in 3. Section 4 considers identification of deterministic systems.
Section 5 then considers the general case, and introduces the 3-block arrangement of data.
Section 6 shows how initial Markov parameters can be estimated in the general case. Section 7
considers the estimation of the state sequences Xk and Xk+1, paying particular attention to
the requirement that the estimated initial conditions of these sequences are consistent with each
other — failure to meet this requirement has been the source of biased estimats in some subspace
algorithms. In Section 8, three alternative approaches for identifying the deterministic (input-
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output) part of the system are suggested, and Section 9 discusses the estimation of the stochastic
part. Numerically efficient implementation is developed in Section 10. Finally, two cases based
on industrial data are studied in Section 11.

Some of the results in this paper were previously reported in [10].

2 Problem Setup

Throughout this paper, the sets of integers and non-negative integers are denoted by Z and Z+,
respectively. The Moore-Penrose inverse is written as ·† while the Hermitian as ·∗. Denote by
+, ⊕ and ∩ the sum, the direct sum and the intersection of two vector spaces. The notation ·⊥
denotes the orthogonal complement of a subspace with respect to the predefined ambient space.

Consider a linear time-invariant system with the following state-space realization:

x(t+ 1) = Ax(t) +Bu(t) + w(t), (1a)
y(t) = Cx(t) +Du(t) + v(t), (1b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The input and output signals are denoted
by u and y, respectively; the process disturbance and output noise are denoted by w and v,
respectively. We further assume that u, y, w and v are signals in an ideal probability space.
That is, for any instance t ∈ Z+, x(t), u(t), y(t), w(t) and v(t) are vectors of real Lebesgue
square integrable random variables. We assume that u, y, w and v are stationary, which implies
that A has all its eigenvalues strictly inside the unit disk. In addition, E denotes the usual
expectation operator. When used with lower-case letters, ut, yt, etc will denote data collected
at time t from a particular realization of u(t), y(t), etc.

The identification problem which we address is: Given a sample of a particular realization of
input-output data, {ut, yt : t = 0, . . . , N}, estimate the state dimension n, the matrices A,
B, C, and D, the Kalman gain K, and the covariance of the process e(t) in the innovations
representation

x(t+ 1) = Ax(t) +Bu(t) +Ke(t), (2a)
y(t) = Cx(t) +Du(t) + e(t), (2b)

We assume that N is sufficiently large, that all required sample statistics of the data are arbi-
trarily close to the population statistics.

Suppose that the system is comprised of two uncorrelated subsystems, a deterministic one de-
noted by a superscript d, and a stationary stochastic one denoted by a superscript s:

x(t) = xd(t) + xs(t),

y(t) = yd(t) + ys(t).
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The deterministic subsystem, describing the behavior due to the input u, has the state-space
equations:

xd(t+ 1) = Axd(t) +Bu(t), (3a)

yd(t) = Cxd(t) +Du(t); (3b)

whereas the stationary stochastic subsystem, describing the behavior due to the process and
output noises w and v, has the state-space equations:

xs(t+ 1) = Axs(t) + w(t), (4a)
ys(t) = Cxs(t) + v(t). (4b)

Let the process noises w and v have the following correlation matrices:

E
[(
w(t)
v(t)

)(
w(τ)
v(τ)

)∗]
=:
(

‘Σw Σwv

Σvw Σv

)
δtτ , (5)

for all t, τ ∈ Z+, where δ denotes the Kronecker delta. Moreover, define the correlation matrices
Σs, Λi and G as:

Σs := E
(
xs(t) [xs(t)]∗

)
,

Λτ := E
(
ys(t+ τ) [ys(t)]∗),

G := E
(
xs(t+ 1) [ys(t)]∗

)
,

where t ≥ τ , t ∈ Z+, τ ∈ Z. Since the stochastic subsystem is assumed stationary, Σw, Σv, Σwv,
Σvw, Σs, Λτ and G are all constant matrices.

3 System in Block Equation Form

The notation introduced in this section mostly follows [25] closely. Let Ut be a matrix composed
of a sequence of the input signal:

Ut :=
[
u(t) u(t+ 1) · · · u(t + q − 1)

]
,

for some positive integer q. Using similar definitions for Yt, Xt, etc,it is easy to see that (1) can
also be written as:

Xt+1 = AXt +BUt +Wt, (6a)
Yt = CXt +DUt + Vt. (6b)
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Now, consider the following block-Hankel matrix constructed from the input signal u for some
k: 

Up

Uf

 :=



u(0) u(1) · · · u(q − 1)
... ... ... ...

u(k − 1) u(k) · · · u(k + q − 2)
u(k) u(k + 1) · · · u(k + q − 1)

... ... ... ...
u(2k − 1) u(2k) · · · u(2k + q − 2)


.

Define Yp, Yf , Wp, Wf , Vp, and Vf in a similar way, and define Xp and Xf slightly differently
as: [

Xp

Xf

]
:=
[
x(0) x(1) · · · x(q − 1)
x(k) x(k + 1) · · · x(k + q − 1)

]
.

such that each is a sequence of one block row. At this point, we shall introduce a few more
matrices. Define the deterministic controllability matrix Cdi , the stochastic controllability matrix
Csi , and Cwi as:

Cdi :=
[
Ai−1B Ai−2B · · · B

]
,

Csi :=
[
Ai−1G Ai−2G · · · G

]
,

Cwi :=
[
Ai−1 I Ai−2 I · · · I

]
.

Furthermore, define the observability matrix Oi, and Toeplitz matrices T di and T wi as:

Oi :=


C
CA

...
CAi−1

 , T di :=


D 0
CB D

...
. . . . . .

CAi−2B · · · CB D

 , T wi :=


0 0
C 0
...

. . . . . .
CAi−2 · · · C 0

 .
Note that D,CB,CAB, . . . are the Markov parameters of the system, which will also be denoted
by h0, h1, h2, . . . in this paper. With these new matrices, it is easy to derive the following ‘block
form’ of the system equations:

Xf = AkXp + CdkUp + CwkWp, (7a)

Yp = OkXp + T dk Up + T wk Wp + Vp. (7b)

To facilitate the analysis, denote by Up the space spanned by all the rows of the block Hankel
matrix Up. That is,

Up := span{ α∗ Up | α ∈ Rkm }.

We will use similar notation to represent the row spaces spanned by other block-Hankel matrices.
Finally, let Π be the orthogonal projection operator. In this paper, we will use the shorthand
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ΠRQ to represent the orthogonal projection of each row of Q onto the space R. For instance,
ΠUpX0 is equivalent to:

ΠUpX0 :=

 ΠUpX0;1
...

ΠUpX0;n

 , for X0 =

 X0;1
...

X0;n

 .
Moreover, this projection also is equivalent to E(X0U

∗
p ) · E(UpU∗p )† · Up. Finally, it can be seen

without difficulty that E(OhX0U
∗
p )·E(UpU∗p )† ·Up can also be written as OhE(X0U

∗
p )·E(UpU∗p )† ·

Up, or equivalently, ΠUpOhX0 = OhΠUpX0. In other words, the projection operation commutes
with real matrix multiplication.

We remark that we shall abuse terminology slightly by speaking of subspaces having ‘empty
intersection’ to mean that their intersection contains only the singleton {0}.

