
CUEDSID 1.0

System Identification Toolbox

User’s Guide

Eric C. Kerrigan, Huixin Chen and Jan M. Maciejowski
Cambridge University Engineering Department

Cambridge CB2 1PZ England
jmm@eng.cam.ac.uk

Software for subspace identification of linear and bilinear dynamic systems
and for prediction-error identification using balanced parametrizations.

For use with Matlab.

25 June 2002

This software has been developed to work with:

• Matlab Version 6.0 or higher,

• Matlab System Identification Toolbox Version 5.0, and

• Matlab Control System Toolbox Version 5.0.

Acknowledgement

The research leading to this software was supported by the
Engineering and Physical Sciences Research Council of the UK

under research grant GR/M08332/01
Integration of subspace and parametric system identification for linear and bilinear systems.

Copyright c©Cambridge University Engineering Department, 2002. All Rights Reserved.

2

Contents

1 Getting Started 5

1.1 Installation . 5

1.2 Main Functions . 6

1.3 Auxiliary Functions . 6

2 Subspace Identification of Linear Systems 7

2.1 Overview . 7

2.2 Example . 8

3 System Identification of Linear Systems Using Balanced Parameterizations 13

3.1 Overview . 14

3.2 Example . 15

4 Subspace Identification of Bilinear Systems 23

4.1 Overview . 24

4.2 Example . 25

5 Function Reference 33

List of Functions . 33

balpem . 34

bilin . 39

bilin/compare . 42

bilin/isstable . 44

bilin/pe . 46

bilin/sim . 48

bilinid . 50

blochank . 55

bloctoep . 57

3

Contents

coorproj . 59

isbalanced . 61

ismpbalanced . 62

khatri . 63

mpbal . 64

obmat . 67

orthproj . 69

soltritoep . 70

subid3b . 72

Bibliography 77

4

Chapter 1

Getting Started

The Cambridge University Engineering Department System Identification (CUEDSID) Tool-
box for Matlab can be downloaded from:

http://www-control.eng.cam.ac.uk/jmm/cuedsid

1.1 Installation

The CUEDSID Toolbox requires the following software to be pre-installed:

• Matlab Version 6.0 or higher,

• Matlab System Identification Toolbox Version 5.0, and

• Matlab Control System Toolbox Version 5.0.

NB: It is assumed throughout this guide that the user is already acquainted with the use
of Matlab and its System Identification and Control System Toolboxes. The CUEDSID
Toolbox can be thought of as an add-on to the Matlab System Identification Toolbox.

Once the files have been downloaded, they should be decompressed into the user’s Matlab

directory (e.g. mymatlab). The following lines should be added to the startup.m file in order
to add the files to the Matlab search path:

addpath mymatlab/cuedsid
addpath mymatlab/cuedsid/balpemsid
addpath mymatlab/cuedsid/bilinidsid
addpath mymatlab/cuedsid/linsid

Once Matlab has been started, the on-line help can be invoked by typing:

>> help cuedsid

5

Getting Started

1.2 Main Functions

The three main functions provided with the CUEDSID Toolbox are:

subid3b: Subspace identification of linear systems — see Chapter 2.

balpem: System identification using balanced parameterizations — see Chapter 3.

bilinid: Subspace identification of bilinear systems — see Chapter 4.

1.3 Auxiliary Functions

A number of auxiliary functions are also provided with the CUEDSID Toolbox :

bilin Create a discrete-time, bilinear, state-space system
bilin/compare Compare simulated data with measured data
bilin/isstable Determine whether a given bilinear system is stable
bilin/pe Compute prediction errors associated with a data set
bilin/sim Simulate a given bilinear system (with noise)
blochank Assemble a block Hankel matrix from a given block matrix
bloctoep Assemble a block Toeplitz matrix from two given block matrices
coorproj Orthogonal projection onto a complement subspace
isbalanced Determines whether a state-space system is balanced
ismpbalanced Determines whether a system is minimum-phase balanced
khatri Compute the Khatri-Rao product of two matrices
mpbal Computes a minimum-phase balanced realization
obmat Construct the observability matrix with a given index
orthproj Orthogonal projection onto a subspace
soltritoep Solve for a lower-triangular, block Toeplitz matrix

The first five functions above are intended for use in conjunction with bilinid and the
functions isbalanced, ismpbalanced and mpbal are intended for use in conjunction with
balpem. The remaining functions are used by subid3b, balpem and bilinid, but can also
be used as stand-alone functions.

The reader is referred to the following chapters and the function reference at the end of the
guide for more details.

6

Chapter 2

Subspace Identification of Linear
Systems

Most methods of system identification rely on iterative, nonlinear optimisation to fit param-
eters in a pre-selected model structure, so as to best fit the observed data [Lj99]. Subspace
methods are an alternative class of identification methods which are ‘one-shot’ rather than
iterative, and rely on linear algebra rather than on optimisation. They are very easy to use,
and generally give very good results. They can also be used as sources of initial models which
can be refined further using the optimisation approach, if required.

Standard subspace algorithms, such as the one implemented in the Matlab System Identi-
fication Toolbox function n4sid, split the available input-output data into two blocks, which
can be thought of as the past and the future. The basic versions of these standard sub-
space methods suffer from systematic errors (bias) — unless the measured input is white —
which reduce as the so-called block size parameter increases These errors can be avoided by
algorithms of additional complexity (as implemented in n4sid, for example) [VODM96].

An alternative approach to reducing these systematic errors is presented in [CM98] and has
been implemented in the CUEDSID Toolbox function subid3b. This algorithm splits the data
into three blocks, which we denote the past, the current and the future blocks. The result of
using this approach is that the bias is reduced, even when the noise is not white.

2.1 Overview

Given a set of input-output data, subid3b aims to identify a discrete-time, state-space model
in innovation form:

x(t + Ts) = Ax(t) +Bu(t) +Ke(t), x(0) = x0

y(t) = Cx(t) +Du(t) + e(t)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and the Kalman gain K ∈ Rn×p; x
denotes the state, u the input signal, y the output signal and e the process noise. Ts is the
sample time and x0 is the initial state.

The function subid3b has been written to be used in conjunction with the Matlab System

7

Subspace Identification of Linear Systems

Identification Toolbox. Input-output data has to be passed to subid3b as an iddata object
and the estimated model is returned from subid3b as an idss object. The GUI, ident,
and other Matlab System Identification Toolbox functions, such as idmodel/compare and
idmodel/resid, can be used to process data for identification and validation of the model.

When calling subid3b to identify a model, the user can choose whether or not to override
the automatic selection of the following:

• System order n,

• Block size k,

• Whether D is to be estimated or set to zero, and

• The specific variant of the three-block algorithm, which can be one of the following
approaches:

– Markov parameter,

– Shift invariance, or

– State sequence.

For more details, the user is referred to the function reference and [CM98].

2.2 Example

The function subid3b is very easy to use. A short example will illustrate the typical steps
involved in identifying and verifying a model using subid3b.

The first step is to process some data for identification and validation. This can be done using
the Matlab System Identification Toolbox. The following command will load some processed
data into the Matlab workspace:

>> load example3block
>> who

Your variables are:

data sys

>> data
Data set with 300 samples.
Sampling interval: 1

Outputs Unit (if specified)
y1
y2

Inputs Unit (if specified)

8

Subspace Identification of Linear Systems

u1
u2
u3

>> sys
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

x1 -0.40759 0.45403 -0.045775
x2 -0.072194 0.025234 -0.73298
x3 -0.45058 -0.57994 0.37359

B =
u1 u2 u3

x1 2.1157 -1.2466 -1.9128
x2 0 0 0
x3 1.0462 0.53008 1.5283

C =
x1 x2 x3

y1 1.3543 1.8706 -0.45374
y2 0 0.8012 0.94957

D =
u1 u2 u3

y1 1.1574 0.088764 0.98312
y2 -1.1595 0 -0.87049

K =
y1 y2

x1 0 0
x2 0 0
x3 0 0

x(0) =

x1 0
x2 0
x3 0

9

Subspace Identification of Linear Systems

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

Model Order Selection

Model order

Lo
g

si
ng

ul
ar

 v
al

ue

Figure 2.1: Plot of singular values resulting from SVD decomposition in three-block algorithm

This model was not estimated from data.
Sampling interval: 1

The variable data is an iddata object and sys is the actual system that was that was used
to generate the data (after adding some noise). sys is an idss object.

The following commands extract different parts of data for identification and validation:

>> identdata = data(1:250);
>> valdata = data(251:300);

The following call to subid3b uses the shift invariance approach to help estimate the order
of the system. A logarithmic plot of the singular values that resulted from the SVD decom-
position is displayed and the user is prompted to select the system order. The block size k is
not specified and hence chosen by the algorithm. As can be seen in Figure 2.1, the first three
singular values are a lot larger than the rest, hence one can accurately estimate that n = 3.

>> Msi = subid3b(identdata,[1:10])
Block size k = 20.
Please select model order: 3
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

10

Subspace Identification of Linear Systems

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

x1 0.95181 -0.084857 0.00053211
x2 0.0021275 -0.61431 0.4012
x3 0.057737 -0.33869 -0.34948

B =
u1 u2 u3

x1 0.025562 0.071337 0.16243
x2 -0.17306 0.050237 0.042829
x3 0.02156 -0.05271 -0.10584

C =
x1 x2 x3

y1 -17.233 -16.594 -2.3172
y2 3.1321 -6.7352 -11.604

D =
u1 u2 u3

y1 1.158 0.097347 0.98285
y2 -1.1522 -0.017377 -0.87642

K =
y1 y2

x1 -0.00030967 0.00023064
x2 0.0014415 -0.0015581
x3 0.0013428 -0.0019277

x(0) =

x1 0
x2 0
x3 0

Estimated using SUBID3B - Shift invariance approach
Loss function
Sampling interval: 1

The next two commands estimate two additional models using the state sequence and Markov
parameter approaches:

11

Subspace Identification of Linear Systems

250 255 260 265 270 275 280 285 290 295 300
−40

−30

−20

−10

0

10

20

30

y2

Measured Output
sys Fit: 92.27%
Msi Fit: 92.38%
Mss Fit: 92.26%
Mmp Fit: 92.21%

250 255 260 265 270 275 280 285 290 295 300
−50

0

50

100

150
y1

Measured Output and Simulated Model Output

Measured Output
sys Fit: 97.49%
Msi Fit: 97.41%
Mss Fit: 97.35%
Mmp Fit: 97.3%

Figure 2.2: Comparison of different models obtained using the three-block algorithm

>> Mss = subid3b(identdata,3,[],[],’ss’);
Block size k = 20.
>> Mmp = subid3b(identdata,3,[],[],’mp’);
Block size k = 20.

Finally, each of the three models are compared against one another using the validation data.
Figure 2.2 results from making the following call to the Matlab System Identification Toolbox
function idmodel/compare:

>> compare(valdata,sys,Msi,Mss,Mmp)

As can be seen in Figure 2.2, all three models fit the data well. The models appears to predict
the data as well as the original system sys that was used to generate the data.

12

Chapter 3

System Identification of Linear
Systems Using Balanced
Parameterizations

As briefly mentioned at the beginning of Section 2, most methods of system identification
rely on iterative, nonlinear optimisation to fit parameters in a pre-selected model structure,
so as to best fit the observed data. Such optimisation has to be performed subject to certain
constraints, in order to avoid undesirable models such as unstable ones, and to keep the search
process well-conditioned. (The parameter space being searched is of higher dimension than
the ‘behaviour space’.)

A method of performing such an optimisation without constraints, by exploiting an explicit
parametrisation of the lower-dimensional ‘behaviour space’, is presented in [CM97]. The ap-
proach is based on the so-called balanced parameterization, initially developed by Ober [Ob87],
and has some advantages over the use of the better-known canonical forms, such as the ob-
servable form.

For example, a state-space system that is close to being non-minimal gives rise to an ill-
conditioned parameter estimation problem; perturbations of the parameter estimates in cer-
tain directions (in the parameter space) have very little effect on the input-output behaviour
of the estimated model. The consequence of this is that the accuracy of parameter estimation
is low. In a sense, because the balanced realization of a given system can be thought of as
the one that is ‘furthest away’ from non-minimality, the use of a balanced parameterization
gives an estimation problem that is as well-conditioned as possible.

Balanced parametrizations of several classes of linear systems have been developed [Ob91].
These allow the parameters to vary almost without constraints (typically they are required
to be positive), without leaving the class of system being parametrised. Parametrizations of
the classes of stable systems and of minimum-phase systems are supported by the CUEDSID
Toolbox.

13

System Identification of Linear Systems Using Balanced Parameterizations

3.1 Overview

The function balpem, that implements the prediction-error identification method of [CM97]
using balanced parameterizations, has been designed around the Matlab System Identifica-
tion Toolbox function pem. To be more precise, balpem uses the idgrey class to set up the
balanced parameterizations described in [CM97, Sect. IV] and [CM97, Sect. V.A], and then
calls pem to improve on the initial estimate of the model.

The function balpem is easy to use; the minimum number of arguments required in balpem
is the sequence of input-output data, given as an iddata object, and an initial estimate of
the model, given as an idss object. The final estimate is returned from balpem as an idss
object in innovation form:

x(t + Ts) = Ax(t) +Bu(t) +Ke(t), x(0) = x0

y(t) = Cx(t) +Du(t) + e(t)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and the Kalman gain K ∈ Rn×p; x
denotes the state, u the input signal, y the output signal and e the process noise. Ts is the
sample time and x0 is the initial state.