4 Deterministic Identification

First, deterministic identification via Markov parameter (MP) estimation is covered. In the
deterministic setup, it will be seen that a two-block configuration is adequate. We shall assume
k is greater than the observability index of the system. The data equations have the following
form:

Yp = OkXp + T dk Up; (8)

Yf = OkXf + T dk Uf . (9)

In addition, the state equation linking the past and future data equations can be written as:

Xf = AkXp + CdkUp. (10)

It is well known that the quality of a model obtained from an identification experiment depends
highly on the degree of excitation of the input signal. Such consideration leads to the study
of informative experiments, which are identification experiments which contain sufficient infor-
mation to discriminate between different models in an intended model set [20]. The study of
informative experiments for subspace methods is beyond the scope of this paper, but can be
found in [7] (and the references therein) for the deterministic case and [5, 8] (and the references
therein) for the combined deterministic-stochastic case. Instead, in this paper we will make cer-
tain key assumptions about the state sequences and the input sequences, which enable correct
results to be obtained using the algorithms developed here. First, we assume the following for
the deterministic case:

E

Xp

Up
Uf

Xp

Up
Uf

∗ > 0. (11)

With this assumption, the following lemma holds.
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Lemma 4.1. Suppose (11) holds. Then,

Xf ⊂ Yp + Up,
Xf + Uf = Xf ⊕ Uf ⊂ (Yp + Up)⊕ Uf .

Proof. From Equation (8), it is easy to see that Yp ⊂ Xp + Up. On the other hand, rewriting
Equation (8) as OkXp = Yp − T dk Up gives Xp ⊂ Yp + Up, since Ok is injective. Now, adding Up
to both sides of these inclusions gives

Yp + Up ⊂ Xp + Up, and Xp + Up ⊂ Yp + Up.

Thus, clearly Yp + Up = Xp + Up. In addition, with Equation 10 we then have

Xf ⊂ Xp + Up = Yp + Up.

Finally, (11) guarantees the direct sum property that Xf + Uf = Xf ⊕ Uf . Thus, the lemma
follows.

Lemma 4.1 states that the space Xf can be observed from Yp + Up and has empty intersection
with Uf . Therefore, Yf in Equation (9) has a unique decomposition into OkXf and T dk Uf by
the direct sum property. Consequently, T dk can be determined by removing Uf from T dk Uf .

Assume T dk is determined. We introduce two Toeplitz matrices:

ΥU :=


0 hk−1 · · · h1
...

. . . . . .
...

...
. . . hk−1

0 · · · · · · 0

 , ΥL :=


hk 0 · · · 0
...

. . . . . .
...

...
. . . 0

h2k−1 · · · · · · hk

 , (12)

such that OkCdk = ΥU + ΥL. It can be seen that ΥU depends only on h1, . . . , hk−1 whereas ΥL

depends only on hk, . . . , h2k−1. Substituting (10) into (9) gives

Yf − T dk Uf −ΥUUp = OkAkXp + ΥLUp, (13)

where the terms in the left hand side are all known. Note that Xp can be found from the equation
OkXp = Yp − T dk Up. Furthermore, by (11) we have Xp + Up = Xp ⊕ Up. As a result, we can
uniquely decompose the left hand side of Equation (13) into OkAkXp and ΥLUf . In this way,
ΥL is determined.

Thus, the Markov parameters h0, . . . , h2k−1, or equivalently, D, CB, . . . , CA2k−2B, are acquired.
Finally, by Kalman’s fundamental realization criterion [17], a unique realization (A,B,C,D) can
be obtained.

The following summarises the algorithm for the deterministic case, at a conceptual level:
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Algorithm 4.2. Deterministic Subspace Algorithm via MP Determination

1. Decompose Yf into OkXf and T dk Uf using Xf ⊕ Uf ⊂ (Yp + Up)⊕ Uf . Determine T dk .

2. Compute Xp = span{Yp − T dk Up} and construct ΥU .

3. Decompose Yf − T dk Uf − ΥUUp into OkAkXp and ΥLUp using Xp + Up = Xp ⊕ Up. Then
determine ΥL.

4. Determine (A,B,C,D) from the 2k Markov parameters, for example using Kung’s algo-
rithm [18].

5 Deterministic-Stochastic Identification: A Three-Block Con-
figuration

As shown in the previous section, a two-block configuration, splitting the data into ‘past’ (Up)
and ‘future’ (Uf ) blocks, is adequate to identify Markov parameters in the deterministic case.
However, when it comes to the combined deterministic-stochastic case, a two-block configuration
cannot determine the Markov parameters of a system. In the remaining part of this paper, we
demonstrate the use of a three-block configuration to estimate initial Markov parameters in a
stochastic environment.

We split the data Hankel matrices into three-block configurations, such as:



Up

Uf

Ur


:=



u(0) u(1) · · · u(q − 1)
... ... ... ...

u(k − 1) u(k) · · · u(k + q − 2)
u(k) u(k + 1) · · · u(k + q − 1)

... ... ... ...
u(2k − 1) u(2k) · · · u(2k + q − 2)
u(2k) u(2k + 1) · · · u(2k + q − 1)

... ... ... ...
u(3k − 1) u(3k) · · · u(3k + q − 2)


. (14)

The suffices p, f and r are supposed to be mnemonic, representing ‘past’, ‘future’ and ‘remote
future’, respectively. We define Yp, Yf , and Yr similarly, and the state sequences are defined as: Xp

Xf

Xr

 :=

 x(0) x(1) · · · x(q − 1)
x(k) x(k + 1) · · · x(k + q − 1)
x(2k) x(2k + 1) · · · x(2k + q − 1)

 .
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It can be seen without difficulty that the data equations can be written as:

Yp = OkXp + T dk Up + T wk Wp + Vp, (15)

Yf = OkXf + T dk Uf + T wk Wf + Vf , (16)

Yr = OkXr + T dk Ur + T wk Wr + Vr. (17)

In addition, the state equations linking the state sequences have the relationships:

Xf = AkXp + CdkUp + CwkWp, (18)

Xr = AkXf + CdkUf + CwkWf . (19)

As in Section 4, we divide OkCdk into two Toeplitz matrices, one in the upper triangular form ΥU

and one in the lower triangular form ΥL, as in Equations (12). In short, we haveOkCdk = ΥU+ΥL.

Due to the presence of noise, a stronger condition than (11) is needed for experiments to be
informative in the combined deterministic-stochastic case. One such condition can be expressed
as follows:

E

ΠSXf

Uf
Ur

ΠSXf

Uf
Ur

∗ > 0, (20)

where S := Yp + Up + Uf + Ur. We refer to [5, 8] for a detailed exposition on informative
experiments in the combined deterministic-stochastic case. For the rest of this paper, we shall
adopt this assumption.

Now, define two new variables Zf and Zr as follows:[
Zf
Zr

]
:=
[
Yf
Yr

]
−
[
T dk 0
ΥU T dk

] [
Uf
Ur

]
. (21)

Using Equations (16), (17) and (19), it is easy to see that Zf and Zr can also be written as:

Zf = OkXf + T wk Wf + Vf , (22)

Zr = OkAkXf + ΥLUf +OkCwkWf + T wk Wr + Vr. (23)

The purpose of introducing Zr and Zf is to eliminate any known information relating to the
Markov parameters h0, . . . , hk−1, so that the subsequent Markov parameters hk, . . . , h2k−1 can
be determined. The spaces spanned by the rows of Zf and Zr will be denoted by Zf and Zr,
respectively.

In this three-block configuration, the projection space will be S := Yp + Up + Uf + Ur. Again,
k will be assumed to be greater than the observability index, which implies that Ok−1 is of full
column rank.
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Theorem 5.1. Suppose (20) holds. Then,

ΠSXr ⊂ ΠSYf + Uf ,
ΠSXr + Ur = ΠSXr ⊕ Ur ⊂ (ΠSYf + Uf )⊕ Ur,

where S = Yp + Up + Uf + Ur.