Provided the initial estimate is stable1, the final estimate is stable and balanced in one of the
following two ways, as specified by the user:

• (A,B,C,D) is balanced in the usual sense of the controllability gramian of (A,B,C,D)
being diagonal and equal to the observability gramian of (A,B,C,D).

As a default, D is estimated without any constraints. Alternatively, the user can choose
to set D to zero.

The Kalman gain K is set to zero2 (i.e. it is assumed that the only source of noise is
measurement noise).

• (A,K,C, I) is minimum-phase and balanced in the sense that the controllability gramian
of (A,K,C, I) is diagonal and equal to the observability gramian of the inverse of
(A,K,C, I) (i.e. the observability gramian of (A−KC,K,−C, I)).

As a default, B and D are estimated without any constraints. Alternatively, the user
can choose to set B and/or D to zero.

Three auxiliary functions have also been provided for use in conjunction with balpem:

isbalanced: Tests whether a model is balanced in the usual sense.

ismpbalanced: Tests whether a model is balanced in the minimum-phase sense.

mpbal: Computes a minimum-phase balanced realization of a given continuous-time, state-
space model.

The reader is referred to the function reference for details on using these functions.
1The function balpem also assumes that the initial estimate is minimal in some sense and that the Hankel

singular values are distinct (see [CM97] for details and other, minor technical assumptions). Fortunately,
most subspace algorithms, such as subid3b and n4sid usually provide good, initial estimates that satisfy the
assumptions made by balpem.

2This can be overridden by the user, if desired, by setting the property ’DisturbanceModel’ to ’Estimate’.

14

System Identification of Linear Systems Using Balanced Parameterizations

3.2 Example

A short example will illustrate the typical steps involved in identifying and verifying a model
using subid3b. The following commands load some data and an initial estimate into the
Matlab workspace:

>> data
Data set with 300 samples.
Sampling interval: 1

Outputs Unit (if specified)
y1
y2

Inputs Unit (if specified)
u1
u2
u3

>> sys
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

x1 -0.40759 0.45403 -0.045775
x2 -0.072194 0.025234 -0.73298
x3 -0.45058 -0.57994 0.37359

B =
u1 u2 u3

x1 2.1157 -1.2466 -1.9128
x2 0 0 0
x3 1.0462 0.53008 1.5283

C =
x1 x2 x3

y1 1.3543 1.8706 -0.45374
y2 0 0.8012 0.94957

D =
u1 u2 u3

y1 1.1574 0.088764 0.98312
y2 -1.1595 0 -0.87049

15

System Identification of Linear Systems Using Balanced Parameterizations

K =
y1 y2

x1 0 0
x2 0 0
x3 0 0

x(0) =

x1 0
x2 0
x3 0

This model was not estimated from data.
Sampling interval: 1

The variable data is an iddata object, sys is the actual system that was that was used
to generate the data (after adding some noise) and mi is an initial estimate of the system,
computed using subid3b; sys and mi are idss objects.

The following commands extract different parts of data for identification and validation:

>> identdata = data(1:250);
>> valdata = data(251:300);

Since the current mi is already a good estimate of sys (see Section 2.2), in order to make
things more interesting mi, the D matrix of mi is set to zero:

>> mi.d=mi.d*0
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

x1 0.95181 -0.084857 0.00053211
x2 0.0021275 -0.61431 0.4012
x3 0.057737 -0.33869 -0.34948

B =
u1 u2 u3

x1 0.025562 0.071337 0.16243
x2 -0.17306 0.050237 0.042829
x3 0.02156 -0.05271 -0.10584

16

System Identification of Linear Systems Using Balanced Parameterizations

C =
x1 x2 x3

y1 -17.233 -16.594 -2.3172
y2 3.1321 -6.7352 -11.604

D =
u1 u2 u3

y1 0 0 0
y2 0 0 0

K =
y1 y2

x1 -0.00030967 0.00023064
x2 0.0014415 -0.0015581
x3 0.0013428 -0.0019277

x(0) =

x1 0
x2 0
x3 0

Estimated using SUBID3B - Shift invariance approach
Loss function
Sampling interval: 1

Given this new mi as an initial estimate of sys, the following command calls balpem to obtain
an improved, stable and balanced estimate of sys:

>> msb = balpem(identdata,mi)
Warning: Mi.K is not allowed to be non-zero if ALG is ’sb’. Setting Mi.K = 0.
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

x1 0.95009 -0.088849 0.0010244
x2 -0.029647 -0.6211 0.38655
x3 0.058536 -0.35747 -0.33828

B =
u1 u2 u3

x1 -0.24568 -0.70906 -1.6163

17

System Identification of Linear Systems Using Balanced Parameterizations

x2 1.7186 -0.48791 -0.41359
x3 -0.16203 0.51618 1.0584

C =
x1 x2 x3

y1 1.7646 1.6646 0.25344
y2 -0.30981 0.64502 1.1528

D =
u1 u2 u3

y1 1.1542 0.09694 0.99212
y2 -1.156 -0.0057658 -0.87074

K =
y1 y2

x1 0 0
x2 0 0
x3 0 0

x(0) =

x1 0
x2 0
x3 0

Estimated using BALPEM from data set data
Loss function 1.0554 and FPE 1.21917
Sampling interval: 1

The following command verifies that the new estimate is indeed balanced:

>> isbalanced(msb)
System is balanced; norm(Wc-Wo) = 3.60e-14.

Given the same mi as an initial estimate of sys, the following command calls balpem to obtain
an improved, stable and minimum-phase balanced estimate of sys:

>> mmp = balpem(identdata,mi,[],’mp’)
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

18

System Identification of Linear Systems Using Balanced Parameterizations

x1 0.93912 -0.046301 0.021775
x2 -0.28714 -0.31407 0.33817
x3 0.011313 -0.41523 -0.64119

B =
u1 u2 u3

x1 -7.4617 -14.014 -32.876
x2 -11.797 4.5857 5.4178
x3 21.166 -11.686 -17.272

C =
x1 x2 x3

y1 0.05171 -0.15319 0.043295
y2 -0.041494 -0.15013 -0.052353

D =
u1 u2 u3

y1 0.23033 0.016489 0.19553
y2 -0.24727 -0.0034688 -0.18705

K =
y1 y2

x1 0.039789 -0.082934
x2 0.10217 -0.17631
x3 0.015062 0.026313

x(0) =

x1 0
x2 0
x3 0

Estimated using BALPEM from data set data
Loss function 111.718 and FPE 135.445
Sampling interval: 1

The following command verifies that (A,K,C, I) of the new estimate mmp is indeed minimum-
phase balanced:

>> ismpbalanced(ss(mmp.a,mmp.k,mmp.c,eye(2),1))
System is minimum-phase balanced; norm(Wc(SYS)-Wo(inv(SYS))) = 1.24e-16.