Proof. Due to the uncorrelated property of past, future and remote future noises, we have
ΠSWf = ΠSVf = ΠSWr = ΠSVr = 0. Projecting Equation (16) onto S gives ΠSYf = OkΠSXf+
T dk Uf . Thus, we have

ΠSYf ⊂ ΠSXf + Uf ,
ΠSYf + Uf ⊂ ΠSXf + Uf , (24)

where the last inclusion is obtained by adding Uf to both sides of the first inclusion. On the
other hand, it is also easy to see that OkΠSXf = ΠSYf − T dk Uf . Thus, we have

ΠSXf ⊂ ΠSYf + Uf ,
ΠSXf + Uf ⊂ ΠSYf + Uf . (25)

where the last inclusion is obtained by adding Uf to both sides of the first inclusion. In effect,
(24) and (25) together imply

ΠSXf + Uf = ΠSYf + Uf .
Using (20), it can be seen that ΠSXf + Uf + Ur = ΠSXf ⊕ Uf ⊕ Ur. Moreover, we have
ΠSXr ⊂ ΠSXf ⊕ Uf , which can be seen from projecting Equation (19) onto S. Thus,

ΠSXr + Ur = ΠSXr ⊕ Ur ⊂ ΠSXf ⊕ Uf ⊕ Ur = (ΠSYf + Uf )⊕ Ur,
which completes the proof.

Remark 5.1. From Theorem 5.1, it can be seen that ΠSYf + Uf provides a subspace which
contains the space of the Kalman filter state sequence ΠSXr. 4
Theorem 5.2. Suppose Equation (20) holds. Then,

ΠSXf = ΠSZf ,
ΠSXf + Uf = ΠSXf ⊕ Uf = ΠSZf ⊕ Uf ,

where S = Yp + Up + Uf + Ur.

Proof. Due to the uncorrelated property of past, future and remote future noises, we have
ΠSWf = ΠSVf = ΠSWr = ΠSVr = 0. Thus, projecting Equation (22) onto S gives

ΠSZf = OkΠSXf .

By Equation (20), we have ΠSXf + Uf + Ur = ΠSXf ⊕ Uf ⊕ Ur. Since Ok is injective, the
statement follows.

Remark 5.2. From Theorem 5.2, it can be seen that ΠSZf can be used to observe the space
of the Kalman filter state sequence ΠSXf . 4
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6 Markov Parameter Estimation

From Theorems 5.1 and 5.2, a corollary can immediately be obtained. In this corollary, we
eliminate by orthogonal projections the state components ΠSXr in Equation (30) and ΠSXf in
Equation (31) in order to isolate the input components. It turns out that such an isolation can
be done without reducing the richness of the input sequences, as shown in (28), and (29) below.

Corollary 6.1. Suppose Equation (20) holds. Denote R := ΠSYf +Uf and Q := ΠSZf . Then,

ΠR⊥ ΠSYr = T dk ΠR⊥Ur, (26)
ΠQ⊥ ΠSZr = ΥL ΠQ⊥Uf , (27)

where S = Yp + Up + Uf + Ur. Furthermore,

E
[

(ΠR⊥Ur)
(
ΠR⊥Ur

)∗ ]
> 0, (28)

E
[

(ΠQ⊥Uf )
(
ΠQ⊥Uf

)∗ ]
> 0. (29)

Proof. Projecting Equations (17) and (23) onto S gives

ΠSYr = OkΠSXr + T dk Ur, (30)

ΠSZr = OkAkΠSXf + ΥLUf . (31)

From Theorems 5.1 and 5.2, we have ΠSXr ⊂ R and ΠSXf ⊂ Q. Thus, we can isolate T dk and
ΥL by the corresponding orthogonal projection. Furthermore, the direct sum property stated in
Theorems 5.1 and 5.2 gives (28) and (29).

It can been seen that the matrices T dk and ΥL can directly be determined from Equations (26)
and (27) in Corollary 6.1. However, recall that T dk is a lower triangular Toeplitz matrix composed
of h0, . . . , hk−1, and ΥL a lower triangular Toeplitz matrix composed of hk, . . . , h2k−1. In
practice such a T dk and a ΥL may not be a perfect lower triangular Toeplitz matrix. As a result,
a direct extraction of the Markov parameters may not be possible since several values of a single
Markov parameter may be obtained in the corresponding entries in the Toeplitz matrix. Owing
to this consideration, another method of extracting the Markov parameters is proposed.

First, consider Equation (26). Partition the following matrices:

Π(ΠSYf+Uf )⊥ΠSYr =:


S1

S2
...
Sk

 and Π(ΠSYf+Uf )⊥Ur =:


P1

P2
...
Pk

 ,
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with obvious dimensions. From Inequality (28), we have Π(ΠSYf+Uf )⊥Ur of full row rank. Define
S and P as:

S :=
[
S1 S2 · · · Sk

]
and P :=


P1 P2 · · · Pk

P1 · · · Pk−1

. . .
...

0 P1

 ,
where P is of full row rank as well. Furthermore, it can be seen without difficulty that

S = HP,

where H :=
[
h0 h1 · · · hk−1

]
. Thus least-squares solutions for the first k Markov parameters

can be obtained as
H = SP ∗(PP ∗)−1.

To solve for the next k Markov parameters hk, . . . , h2k−1, we can simply repeat this procedure
with Equation (27).

7 Kalman Filter State Estimation

Van Overschee and De Moor [25] showed that the state sequence Xk projected onto the input-
output space S was actually a state sequence estimate, running through the following Kalman
filter with some initial condition X̂0:

X̂t = AX̂t−1 +BUt−1 +Kt−1(Yt−1 − CX̂t−1 −DUt−1), (32a)

Kt−1 = (G+AP̃t−1C
∗)(Λ0 + CP̃t−1C

∗)−1, (32b)

P̃t = AP̃t−1A
∗ − (G+AP̃t−1C

∗)(Λ0 + CP̃t−1C
∗)−1(G+AP̃t−1C

∗)∗, (32c)

where

P̃0 + Σs :=
1
q
E
(

[X0 − X̂0] [X0 − X̂0]∗
)
. (33)

Note also that extension to the partial stochastic excitation case can be found in [5, 9]. In
this section, a new method is derived for estimating the Kalman filter state sequences ΠSXk

and ΠS+YkXk+1. This method first determines the initial Markov parameters, then isolates the
terms O2k−1ΠSXk and O2k−1ΠS+YkXk+1 from the data equations, and finally factors out O2k−1

using a singular value decomposition.

Suppose that the first 2k Markov parameters have already been determined — we have already
seen how they can be obtained using a three-block partition of the block-Hankel matrices. Then,
it is easy to see that [

Yf
Yr

]
− T d2k

[
Uf
Ur

]
= O2kXf + T w2k

[
Wf

Wr

]
+
[
Vf
Vr

]
.

12



Projecting the above equation onto S = Yp + Up + Uf + Ur gives

ΠS

[
Yf
Yr

]
− T d2k

[
Uf
Ur

]
= O2kΠSXf . (34)

The main idea now is to extract the terms O2k−1ΠSXk and O2k−1ΠSXk+1 from the data equa-
tions. To this end, we introduce two more matrices UU and UL, each of which has one block row
(U3k−1 or Uk) deleted, in the following way:

[
Uf
Ur

]
=

 Uk
...

U3k−1

 =

 UU

U3k−1

 =


Uk

UL

 . (35)

We define YU and YL similarly. Thus, as in Equation (34) we have

ΠSYU − T d2k−1UU = O2k−1ΠSXk, (36)

ΠS+YkYL − T d2k−1UL = O2k−1ΠS+YkXk+1. (37)

Finally, we separate the observability matrix and the Kalman filter states using a singular value
decomposition:

[
ΠSYU ΠS+YkYL

]
− T d2k−1

[
UU UL

]
=:
[
Γ1 Γ2

] [Σ1 0
0 0

] [
Ω∗1
Ω∗2

]
. (38)

Then, in some particular state coordinates we have

O2k−1 = Γ1Σ
1
2
1 , and

[
ΠSXk ΠS+YkXk+1

]
= Σ

1
2
1 Ω∗1.