19

System Identification of Linear Systems Using Balanced Parameterizations

250 255 260 265 270 275 280 285 290 295 300
−50

0

50

100

150
y1

Measured Output and Simulated Model Output

Measured Output
sys Fit: 97.49%
mi Fit: 79.35%
msb Fit: 97.47%
mmp Fit: 83.23%

250 255 260 265 270 275 280 285 290 295 300
−40

−30

−20

−10

0

10

20

30

y2

Measured Output
sys Fit: 92.27%
mi Fit: 48.21%
msb Fit: 92.32%
mmp Fit: 58.48%

Figure 3.1: Comparison of the initial estimate and the new estimate obtained using balpem

Finally, the initial and new estimates are compared against one another using the validation
data. Figure 3.1 results from making the following call to the Matlab System Identification
Toolbox function idmodel/compare:

>> compare(valdata,sys,mi,msb,mmp)

As can be seen in Figure 3.1, the initial model mi did not do very well in matching the data,
whereas the new models msb and mmp are better estimates.

On further investigation, it is possible to improve a little on the minimum-phase balanced
estimate mmp by increasing ’MaxIter’.

>> mmp.estimationinfo

ans =

Status: ’Estimated model (PEM)’
Method: ’BALPEM’
LossFcn: 111.7176

FPE: 135.4453
DataName: ’data’

DataLength: 250
DataTs: 1

20

System Identification of Linear Systems Using Balanced Parameterizations

DataInterSample: {3x1 cell}
WhyStop: ’Maxiter reached’

UpdateNorm: 113.2507
LastImprovement: ’0.069766%’

Iterations: 20
InitialState: ’Model’

>> mmp = balpem(identdata,mi,[],’mp’,’MaxIter’,50);
>> mmp.estimationinfo

ans =

Status: ’Estimated model (PEM)’
Method: ’BALPEM’
LossFcn: 82.9515

FPE: 100.5695
DataName: ’data’

DataLength: 250
DataTs: 1

DataInterSample: {3x1 cell}
WhyStop: ’Maxiter reached’

UpdateNorm: 121.2604
LastImprovement: ’0.083681%’

Iterations: 50
InitialState: ’Model’

>> msb.estimationinfo

ans =

Status: ’Estimated model (PEM)’
Method: ’BALPEM’
LossFcn: 1.0554

FPE: 1.2192
DataName: ’data’

DataLength: 250
DataTs: 1

DataInterSample: {3x1 cell}
WhyStop: ’Near (local) minimum, (norm(g)<tol).’

UpdateNorm: 1.8941e-04
LastImprovement: ’0.00018941%’

Iterations: 3
InitialState: ’Model’

>> [yh,fit] = compare(valdata,sys,mi,msb,mmp); fit

fit(:,:,1) =

21

System Identification of Linear Systems Using Balanced Parameterizations

97.4899 79.3547 97.4659 85.6413

fit(:,:,2) =

92.2662 48.2088 92.3172 64.7854

It is interesting to note that, as the above analysis shows, msb results in a much better estimate
than mmp after fewer iterations. As a matter of fact, msb fits the data as well as the original
system sys that was used to generate it, whereas mmp can still be improved upon.

22

Chapter 4

Subspace Identification of Bilinear
Systems

Most commonly the models obtained by system identification allow only linear relationships
between the inputs and outputs. One of the objectives of this toolbox is to allow the identi-
fication of discrete-time bilinear models of the form

x(t+ Ts) = Ax(t) +N(u(t)⊗ x(t)) +Bu(t) + w(t), x(0) = x0

y(t) = Cx(t) +Du(t) + v(t)

in which u(t) and y(t) are vectors of time-indexed observed input and output data, x(t) is a
time-indexed (unobserved) state vector, w(t) and v(t) are unobserved random processes, and
A, B, C, D and N are matrices of suitable (but initially unknown) dimensions. The term
N(u(t)⊗ x(t)), where ⊗ is the Kronecker product operator, is bilinear; if this term is absent
then the model is linear.

Continuous-time bilinear models are important in process control (flow x × concentration
u), aerodynamics (speed x × surface deflection u), and other applications. Discrete-time
equivalents of continuous-time bilinear models are no longer exactly bilinear, but for small
sampling times they remain approximately bilinear. Also discrete-time bilinear models can
be regarded as a useful enlargement of the model class from linear models, even if there is no
physical basis for expecting a bilinear structure. Furthermore, certain bilinear models can be
regarded as examples of the increasingly important class of piecewise-linear models [Ve02].

The CUEDSID Toolbox provides bilinid, a subspace algorithm for the identification of
discrete-time bilinear systems, analogous to the existing methods for linear systems — in
particular, the ideas underlying the work reported in [CM98] (and implemented in subid3b)
are exploited for this purpose.

Most subspace algorithms split the data into two blocks, which are conventionally labelled
past and future. In [CM99] the data is split into three blocks when performing deterministic
identification, namely when it is assumes that the noise terms w(t) and v(t) are absent. The
third block is labelled current, and it allows one to estimate part of the system’s input-
output behaviour. (This idea is inherited from [CM98]; for linear systems a finite sequence
of Markov parameters would be estimated in this way). This estimated behaviour is then
used in a second step to estimate the state dimension of the system being identified, and two

23

Subspace Identification of Bilinear Systems

consecutive state sequences. In a third step these state sequences are used to estimate the
matrices of the bilinear model.

In the stochastic case, when the noises w(t) and v(t) are assumed to be present, a fourth block
is introduced, labelled remote future, which allows the random effects of these noises to be
averaged out, before applying the same ‘three-block’ strategy as for the deterministic case.
(This parallels the difference between the ‘deterministic’ and ‘stochastic’ cases in subspace
identification of linear systems). The function bilinid implements this algorithm, the details
of which can be found in [CM99]. The algorithms implemented in bilinid were introduced
in [CM00a, CM00b]. Note that the deterministic 3-block algorithm (for the case when the w
and v terms are absent), is not implemented in Version 1.0 of the CUEDSID Toolbox.

Alternative subspace algorithms for bilinear systems have been published in [FDV99, VV99].
The algorithm in [FDV99] assumes that the measured input is white. The algorithm in [VV99]
is a two-stage method which employs hill-climbing optimization in the second stage.

4.1 Overview

The CUEDSID Toolbox provides a number of easy-to-use functions that allow the user to iden-
tify and validate discrete-time, bilinear state-space models. The main function is bilinid,
which implements the four-block algorithm described in [CM99]. A bilin class, which func-
tions in a fashion similar to the idss and ss classes, has also been defined. The methods that
have been overloaded for the bilin class, include the following:

• compare

• isstable

• sim

• pe

One can simulate a bilinear system by first creating a bilin object in the same fashion as one
would create an idss or ss object. Once a bilin object has been created, one can generate
input-output data and add noise to it by using the method bilin/sim; bilin/sim returns
input-output data as an iddata object that can then be manipulated using the Matlab

System Identification Toolbox.