An important property of the two Kalman filter state estimate sequences ΠSXk and ΠS+YkXk+1

is that they are sequences of two consecutive state estimates from the same Kalman filter bank.
In [25] it has been shown that for the full stochastic excitation case (or Equation (5) positive
definite for t = τ), these two state estimates can be obtained from the same Kalman filter with
initial state estimate ΠUX0, where U := Up + Uf + Ur. It is also shown in [5, 8] that even if
the system is not fully stochastically excited, the above statement remains true. In general, the
initial conditions for ΠSXk and ΠS+YkXk+1 are respectively Π(Ydp∩Yp)+UX0 and Π(Yd+p ∩Y+

p )+UX0,

where Yd+p := Ydp +Ydk and Y+
p := Yp+Yk. However, it is also shown that as long as k is greater

than the observability index, we have

(Ydp ∩ Yp) + U = (Yd+p ∩ Y+
p ) + U .

This is also to say that the two state estimates are from the same Kalman filter with the same
initial condition.

13



8 Modeling of the Deterministic Part

In this section, three different approaches are presented for estimating the system matrices A, B,
C, D. One method is to extract the system matrices directly from the initial Markov parameters
in a similar fashion as in Kung’s algorithm. The second method determines system matrices
using the shift invariance approach. Finally, the third method, extended from [10], determines
system matrices using the state sequence approach.

8.1 A Markov Parameter Approach

One effective way of finding system matrices from Markov parameters is to use Kung’s algorithm.
The procedure is the following. First determine the initial 2k Markov parameters as in Section 6.
Then, construct the block-Hankel matrix H as:

H :=

h1 h2 · · · hk
... ... ... ...

hk hk+1 · · · h2k−1

 .
Decompose the block Hankel matrix using SVD, and follow the standard Kung’s algorithm as
in [18].

If the block-Hankel matrix is formed instead as

H :=

 h1 · · · h2k−1
...

... 0
h2k−1 0 0


then a balanced (and hence asymptotically stable) approximation can be obtained in a very
simple fashion for rapidly decaying systems. By ‘rapidly decaying’ we mean that all eigenvalues
of A are relatively close to zero, so that the first 2k Markov parameters contain all the significant
dynamics of the system.

However, to determine the stochastic part of the system, Kalman filter state sequences are
needed. Instead of calculating the SVD of (38), we compute the following SVD: h1

... ΠSYU − T d2k−1UU ΠS+YkYL − T d2k−1UL
h2k−1

 =:
[
Γ1 Γ2

] [Σ1 0
0 0

] [
Ω∗1
Ω∗2

]
.

It can be seen from (36) and (37) that this can also be written as:

O2k−1

[
B ΠSXk ΠS+YkXk+1

]
= Γ1Σ1Ω∗1.
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In some particular state coordinates, we have

O2k−1 = Γ1Σ
1
2
1 ,

[
B ΠSXk ΠS+YkXk+1

]
= Σ

1
2
1 Ω1.

Clearly, B, ΠSXk, and ΠS+YkXk+1 are obtained in this way, whereas D is simply equal to h0.
A and C can be obtained from Ok by using the shift invariance property, as shown in (39) in
the next subsection.

8.2 A Shift Invariance Approach

The identification method using the shift invariance property is more complicated and requires
a greater computational effort compared with the other two methods mentioned in this section.
However, these shortcomings are usually considered to be outweighed by its ability to provide a
better fit to the data.

In this method, we first determine O2k−1 and ΠSXf as in Section 7. In practice, there may
not exist matrices A and C which fit O2k−1 perfectly, due to sampling error. A commonly used
remedy is to find the best A and C in the least-squares sense with the use of the shift invariance
property:

C = γ1 and A =

 γ1
...

γ2k−2


†  γ2

...
γ2k−1

 , where O2k−1 =

 γ1
...

γ2k−1

 . (39)

Reconstruct O2k from A and C. Now, from Equation (34) it is not hard to see

ΠS

[
Yf
Yr

]
−O2kΠSXf = T d2k

[
Uf
Ur

]
.

Again, in practice there may not exist matrices B and D which fit the above equation perfectly.
To solve for B and D from the above, we first note that

T d2k
[
Uf
Ur

]
=

 I 0
0
0
O2k−1

[D
B

]
Uk +

 0 0
I
0

0
O2k−2

[D
B

]
Uk+1 + · · ·

+

 0 0
0
I

0
0

[D
B

]
U3k−1.

Furthermore, note that B and D appear linearly in the equation. Using the Kronecker product
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(see for instance [14]), we have

vec
(
T d2k
[
Uf
Ur

])
=

U∗k ⊗
 I 0

0
0
O2k−1

 vec
([
D
B

])

+

U∗k+1 ⊗

 0 0
I
0

0
O2k−2

 vec
([
D
B

])
+ · · ·

+

U∗3k−1 ⊗

 0 0
0
I

0
0

 vec
([
D
B

])
. (40)

Here, ⊗ denotes the Kronecker product and vec denotes the vector operation, i.e. stacking the
columns of the matrix on top of each other in a vector. Thus, from the above equation the least-
squares solutions for B and D can easily be acquired by taking the appropriate pseudo-inverse.
Finally, note that discussion on stability enforcement can be found in [6].

8.3 A State Sequence Approach

In the shift invariance approach, we have already seen that the matrices A and C are first
determined, and then the matrices B and D. However, in determining B and D, Kronecker
products are employed to convert the data equation into a matrix-vector form. For this reason,
numerical complexity can increase dramatically if a large amount of data is used. In [25],
an alternative method, which is known as the state sequence approach, is proposed. Such a
method has also been used for deterministic identification in [21]. In a combined deterministic-
stochastic setup, this method reduces the complexity of the numerical calculation, but in some
algorithms at the expense of introducing a bias in the estimates. Loosely speaking, this bias
can be regarded as resulting from the fact that initial Markov parameters are not available.
Consequently, inconsistent Kalman filter state sequences, in the sense that their initial conditions
are not consistent, are obtained for different time instants. Further detail regarding this issue is
omitted here but can be found in more depth in [25].

As seen at the end of Section 7, ΠSXk and ΠS+YkXk+1 are Kalman filter state sequences with
consistent initial conditions. Consequently, denoting X̂k := ΠSXk and X̂k+1 := ΠS+YkXk+1, we
have

X̂k+1 = AX̂k +BUk +Kk(Yk − CX̂k −DUk), (41a)

Yk = CX̂k +DUk + (Yk − CX̂k −DUk). (41b)

These equations can also be written as:[
X̂k+1

Yk

]
=
[
A B
C D

] [
X̂k

Uk

]
+
[
Kk

I

]
(Yk − CX̂k −DUk).
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In [25], it is pointed out that Yk − CX̂k −DUk is orthogonal to X̂k and Uk. More precisely, we
have

E
[

(Yk − CX̂k −DUk)(X̂k)∗
]

= E
[

(Yk − CX̂k −DUk)(Uk)∗
]

= 0.

Consequently, unbiased estimates can be obtained from a least-squares solution:[
A B
C D

]
= E

[(
X̂k+1

Yk

)(
X̂k

Uk

)∗ ]
E
[(

X̂k

Uk

)(
X̂k

Uk

)∗ ]−1

.

Note that the conditions for the above covariance matrix to be invertible are covered in [5, 8].
In practice, with real data, this unbiasedness is obtained asymptotically as N →∞, although k
can remain fixed.

Again, for a discussion of stability enforcement with the state-sequence approach we refer to [6].

9 Modeling of the Stochastic Part

In this section, we will follow the method proposed in [24, 25] to model the stochastic subsystem.
With A, B, C, D, X̂k and X̂k+1 determined, this method uses (41) to estimate the steady state
covariances Σw, Σwv and Σv. However, since Equations (41) are not in steady state, there is
some approximation error. Nonetheless, as pointed out in [27] this approximation error will grow
smaller, as the number of blocks k grows larger.

The stochastic identification procedure is summarized as follows. First determine A, B, C, D,
X̂k and X̂k+1 as in the previous sections. Now, let[

εw
εv

]
=
[
X̂k+1

Yk

]
−
[
A B
C D

] [
X̂k

Uk

]
.

Then, obtain the approximation:[
Σw Σwv

Σvw Σv

]
≈ 1
q
E
[(
εw
εv

)(
εw
εv

)∗]
. (42)

Solve Σs, G, and Λ0 from:

Σs = AΣsA∗ + Σw; (43a)
G = AΣsC∗ + Σwv; (43b)

Λ0 = CΣsC∗ + Σv. (43c)

Finally, the Kalman filter gain K and the associated covariance matrix P can be solved from:

K = (G+APC∗)(Λ0 + CPC∗)−1, (44a)

P = APA∗ − (G+APC∗)(Λ0 + CPC∗)−1(G+APC∗)∗. (44b)

A final remark will be drawn about the positive realness of the resulting stochastic subsystem.
From (42), it can be seen that covariance of the process and output noises is nonnegative definite.
Thus, as shown in [13] positive realness of the resulting stochastic subsystem is guaranteed.
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10 Numerically Efficient Implementation by QR Factorization

In practice, QR factorization has been shown to be a reliable and efficient way of implementing
subspace algorithms1. Both the MOESP algorithms in [28] and the N4SID algorithms in [25] use
QR factorization to speed up numerical computation. To implement an efficient algorithm for
the identification scheme developed in this paper, the following QR factorization is computed:

Uf
Ur
Up
Yp
Yf
Yr

 =:



R11 0
R21 R22

R31 R32 R33

R41 R42 R43 R44

R51 R52 R53 R54 R55

R61 R62 R63 R64 R65 R66





Q1

Q2

Q3

Q4

Q5

Q6

 =: RQ. (45)

Note that the above arrangement of the data blocks shares a similar structure with that used in
the MOESP PO scheme [28], both having the past data blocks placed in the center.

The major advantage of this factorization is that sequences projected onto S = Yp+Up+Uf +Ur
are easily obtained by eliminating the Q5 and Q6 components. That is,

ΠS

[
Yf
Yr

]
=
[
R51 R52 R53 R54 0 0
R61 R62 R63 R64 0 0

]
Q.

The following subsections show how this factorization facilitates the computation of Markov
parameters and Kalman filter state sequences.

10.1 Determination of the First k Markov Parameters

From the QR factorization in Equation (45), a smaller QR factorization is computed:R52 R53 R54

R22 0 0
R62 R63 R64

 =:

R̂52 0 0
R̂22 R̂23 0
R̂62 R̂63 R̂64

Q̂2

Q̂3

Q̂4

 . (46)

1In the literature of subspace idenitfication it is common to use the term RQ factorization, because the factor-
ization used is one in which the triangular R factor comes before the orthogonal Q factor. This is sometimes called
the LQ factorization. We prefer to use the term QR factorization, since this is the commonly used terminology
in the linear algebra literature
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It will been seen in Proposition 10.1 that T dk can in fact be determined from this factorization.
Also, with this smaller factorization we immediately obtain the following factorization:

ΠS


Uf
Yf
Ur
Yr

 =


R11 0 0 0
R51 R52 R53 R54

R21 R22 0 0
R61 R62 R63 R64



Q1

Q2

Q3

Q4

 =


R11 0 0 0
R51 R̂52 0 0
R21 R̂22 R̂23 0
R61 R̂62 R̂63 R̂64



I 0
0 Q̂2

0 Q̂3

0 Q̂4



Q1

Q2

Q3

Q4

 =: R̂Q̂.

(47)

Proposition 10.1. Suppose Equation (20) holds. Then, for R̂23 and R̂63 defined in Equa-
tion (46), we have

R̂63 = T dk R̂23.

Proof. By Theorem 5.1 we have ΠSYr ⊂ ΠSYf + Uf + Ur. This implies R̂64 = 0. Now, let
R := ΠSYf + Uf . From Equation (47), it is easy to see that

ΠR⊥Ur =
[
0 0 R̂23 0

]
Q̂,

ΠR⊥ΠSYr =
[
0 0 R̂63 0

]
Q̂.

Thus, by Corollary 6.1 the result follows.

Using the QR factorization in (46) and Proposition 10.1, we can determine h0, . . . , hk−1 by
following the procedure described in Section 6.

Remark 10.1. It is noteworthy that the QR factorization in Equation (46) requires much less
numerical calculation than that in Equation (45). 4

10.2 Determination of the Next k Markov Parameters

With Markov parameters h0, . . . , hk−1, we can construct ΥU as in Equation (12). The next step
is to determine ΠSZf and ΠSZr as in Equation (21). From Equation (47), we have

ΠSZf = ΠSYf − T dk Uf
=
[
R51 R̂52 0 0

]
Q̂− T dk

[
R11 0 0 0

]
Q̂

=:
[
R̄51 R̂52 0 0

]
Q̂;

and

ΠSZr = ΠSYr −
[
ΥU T dk

] [Uf
Ur

]
=
[
R61 R̂62 R̂63 R̂64

]
Q̂−

[
ΥU T dk

] [R11 0 0 0
R21 R̂22 R̂23 0

]
Q̂

=:
[
R̄61 R̄62 R̄63 R̂64

]
Q̂.

19



To obtain the next k Markov parameters, another small QR factorization, similar to that in
Equation (46), is computed: R̄51 R̂52

R11 0
R̄61 R̄62

 =:

R̃51 0
R̃11 R̃12

R̃61 R̃62

[Q̃1

Q̃2

]
. (48)

Note that ΥL can be determined from the above QR factorization. To see how, we first observe
the following factorization which can be obtained immediately from the above QR factorization:

ΠS

ZfUf
Zr

 =

R̄51 R̂52 0 0
R11 0 0 0
R̄61 R̄62 R̄63 R̂64

 Q̂ =

R̃51 0 0 0
R̃11 R̃12 0 0
R̃61 R̃62 R̄63 R̂64

Q̃1 0
Q̃2 0
0 I

 Q̂ =: R̃Q̃. (49)

Proposition 10.2. Suppose Equation (20) holds. Then, for R̃12 and R̃62 defined in Equa-
tion (48), we have

R̃62 = ΥLR̃12.

Proof. By Theorem 5.2 we have ΠSZr ⊂ ΠSZf + Uf . This implies R̄63 = R̂64 = 0. Now, let
Q := ΠSZf . From Equation (49), it is easy to see that

ΠQ⊥Uf =
[
0 R̃12 0 0

]
Q̃,

ΠQ⊥ΠSZr =
[
0 R̃62 0 0

]
Q̃.

Thus, by Corollary 6.1 the result follows.

Using the QR factorization in (48) and Proposition 10.2, we can determine hk, . . . , h2k−1 by
following the procedure described in Section 6.