Given a set of input-output data as an iddata object, bilinid aims to identify a discrete-
time, bilinear state-space model in the form:

x(t+ Ts) = Ax(t) +N(u(t)⊗ x(t)) +Bu(t) + w(t), x(0) = x0

y(t) = Cx(t) +Du(t) + v(t)

where ⊗ is the Kronecker product operator, the matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
D ∈ Rp×m, N := [N1 N2 · · ·Nm] ∈ Rn×nm and each Ni ∈ Rn×n. Ts is the sample time and
x0 is the initial state.

When calling bilinid to identify a model, the user has can choose whether or not to override
the automatic selection of the following:

24

Subspace Identification of Bilinear Systems

• System order n,

• Block size k,

• Whether D is to be estimated or set to zero, and

• The specific variant of the four-block algorithm that is used, which can be one of the
following:

– General,

– Fast (for the case when the number of outputs p < n), or

– Accurate (for the case when the number of outputs p ≥ n).

bilinid returns the estimate of the bilinear system to the user as a bilin object. Once this
bilin object has been obtained, one could use the methods bilin/compare, bilin/isstable
and bilin/pe to validate the model.

Suppose that the true system, together with the data, satisfies the following assumption,
which is a kind of stability condition:

λ = max
t

σ

(
A+

∑
i

ui(t)Ni

)
< 1,

where σ(·) denotes the greatest singular value of a matrix and ui(t) is the i’th element of u(t).
Then the systematic error (bias) inherent in bilinid reduces as o(λk) (if p < n). However,
the computational complexity increases exponentially with k, so in practice one is restricted
to rather small values of k, and hence of n, since it is generally required that k > n. The
condition λ < 1 is tested (for a model) by the function bilin/isstable.

The user should be aware that, even with small values of k, the computational complexity
and memory requirements of the bilinid function are both high, and computation times are
likely to be very large on low-performance computers.

For more details, the user is referred to the function reference and [CM99].

4.2 Example

This example will demonstrate how to create, manipulate and simulate a bilin object. Once
some data has been generated, bilinid will be used to identify a bilinear model from this
data. Finally, the estimated model will be validated using some of the functions supplied
with the CUEDSID Toolbox.

The following commands create a bilin object called sys:

>> A = diag([0.5 0.5]);
>> B = [0 1; -1 0];
>> C = [1 0; 0 2];
>> D = [1 0; 1 1];
>> N1 = [0.6 0; 0 0.4];

25

Subspace Identification of Bilinear Systems

>> N2 = [0.2 0; 0 0.5];
>> sys = bilin(A,B,C,D,[N1 N2])

Discrete-time bilinear state-space model:
x(t+Ts) = A x(t) + N kron(u(t),x(t)) + B u(t); x(0) = X0

y(t) = C x(t) + D u(t)

A =
0.5000 0

0 0.5000

B =
0 1

-1 0

C =
1 0
0 2

D =
1 0
1 1

N =
0.6000 0 0.2000 0

0 0.4000 0 0.5000

Initial state X0 =
0
0

Sampling time Ts =
1

One can extract or set the properties of sys in a similar way as with idss objects:

>> sys.n

ans =

0.6000 0 0.2000 0
0 0.4000 0 0.5000

26

Subspace Identification of Bilinear Systems

>> set(sys,’Ts’,2)

Discrete-time bilinear state-space model:
x(t+Ts) = A x(t) + N kron(u(t),x(t)) + B u(t); x(0) = X0

y(t) = C x(t) + D u(t)

A =
0.5000 0

0 0.5000

B =
0 1

-1 0

C =
1 0
0 2

D =
1 0
1 1

N =
0.6000 0 0.2000 0

0 0.4000 0 0.5000

Initial state X0 =
0
0

Sampling time Ts =
2

The following code generates some random input and noise sequences that will be used to
generate some data for identification:

>> W = iddata([],idinput([600 2],’RGS’,[],[-0.01 0.01]));
>> V = iddata([],idinput([600 2],’RGS’,[],[-0.01 0.01]));
>> U = iddata([],idinput([600 2],’RGS’,[],[-0.1 0.1]));

The input sequence generated can be tested to see whether it satisfied the stability assumption
made in [CM98]:

27

Subspace Identification of Bilinear Systems

0 100 200 300 400 500 600
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
y1

0 100 200 300 400 500 600

−0.2

0

0.2

u1

Figure 4.1: Input-output data generated from the bilinear system sys

>> isstable(sys,U)
The system satisfies the stability condition: Lambda = 6.91e-01 < 1.

One can now simulate the system with the given input sequence U, process noise W and
measurement noise V:

>> [Y,X,YU] = sim(sys,[U W V]);

Figure 4.1 is a plot of the the first input and first output of YU, and was produced by:

>> plot(YU)

The following commands extract different parts of YU for identification and validation:

>> identdata = YU(1:550);
>> valdata = YU(551:600);

The function bilinid is now invoked to identify a bilinear system from the identification
data.

>> M = bilinid(identdata,[1:4])

28

Subspace Identification of Bilinear Systems

Using general four-block, deterministic-stochastic algorithm.
Constrained least squares will be used when estimating system matrices.

Block size k = 2.
Step 1/5. Decomposing the block equation...
...1/9...
...2/9...
...3/9...
...4/9...
...5/9...
...6/9...
...7/9...
...8/9...
...9/9...
Step 2/5. Computing the constant matrix via pseudo-inverse...
Garbage collection...
Step 3/5. Constructing matrices for SVD decomposition...
...1/9...
...2/9...
...3/9...
...4/9...
...5/9...
...6/9...
...7/9...
...8/9...
...9/9...
Step 4/5. Performing SVD decomposition...
Please select model order: 2
Garbage collection...
Step 5/5. Determining the system matrices using constrained least squares...

Done.

Discrete-time bilinear state-space model:
x(t+Ts) = A x(t) + N kron(u(t),x(t)) + B u(t); x(0) = X0

y(t) = C x(t) + D u(t)

A =
0.4916 -0.0068

-0.0058 0.5079

B =
0.7579 0.0004

-0.0009 0.5311

29

Subspace Identification of Bilinear Systems

C =
-0.0095 1.8727
-2.6179 0.0075

D =
0.9870 0.0058
1.0243 0.9910

N =
0.4806 -0.0075 0.4995 -0.0767
0.0549 0.6120 0.0911 0.0784

Initial state X0 =
0
0

Sampling time Ts =
1

Figure 4.2 is a plot of the singular values that resulted from the SVD decomposition phase.
As can be seen, the first two singular values are a significantly larger than the rest and the
user correctly chose n = 2.