10.3 Determination of Kalman Filter State Sequences

The determination of Kalman filter state sequences is relatively straightforward. The first step
is to extract UU , UL, YU and YL, which are defined in Equation (35). To obtain these block
Hankel matrices, we can simply repartition the QR factorization in Equation (45) as:

UU
U3k−1

Up
Yp
YU
Y3k−1

 =:



R+
11

R−21 R−22

R31 R32 R33

R41 R42 R43 R44

R+
51 R+

52 R+
53 R+

54 R+
55

R−61 R−62 R−63 R−64 R−65 R−66

Q := RQ, (50)
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and 

Uk
UL
Up
Yp
Yk
YL

 =:



R−11

R+
21 R+

22

R31 R32 R33

R41 R42 R43 R44

R−51 R−52 R−53 R−54 R−55

R+
61 R+

62 R+
63 R+

64 R+
65 R+

66

Q := RQ. (51)

Using the first 2k Markov parameters determined in the previous subsections, we reconstruct
T d2k−1. Consequently, Equations (36) and (37) can be rewritten as:

O2k−1 ΠSXk = ΠSYU − T d2k−1UU

=
[
R+

51 R+
52 R+

53 R+
54 0 0

]
Q− T d2k−1

[
R+

11 0 0 0 0 0
]
Q

=:
[
R̄+

51 R+
52 R+

53 R+
54 0 0

]
Q,

and

O2k−1 ΠS+YkXk+1 = ΠS+YkYL − T d2k−1UL

=
[
R+

61 R+
62 R+

63 R+
64 R+

65 0
]
Q− T d2k−1

[
R+

21 R+
22 0 0 0 0

]
Q

=:
[
R̄+

61 R̄+
62 R+

63 R+
64 R+

65 0
]
Q.

Finally, the following SVD is computed:

[ R̄+
51 R+

52 R+
53 R+

54 0 0 R̄+
61 R̄+

62 R+
63 R+

64 R+
65 0 ] =:

[
Γ1 Γ2

] [Σ1 0
0 0

] [
Ω∗1
Ω∗2

]
.

Then, we have

O2k−1 = Γ1Σ
1
2
1 , and

[
ΠSXk ΠS+YkXk+1

]
= Σ

1
2
1 Ω∗1Q.

Finally, schematic overviews of the algorithms developed in this paper can be found in Fig-
ures 1, 2, and 3.

11 Case Studies

Various aspects of the performance of the subspace algorithms presented in this paper are inves-
tigated in two case studies. These case studies are based on data taken from industrial systems.
Both sets of data are available in the DAISY database [11], and both have also been investigated
in [4].

• The first example, presented in Section 11.1, is based on step responses of a simulation
model of a fractional distillation column.
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• The second example, presented in Section 11.2, is based on a set of process measurements
recorded from an industrial dryer.

H∞ and H2 model errors are not used commonly as performance indicators in the identification
literature, since the true generating system is not usually available. But in the first example it is
possible to obtain a very high-order model which fits the step response data exactly, and consider
that model to be the ‘true system’. We are therefore able to investigate H∞ and H2 measures
of performance. One purpose of such a study is to reveal how well the algorithms perform in
extracting system dynamics within a certain model order. In the second example performance
is measured in a more classical fashion, namely in terms of simulation and prediction accuracy.

As it is difficult to judge the performance of identification algorithms in an absolute sense,
throughout the case studies a rather well-known subspace identification algorithm, N4SID Ro-
bust Combined Algorithm [27, p. 131], is used as a reference method, whose performance is
provided for comparison with our algorithms. Note that this reference algorithm has been en-
coded as a MATLAB m-file subid.m, which can be found in [27].

11.1 A Distillation Column

The data is the step response of a very detailed nonlinear simulation model of a fractional distil-
lation column with 3 input channels: the input cooling temperature, the reboiling temperature,
and the pressure, and 2 output channels: the top product flow rate and the C4 concentration.
Step responses were determined by applying a step to each of the input channels, while keeping
the other two input channels at zero. The responses from the output channels were then sampled
at a rate of once every second for a period of 2500 seconds, giving a total of 2501 samples.

The ‘True Model’

Since the dynamics of the column are very slow, we re-sampled the data with a sampling interval
of 30 seconds, leaving a total of 84 samples. We then converted the step responses to impulse
responses by taking successive differences, and used these to generate a high-order ‘true system’
that reproduced these impulse responses perfectly.

As pointed out in [3], it is important to make sure that the the input-output channels are scaled,
so that they are all weighted comparably. A good basis for appropriate scaling is the energy
content of each input-output channel, calculated as the sum of squares of all data points of the
corresponding impulse response. Thus the input-output channels were rescaled according to the
scheme developed in [3]. The final scaled step responses are depicted in Figure 4.

Identification Data
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Algorithm 10.3 Algorithm 10.4 Algorithm 10.5 N4SID Algorithm
Order

H∞ Err H2 Err H∞ Err H2 Err H∞ Err H2 Err H∞ Err H2 Err

4 39.2 16.96 26.4 13.84 21.8 13.65 35.0 13.86

6 7.9 3.44 8.1 3.27 7.9 3.25 12.3 3.54
8 7.8 2.61 7.3 2.61 7.6 2.62 11.1 2.98

10 8.2 2.25 9.8 2.34 8.5 2.26 14.7 2.80

12 6.6 1.84 6.3 1.83 6.8 1.86 7.8 1.95

Table 1: Accuracy of distillation column models in the noise free case.

Two sets of data, each of length N = 1000, were generated from the ‘true system’, with an
initial condition vector generated as normal random variables and an input signal generated by
uniform random variables distributed in [0, 1]. Furthermore, one set of simulation data was left
noise-free, whereas the other was corrupted by white process and output noises of variance 0.15.

Performance Measurement

The proposed identification algorithms, Algorithms 10.3–10.5, were applied to these two sets
of data. Note that the original model has a H∞ norm of 247.6 and a H2 norm of 75.63. The
performance of the proposed algorithms and of the N4SID algorithm is given in Table 1 for the
noise-free case and Table 2 for the noise-corrupted case. Note that algorithms which give the
smallest H∞ or H2 error are highlighted for each model order.

Figures 5 and 6 show the frequency responses of the original model and the 8-th order identified
models in the noise free and noise corrupted case respectively. For a clear view, only models
produced by Algorithm 10.5 and N4SID algorithm are displayed for comparison. On the other
hand, the errors of the identified models, measured as the maximum singular value of the dif-
ference from the original model, are plotted for each frequency in Figures 7 and 8. From these
figures, it is easy to verify the H∞ errors calculated earlier. At this point, some observations
can be drawn from the tables and figures as follows:

• The proposed algorithms seems to be less sensitive to noise and provide better models for
most estimates of the state dimension n (the ‘order’).

• Algorithm 10.5 seems to be least sensitive to the choice of state dimension.

As regards computational complexity, Algorithms 10.3–10.5 needed about 135M , 134M , and
156M floating point operations respectively for the 8-th order models, while the N4SID algorithm
required about 142M floating point operations. Finally, note that the truncation index k for
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Algorithm 10.3 Algorithm 10.4 Algorithm 10.5 N4SID Algorithm
Order

H∞ Err H2 Err H∞ Err H2 Err H∞ Err H2 Err H∞ Err H2 Err

4 42.6 16.80 32.3 14.14 28.7 13.92 36.1 14.13

6 20.1 5.05 42.7 7.03 26.8 5.86 23.6 5.31
8 17.2 4.15 14.7 4.31 14.6 4.29 31.2 5.38

10 13.9 4.08 13.6 3.96 14.7 3.98 83.7 11.18

12 21.1 4.49 22.9 4.42 17.7 3.96 86.1 9.79

Table 2: Accuracy of distillation column models in the noise corrupted case.

Algorithms 10.3–10.5 was chosen to be 15, whereas for the N4SID algorithm it was chosen to
be 23. The rationale for choosing these values is explained below.

The results with these values of k can be seen in Tables 1 and 2. In each case, it can be observed
that as we increase the model order, initially the model quality improves, as judged by both the
H∞ norm and the H2 norm. Beyond some model order, however, the performance deteriorates.
As is to be expected, this point is reached sooner for the noise-corrupted data set than for the
noise-free data set.

Determination of the Truncation Index

A difficulty in using subspace based methods is choosing a suitable truncation index k. As the
model order is determined from some matrix closely related to OkXf , increasing k will provide
more information about Ok, or equivalently the dynamics of the pair (A,C), which is certainly
of importance when principal components are to be extracted from this pair. Nevertheless, an
increase in k obviously decreases the number of columns q in Xf , creating two shortcomings.
First of all, since Xf intrinsically contains information about the controllability pair (A,B),
decreasing q will reduce the information relating to the pair (A,B), giving a similar problem
mentioned above. On the other hand, these columns in Xf actually have an averaging effect on
the data in each row, so they have the capability of smoothing the observations. Therefore, if
q is small, there is relatively little smoothing. The effects of various k values on the accuracy
of pole estimation have been made in [32, 15, 16], while some rigorous statistical treatments of
this issue can be found in [12, 23].

When Algorithms 10.3–10.5 were applied to the two sets of simulation data, the value of k
was chosen to give approximately optimal performance for both data sets, and a range of model
orders. As remarked above, the best choice of k was markedly different for our 3-block algorithms
than for the N4SID algorithm.
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Algorithm 10.3 Algorithm 10.4 Algorithm 10.5 N4SID Algorithm
Order

Sim Err Pre Err Sim Err Pre Err Sim Err Pre Err Sim Err Pre Err

2 35.26 22.18 39.30 19.77 31.90 16.55 32.72 15.19

4 31.69 10.36 32.40 9.90 30.66 9.12 33.33 9.26
6 33.96 9.22 32.21 8.86 30.72 8.18 31.17 8.11

8 48.09 8.58 31.10 8.03 29.72 7.60 31.83 7.68

10 36.77 8.00 33.62 7.62 30.05 7.73 — 9.22

Table 3: Simulation errors and prediction errors for the identification data set of an industrial
dryer.

11.2 An Industrial Dryer

For the second example, data are taken from an industrial drying process with 3 input channels:
fuel flow rate, hot gas exhaust fan speed, and rate of flow of raw material, and 3 output channels:
dry bulb temperature, wet bulb temperature, and moisture content of the raw material leaving
the dryer. The first two inputs could be manipulated, and were generated as pseudo-random
binary signals. The third input is an external disturbance which could not be manipulated but
could be measured. Values of the input and output signals were recorded at a sampling interval
of 1 second to obtain 11665 samples.

Pretreatment of Data

The first 3000 data points were discarded to ensure that the process had reached a steady
operating point. The means of the samples were subtracted from the data, then both input
and output data were filtered through an anti-aliasing filter, before re-sampling at an interval
of 10 seconds. As a result, a data set of 867 data points was obtained, which is depicted in
Figure 9. As in [4], we divided the data set into two subsets, the first one containing the first
600 data points being used for identification, while the second one containing the rest being used
for model validation.

‘Performance Measurement

Algorithms 10.3–10.5 were applied to the identification data set to obtain state-space models
of various orders. A commonly used performance indicator, which measures the discrepancy
between the original output and the model output as

% Error =
1
p

p∑
i=1

√√√√∑N−1
j=0 (yi(j)− ŷi(j))2∑N−1

j=0 (yi(j))2
× 100,

was used to judge the fitness of each model produced by each algorithm in this example. Here,
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yi(t) is the i-th channel of the original output, N is the number of the data points in the data
set, and p is the number of output channels, which is 3 in this case. On the other hand, ŷi(t)
represents either the simulated i-th output generated by the deterministic part of the model,
with which simulation errors are measured, or the one-step ahead predicted i-th output, with
which prediction errors are measured. As the data set is divided into the identification and
validation data sets, simulation errors and prediction errors can be evaluated for each of these
sets, producing four performance indices. These indices are given in Table 3 for the identification
data set and Table 4 for the validation data set. Note that an entry with “—” in the tables
indicates that the identified model is unstable, thus giving a large error. Moreover, algorithms
with best performance in each category are highlighted for easier comparison.

To illustrate the effect of Kalman filters, Figure 10 shows the simulation outputs (generated by
the deterministic part of the models) and the prediction outputs (generated by the full models
with Kalman filters) for the identification data set. From this figure, it is clear that models with
Kalman filters can produce much better predictions. To avoid confusion, only models produced
by Algorithm 10.5 and the N4SID algorithm are displayed for comparison. On the other hand,
Figure 11 shows simulation outputs and cumulative simulation errors for the validation data set,
where the cumulative error at time t is the error computed up to time t:∑t−1

j=0 (yi(j)− ŷi(j))2.

The reason for plotting these cumulative errors is that it is difficult to distinguish between the
performance of both algorithms just by inspecting the simulation outputs. Here, it can be seen
that the model produced by Algorithm 10.5 is slightly better than that produced by the N4SID
algorithm. Finally, prediction outputs and cumulative prediction errors for the validation data
set are depicted in Figure 12. This time, Algorithm 10.5 gives a better fit to the first two outputs,
whereas the N4SID algorithm gives a better fit to the third output. At this point, we observer
that:

• Algorithm 10.5 seems to produce the best model in terms of simulation and prediction
errors, both in identification and validation, and more distinctly in terms of simulation
errors for the identification data set.

• models obtained by Algorithms 10.3–10.5 improve, in terms of prediction errors, each time
the model order increases up to an order of 10.

• Algorithm 10.3 does not seem to be as robust as the others, as it is not consistent in
producing good estimates of various orders.

Algorithms 10.3–10.5 required about 12.3M , 9.0M , and 4.3M floating point operations respec-
tively for the 6-th order models, while the N4SID algorithm used about 6.0M floating point
operations for the same order. The number of floating point operations in fact depends heavily
on the truncation index k used in the algorithms. For Algorithms 10.3–10.5, the truncation
indices were set to 5, 4, and 3 respectively whereas for the N4SID algorithm it was set to 5.
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Algorithm 10.3 Algorithm 10.4 Algorithm 10.5 N4SID Algorithm
Order

Sim Err Pre Err Sim Err Pre Err Sim Err Pre Err Sim Err Pre Err

2 59.20 29.59 57.02 25.19 59.72 21.17 58.72 18.52

4 61.56 12.25 64.13 11.92 60.00 11.01 64.84 11.82
6 68.23 11.24 61.20 10.35 60.20 9.53 61.19 9.27

8 88.99 11.11 58.19 9.12 58.22 8.81 56.89 9.07

10 65.09 9.44 53.58 8.22 59.05 8.13 — 10.15

Table 4: Simulation errors and prediction errors for the validation data set of an industrial dryer.

12 Conclusions

In this paper, a new approach to subspace identification, using three-block partitions of data
matrices, has been presented. each of the three blocks can be seen as serving a a different
function — either an instrumental variable, a Kalman filter state observer, or a computational
data set. Numerically efficient implementation using QR factorization has also been developed.

A significant advantage of the new approach is that it gives unbiased estimates of the system
matrices with the state sequence approach in a straightforward way. It is also noteworthy that
in estimating the observability matrix and the Kalman filter state sequence, all components
relating to the input sequences are first removed, as in Equations (36) and (37). As a result,
any negative effects due to ill conditioning of the input signals are minimized. One drawback
of the proposed method is that it has a relatively complicated overall procedure, in which two
additional QR factorizations (46) and (48) are required. Nonetheless, one can argue that these
QR factorizations should not adversely affect the performance of the algorithms, as they are
numerically robust and of relatively small size.