One can once again verify whether the estimated model satisfies the stability assumption
of [CM99]:

>> isstable(M,U)
The system satisfies the stability condition: Lambda = 6.90e-01 < 1.

Finally, the estimated model can be validated using the functions bilin/compare or bilin/pe.
Figure 4.3 results from the following call to the CUEDSID Toolbox function bilin/compare:

>> compare(M,valdata)

Percentage Fit:
y1 - 93.41%
y2 - 89.84%

>> compare(sys,valdata)

Percentage Fit:
y1 - 93.45%
y2 - 92.78%

As can be seen, M appears to be a good, initial estimate of sys.

30

Subspace Identification of Bilinear Systems

1 2 3 4

−0.5

0

0.5

1

1.5

2

Model Order Selection

Model order

Lo
g

si
ng

ul
ar

 v
al

ue

Figure 4.2: Plot of singular values resulting from the SVD decomposition phase in bilinid

31

Subspace Identification of Bilinear Systems

550 555 560 565 570 575 580 585 590 595 600
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
y1

Measured Output
Simulated Fit: 93.41%

Figure 4.3: Comparison between the first output sequence in valdata and data that was
simulated by using the estimated bilinear model M

32

Chapter 5

Function Reference

Subspace identification of linear systems
subid3b Main function for linear subspace identification

Identification of linear systems using a balanced parameterization
balpem Main function for identification using a balanced parameterization
isbalanced Determines whether a state-space system is balanced
ismpbalanced Determines whether a system is minimum-phase balanced
mpbal Computes a minimum-phase balanced realization

Subspace identification of bilinear systems
bilin Create a discrete-time, bilinear, state-space system
bilin/compare Compare simulated data with measured data
bilin/isstable Determine whether a given bilinear system is stable
bilin/pe Compute prediction errors associated with a data set
bilin/sim Simulate a given bilinear system (with noise)
bilinid Main function for bilinear subspace identification

Other functions
blochank Assemble a block Hankel matrix from a given block matrix
bloctoep Assemble a block Toeplitz matrix from two given block matrices
coorproj Orthogonal projection onto a complement subspace
khatri Compute the Khatri-Rao product of two matrices
obmat Construct the observability matrix with a given index
orthproj Orthogonal projection onto a subspace
soltritoep Solve for a lower-triangular, block Toeplitz matrix

33

balpem

balpem

Identifies a balanced state-space model from input-output data using a balanced parameter-
ization prediction-error method.

Usage

M = balpem(DATA,Mi)
M = balpem(DATA,Mi,BD)
M = balpem(DATA,Mi,BD,ALG)
M = balpem(DATA,Mi,BD,ALG,Property_1,Value_1,...,Property_n,Value_n)

DATA is the input-output data given as an iddata object and Mi is an initial state-space
estimate of the model, given as an idss object. The initial estimate Mi must be stable for
the algorithm to work.

The estimated discrete-time, state-space model M is returned in innovation form as an idss
object:

x(t + Ts) = Ax(t) +Bu(t) +Ke(t), x(0) = x0

y(t) = Cx(t) +Du(t) + e(t)

where Ts is the sample time and x0 is the initial state. The estimated model M is stable,
minimal and balanced in some sense (as determined by the choice of ALG).

See [CM97] for details of the algorithm.

Optional Inputs

• BD is used when estimating the B and D matrices and can be one of:

’Estimate’: Estimate B and D matrices (default).
A warning is displayed if Mi.nk is not equal to [0 . . . 0].

’ZeroD’: Estimate B and set D = 0.
A warning is displayed if Mi.nk is not equal to [1 . . . 1].

’ZeroB’: Set B = 0 and estimate D. Valid only if ALG is ’mp’.
A warning is displayed if Mi.B is not equal to 0 or Mi.nk is not equal to [0 . . . 0].

’ZeroBD’: Set B = 0 and D = 0. Valid only if ALG is ’mp’.
A warning is displayed if Mi.B is not equal to 0 or Mi.nk is not equal to [1 . . . 1].

• ALG determines the choice of balanced parameterization and can be one of:

’sb’: Stable, balanced parameterization (default). The estimated M is such that (A,B,C,D)
is balanced and K = 0. The algorithm is described in [CM97, Sect. IV].
A warning is displayed if Mi.K is not equal to zero.
An error message is displayed if the initial estimate Mi is not minimal.

34

balpem

’mp’: Minimum-phase balanced parameterization. The estimated M is such that the
sub-system (A,K,C, I) of M is minimum-phase and balanced in the sense that
the controllability gramian of (A,K,C, I) is diagonal and equal to the observabil-
ity gramian of the inverse of (A,K,C, I). The algorithm is described in [CM97,
Sect. V.A].
An error message is displayed if (A,K,C, I) of the initial estimate Mi is not
minimum-phase and controllable, or the inverse of (A,K,C, I) is not observable.

• Property,Value: See IDPROPS ALGORITHMS or IDPROPS IDGREY for a list of possi-
ble Property/Value pairs. Typical properties that could be set include ’MaxIter’,
’InitialState’ and ’DisturbanceModel’. Setting the latter is sensible only when
ALG=’sb’.

Example

>> load examplebalpem
>> data
Data set with 300 samples.
Sampling interval: 1

Outputs Unit (if specified)
y1
y2

Inputs Unit (if specified)
u1
u2
u3

>> idata = data(1:250);
>> valdata = data(251:300);
>> msb = balpem(idata,mi)
Warning: Mi.K is not allowed to be non-zero if ALG is ’sb’. Setting Mi.K = 0.
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

x1 0.95002 -0.08897 0.0010067
x2 -0.029711 -0.62096 0.38682
x3 0.058523 -0.35815 -0.33842

B =
u1 u2 u3

x1 -0.24589 -0.70888 -1.6172
x2 1.7191 -0.48856 -0.41401

35

balpem

x3 -0.16323 0.51547 1.0581

C =
x1 x2 x3

y1 1.7654 1.6652 0.254
y2 -0.31006 0.6446 1.1529

D =
u1 u2 u3

y1 1.1542 0.099871 0.99588
y2 -1.1541 -0.0067296 -0.86999

K =
y1 y2

x1 0 0
x2 0 0
x3 0 0

x(0) =

x1 0
x2 0
x3 0

Estimated using BALPEM from data set data
Loss function 1.05851 and FPE 1.22276
Sampling interval: 1

>> mmp = balpem(idata,mi,[],’mp’)
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

x1 0.93905 -0.047631 0.0216
x2 -0.28762 -0.31094 0.33693
x3 0.0099681 -0.42168 -0.64131