The proposed algorithms have been assessed by means of two case studies. These suggest
that Algorithm 10.3 is less robust than the other two algorithms. The reason for this is that
in determining the system matrices, this algorithm computes the matrices directly from the
estimated Markov parameters without referring to the input-output data for a second time.
Regarding Algorithm 10.4, it is demonstrated that this algorithm could identify the deterministic
part of a system fairly well, while identification of the Kalman filter could be improved. The
studies in this paper also show that the performance of Algorithm 10.5 is satisfactory, at a
level comparable to that of the N4SID algorithm. Furthermore, in quite a number of cases the
algorithm indeed produces better models under various measures, namely the H∞ error, the H2

error, the simulation error, and the prediction error.
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Algorithm 10.3. ID via MP Estimation — A Markov Parameter Appr.

1. Construct Up, Uf , Ur and Yp, Yf , Yr as in Equation (14).

2. Determine h0, . . . , hk−1 from:

ΠR⊥ΠSYr = T dk ΠR⊥Ur, for R := ΠSYf + Uf .

3. Compute Zf and Zr as in (21). Then determine hk, . . . , h2k−1 from:

ΠQ⊥ΠSZr = ΥL ΠQ⊥Uf , for Q := ΠSZf .

4. Extract UU , UL and YU and YL as in (35). Calculate the following SVD and
partition accordingly by selecting an model order: h1

... ΠSYU − T d2k−1UU ΠS+YkYL − T d2k−1UL
h2k−1

=:
[
Γ1 Γ2

] [Σ1 0
0 0

] [
Ω∗1
Ω∗2

]
.

5. Assign D = h0. Determine O2k−1, B, ΠSXk and ΠS+YkXk+1 as:

O2k−1 = Γ1Σ
1
2
1 , and

[
B ΠSXk ΠS+YkXk+1

]
= Σ

1
2
1 Ω∗1.

6. Determine A and C from O2k−1 using the shift invariance property, as in (39).

7. Determine Σw, Σv, and Σwv by taking the covariance of:[
εw
εv

]
:=
[
ΠS+YkXk+1

Yk

]
−
[
A B
C D

] [
ΠSXk

Uk

]
.

8. Determine Kalman filter gain K and the error covariance matrix P using (43)
and (44).

Figure 1: A schematic overview of the subspace identification via Markov parameter estimation
— a Markov parameter approach.
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Algorithm 10.4. ID via MP Estimation — A Shift Invariance Approach

1. Construct Up, Uf , Ur and Yp, Yf , Yr as in Equation (14).

2. Determine h0, . . . , hk−1 from:

ΠR⊥ΠSYr = T dk ΠR⊥Ur, for R := ΠSYf + Uf .

3. Compute Zf and Zr as in (21). Then determine hk, . . . , h2k−1 from:

ΠQ⊥ΠSZr = ΥL ΠQ⊥Uf , for Q := ΠSZf .

4. Extract UU , UL and YU and YL as in (35). Calculate the following SVD and
partition accordingly by selecting an model order:

[
ΠSYU ΠS+YkYL

]
− T d2k−1

[
UU UL

]
=:
[
Γ1 Γ2

] [Σ1 0
0 Σ2

] [
Ω∗1
Ω∗2

]
.

5. Determine O2k−1, ΠSXk and ΠS+YkXk+1 as:

O2k−1 = Γ1Σ
1
2
1 , and

[
ΠSXk ΠS+YkXk+1

]
= Σ

1
2
1 Ω∗1.

6. Determine A and C from O2k−1 using the shift invariance property, as in (39).

7. Reconstruct O2k. Solve for B and D as in (40) from:

B,D = arg min
B,D

∥∥∥∥ ΠS

[
Yf
Yr

]
−O2kΠSXk − T d2k(B,D)

[
Uf
Ur

] ∥∥∥∥
F

.

8. Determine Σw, Σv, and Σwv by taking the covariance of:[
εw
εv

]
:=
[
ΠS+YkXk+1

Yk

]
−
[
A B
C D

] [
ΠSXk

Uk

]
.

9. Determine Kalman filter gain K and the error covariance matrix P using (43)
and (44).

Figure 2: A schematic overview of the subspace identification via Markov parameter estimation
— a shift invariance approach.
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Algorithm 10.5. ID via MP Estimation — A State Sequence Approach

1. Construct Up, Uf , Ur and Yp, Yf , Yr as in Equation (14).

2. Determine h0, . . . , hk−1 from:

ΠR⊥ΠSYr = T dk ΠR⊥Ur, for R := ΠSYf + Uf .

3. Compute Zf and Zr as in (21). Then determine hk, . . . , h2k−1 from:

ΠQ⊥ΠSZr = ΥL ΠQ⊥Uf , for Q := ΠSZf .

4. Extract UU , UL and YU and YL as in (35). Calculate the following SVD and
partition accordingly by selecting an model order:

[
ΠSYU ΠS+YkYL

]
− T d2k−1

[
UU UL

]
=:
[
Γ1 Γ2

] [Σ1 0
0 Σ2

] [
Ω∗1
Ω∗2

]
.

5. Determine ΠSXk and ΠS+YkXk+1 as:[
ΠSXk ΠS+YkXk+1

]
= Σ

1
2
1 Ω∗1.

6. Determine A, B, C and D from:

A,B,C,D = arg min
A,B,C,D

∥∥∥∥ [ΠS+YkXk+1

Yk

]
−
[
A B
C D

] [
ΠSXk

Uk

] ∥∥∥∥
F

.

7. Determine Σw, Σv, and Σwv by taking the covariance of:[
εw
εv

]
:=
[
ΠS+YkXk+1

Yk

]
−
[
A B
C D

] [
ΠSXk

Uk

]
.

8. Determine Kalman filter gain K and the error covariance matrix P using (43)
and (44).

Figure 3: A schematic overview of the subspace identification via Markov parameter estimation
— a state sequence approach.
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Figure 4: Scaled step responses of the distillation column simulation model. Unit time interval
= 30 sec.
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Figure 5: Comparison of frequency responses of alternative 8-state models in the noise free case:
original model (solid); model from Algorithm 10.5 (dashdot); model from N4SID algorithm
(dotted).
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Figure 6: Comparison of frequency responses of alternative 8-state models in the noise corrupted
case: original model (solid); model from Algorithm 10.5 (dashdot); model from N4SID algorithm
(dotted).
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Figure 7: The maximum singular value of the difference from the original model in the noise
free case: model from Algorithm 10.5 (dashdot); model from N4SID algorithm (dotted).

Figure 8: The maximum singular value of the difference from the original model in the noise
corrupted case: model from Algorithm 10.5 (dashdot); model from N4SID algorithm (dotted).
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Figure 9: Input and output signals of an industrial dryer. Unit time interval = 10 sec.

38



Figure 10: Comparison of alternative 6-state models for identification data: original model
(solid); model from Algorithm 10.5 (dashdot); model from N4SID algorithm (dotted). Unit time
interval = 10 sec.
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Figure 11: Comparison of simulation outputs of alternative 6-state models for validation data:
original model (solid); model from Algorithm 10.5 (dashdot); model from N4SID algorithm
(dotted). Unit time interval = 10 sec.
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Figure 12: Comparison of prediction outputs of alternative 6-state models for validation data:
original model (solid); model from Algorithm 10.5 (dashdot); model from N4SID algorithm
(dotted). Unit time interval = 10 sec.
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