B =
u1 u2 u3

x1 -6.9267 -12.855 -30.151
x2 -11.043 4.1961 4.8219

36

balpem

x3 19.958 -10.946 -16.077

C =
x1 x2 x3

y1 0.056768 -0.16425 0.047706
y2 -0.044647 -0.16137 -0.055189

D =
u1 u2 u3

y1 1.1577 0.097444 0.98383
y2 -1.1524 -0.016652 -0.87598

K =
y1 y2

x1 0.062722 -0.076409
x2 0.12789 -0.17769
x3 -0.023432 0.0040451

x(0) =

x1 0
x2 0
x3 0

Estimated using BALPEM from data set data
Loss function 1.12066 and FPE 1.35868
Sampling interval: 1

>> [yh,fit] = compare(valdata,mi,msb,mmp); fit

fit(:,:,1) =

97.4080 97.4773 97.4719

fit(:,:,2) =

92.3844 92.3163 92.3620

>> isbalanced(msb) % Check whether (A,B,C,D) of msb is balanced
System is balanced; norm(Wc-Wo) = 8.30e-15.
>> mpsys = ss(mmp.a,mmp.k,mmp.c,eye(2),mmp.Ts);
>> ismpbalanced(mpsys) % Check whether (A,K,C,I) of

37

balpem

% mmp is minimum-phase balanced
System is minimum-phase balanced; norm(Wc(SYS)-Wo(inv(SYS))) = 6.36e-17.

See Also

PEM, SUBID3B, N4SID, ISBALANCED, ISMPBALANCED, MPBAL.

38

bilin

bilin

Create a discrete-time, bilinear state-space model.

Usage

M = bilin(A,B,C,D,N)
M = bilin(A,B,C,D,N,X0)
M = bilin(A,B,C,D,N,X0,Ts)

The output M is a discrete-time bilinear, state-space model, returned as a bilin object. The
model M is given by

x(t + Ts) = Ax(t) +N(u(t)⊗ x(t)) +Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t)

where ⊗ is the Kronecker product operator, the matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
D ∈ Rp×m, N := [N1 N2 · · ·Nm] ∈ Rn×nm and each Ni ∈ Rn×n.

Optional arguments are X0, which sets the initial state x0 (default is X0=zeros(n,1)), and
Ts, which sets the sample time Ts (default is Ts=1).

Example

>> A = [1 2; 3 4]; B = [5 6; 0 1]; C = [7 8]; D = [9 0];
>> N1 = [10 11; 12 13]; N2 = [14 15; 16 17];
>> M = bilin(A,B,C,D,[N1 N2],[0.1;0.2],3)

Discrete-time bilinear state-space model:
x(t+Ts) = A x(t) + N kron(u(t),x(t)) + B u(t); x(0) = X0

y(t) = C x(t) + D u(t)

A =
1 2
3 4

B =
5 6
0 1

C =
7 8

D =

39

bilin

9 0

N =
10 11 14 15
12 13 16 17

Initial state X0 =
0.1000
0.2000

Sampling time Ts =
3

>> M.D = [0 0] % Equivalent to set(M,’D’,[0 0])

Discrete-time bilinear state-space model:
x(t+Ts) = A x(t) + N kron(u(t),x(t)) + B u(t); x(0) = X0

y(t) = C x(t) + D u(t)

A =
1 2
3 4

B =
5 6
0 1

C =
7 8

D =
0 0

N =
10 11 14 15
12 13 16 17

Initial state X0 =
0.1000
0.2000

40

bilin

Sampling time Ts =
3

>> M.X0 % Equivalent to get(M,’X0’)

ans =

0.1000
0.2000

See Also

BILINID, BILIN/COMPARE, BILIN/ISSTABLE, BILIN/PE, BILIN/SIM.

41

bilin/compare

bilin/compare

Compares simulated output data for a bilinear model with the measured data.

Usage

compare(M,DATA)
[YH,FIT] = compare(M,DATA)
[YH,FIT] = compare(M,DATA,INIT)

M is the bilinear system given as a bilin object and DATA is the input-output data given as
an iddata object.

In the absence of output arguments, compare(M,DATA) outputs the percentage fit to the
workspace and produces plots comparing the measured and simulated outputs.

Optional Outputs

YH is the resulting simulated/predicted output returned as an iddata object.

FIT is a vector containing the percentage of the measured output that is explained by the
model, with FIT(1) being the percentage fit of the first output, etc.

Optional Input

The argument INIT determines how to deal with initial conditions and can be one of:

’estimate’: Results in the initial state being chosen so that the norm of the prediction error
is minimized (default).

’model’: Uses M.X0 as the initial state.

’zero’: Sets the initial state to zero.

A column vector: Uses INIT as the initial state.

Example

>> load example2i2s2o
>> [YH,FIT] = compare(m,valdata)
Data set with 50 samples.
Sampling interval: 1

Outputs Unit (if specified)
y1
y2

42

bilin/compare

FIT =

93.4257
92.3414

See Also

BILINID, BILIN, BILIN/ISSTABLE, BILIN/PE, BILIN/SIM, IDMODEL/COMPARE, IDDATA/PLOT.

43

bilin/isstable

bilin/isstable

Determines whether a bilinear system satisfies a kind of stability condition.

Usage

ISSTABLE(M,DATA)
[FVAL,LAMBDA] = ISSTABLE(M,DATA)

In [CM99] it is assumed that the discrete-time bilinear system

x(t + Ts) = Ax(t) +N(u(t)⊗ x(t)) +Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t)

satisfies the following assumption, which is a kind of stability condition:

λ = max
t

σ

(
A+

m∑
i=1

ui(t)Ni

)
< 1, s.t. t ∈ {0, . . . , Ñ − 1},

where N := [N1 · · · Nm], σ(·) denotes the greatest singular value of a matrix and ui(t) is the
i’th element of u(t) in the sequence {u(0), . . . , u(Ñ − 1)}.
The system M to be tested should be given as a bilin object.

DATA should be an iddata object and the input sequence {u(0), . . . , u(Ñ − 1)} is taken from
DATA.InputData.

ISSTABLE(M,DATA) computes λ and is true if λ < 1 and false if λ ≥ 1.

Optional outputs

FVAL is returned as 1 if λ < 1 and FVAL is returned as 0 if λ ≥ 1.

LAMBDA is the computed value of λ.

Example

if isstable(m,U)
disp(’Lambda is less than 1.’)

else
disp(’Lambda is not less than 1.)

end

or

>> isstable(sys,U)
The system satisfies the stability condition: Lambda = 7.28e-01 < 1.

or

44

bilin/isstable

>> [fval,lambda]=isstable(sys,U)

fval =

1

lambda =

0.7277

See Also

BILINID, BILIN, BILIN/COMPARE, BILIN/PE, BILIN/SIM.

45

bilin/pe

bilin/pe

Compute the prediction errors associated with a bilinear model and data set.

Usage

[E,X0] = pe(M,DATA)
[E,X0] = pe(M,DATA,INIT)

M is the bilinear system given as a bilin object and DATA is the input-output data given as
an iddata object.

E is returned as an iddata object, so that E.OutputData contains the prediction errors that
result when model M is applied to DATA.

E.InputData is set to DATA.InputData.

Optional Output

X0 is the value that was used for the initial state.

Optional Input

The argument INIT determines how to deal with initial conditions and can be one of:

’estimate’: Results in the initial state X0 being chosen so that the norm of the prediction
error is minimized (default).

’model’: Uses M.X0 as the initial state X0.

’zero’: Sets the initial state X0 to zero.

A column vector: Uses INIT as the initial state X0.

Example

>> load example2i2s2o
>> [E,X0] = pe(m,valdata); % estimate initial state X0
>> norm(E.y)

ans =

0.1288

>> X0

X0 =

46

bilin/pe

0.0825
0.1248

>> [E,X0] = pe(m,valdata,’zero’); % use initial state X0=0
>> norm(E.y)

ans =

0.3599

>> X0

X0 =

0
0

See Also

BILINID, BILIN, BILIN/COMPARE, BILIN/ISSTABLE, BILIN/SIM, IDMODEL/PE, IDMODEL/RESID,
IDDATA/PLOT

47

bilin/sim

bilin/sim

Simulates a given bilinear system.

Usage

[Y,X,YU] = sim(M,UE)
[Y,X,YU] = sim(M,UE,INIT)

M is the bilinear system given as a bilin object and UE is an iddata object with the input
and/or noise data contained in UE.InputData.

UE can be given as U, [U W] or [U W V] where U, W and V are iddata objects with compatible
dimensions; U.InputData should contain the input sequence {u(t)}, W.InputData the process
noise sequence {w(t)} and V.InputData the measurement noise sequence {v(t)} of the bilinear
system:

x(t+ Ts) = Ax(t) +N(u(t)⊗ x(t)) +Bu(t) + w(t), x(0) = x0

y(t) = Cx(t) +Du(t) + v(t)

where Ts is the sample time and x0 is the initial state.

Y, X and YU are iddata objects. Y.OutputData contains the output sequence {y(t)}, X.OutputData
contains the state sequence {x(t)} and YU contains the input-output data sequence {(y(t), u(t))}.
YU.OutputData is the output sequence {y(t)} and YU.InputData is the input sequence {u(t)},
i.e. YU.InputData=U.InputData.

Optional Input

The argument INIT determines how to deal with initial conditions and can be one of:

’model’: Uses M.X0 as the initial state x0 (default).

’zero’: Sets the initial state x0 to zero.

A column vector: Uses INIT as the initial state.

Example

>> load example2i2s2o
>> sys % system with 2 inputs, 2 states and 2 outputs

Discrete-time bilinear state-space model:
x(t+Ts) = A x(t) + N kron(u(t),x(t)) + B u(t); x(0) = X0

y(t) = C x(t) + D u(t)

A =
0.5000 0

48

bilin/sim

0 0.3000

B =
0 1

-1 0

C =
1 0
0 2

D =
1 0
0 1

N =
0.6000 0 0.2000 0

0 0.4000 0 0.5000

Initial state X0 =
0
0

Sampling time Ts =
1

>> U = idinput([600 2],’RGS’,[],[-0.1 0.1]); % U, W, V are random sequences
>> W = idinput([600 2],’RGS’,[],[-0.01 0.01]);
>> V = idinput([600 2],’RGS’,[],[-0.01 0.01]);
>> U = iddata([],U); % input data
>> W = iddata([],W); % process noise
>> V = iddata([],V); % measurement noise
>> [Y,X,YU] = sim(sys,[U W V]); % simulate system
>> isstable(sys,U) % check whether system is stable with given input data
The system satisfies the stability condition: Lambda = 6.86e-01 < 1.
>> data = YU(1:550); % identification data
>> valdata = YU(551:600); % validation data

See Also

BILINID, BILIN, BILIN/COMPARE, BILIN/ISSTABLE, BILIN/PE, IDINPUT, IDDATA, IDMODEL/SIM.

49

bilinid

bilinid

Deterministic-stochastic subspace identification of bilinear systems using a four-block config-
uration.

Usage

[M,EXTRA] = bilinid(DATA)
[M,EXTRA] = bilinid(DATA,n)
[M,EXTRA] = bilinid(DATA,n,k)
[M,EXTRA] = bilinid(DATA,n,k,DMAT)
[M,EXTRA] = bilinid(DATA,n,k,DMAT,ALG)
[M,EXTRA] = bilinid(DATA,n,k,DMAT,ALG,LS)

DATA is the input-output data given as an iddata object.

M is the estimated discrete-time, bilinear state-space model returned as a bilin object:

x(t+ Ts) = Ax(t) +N(u(t)⊗ x(t)) +Bu(t) + w(t), x(0) = x0

y(t) = Cx(t) +Du(t) + v(t)

where Ts is the sample time, x0 the initial state, ⊗ is the Kronecker product operator, the
matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, N := [N1 N2 · · ·Nm] ∈ Rn×nm and
each Ni ∈ Rn×n.

See [CM99] for details of the algorithm.

Optional Output

EXTRA is a structure containing additional information about the model and data:

• EXTRA.SV is a vector containing the singular values resulting from the SVD decomposi-
tion. See [CM99] for details.

• EXTRA.Q, EXTRA.R and EXTRA.S are the matrices that form the joint noise covariance ma-
trix EXTRA.COV, which is given by EXTRA.COV = [Q S; S’ R]; EXTRA.Q is the process
noise covariance matrix and EXTRA.R is the output noise covariance matrix. See [CM99]
for details.

• If LS=’ols’, then EXTRA.ls is a matrix containing information about the accuracy
of the estimation and should be close to 0 for a good estimate. If LS=’cls’, then
EXTRA.ls=0. See [CM99] for details.

Optional Inputs

• n is the system order and can be one of the following:

– If n is empty, then the algorithm will automatically select the order such that
n ≤ 10 (default).

50

bilinid

– If n is a scalar, then the system order is equal to n.

– If n is given as a row vector (e.g. [1 2 3 4 5]), a plot of singular values will be given
and the user will be prompted to select an order.

• k specifies the block size, given as a positive integer. If k is not specified, the block size
is chosen to be as large as possible while still trying to be compatible with the size of
DATA. It is recommended that k ≥ max(n).

• DMAT determines whether the D matrix of the system is to be estimated or set to zero.
DMAT can be one of the following:

’Estimate’: Estimate the D matrix (default).

’Zero’: Set D = 0.

• ALG determines the specific algorithm to be used and can be one of the following:

’general’: General four-block deterministic-stochastic algorithm.

’fast’: Fast four-block deterministic-stochastic algorithm. Valid only if the number of
outputs < min(n).

’accurate’: Accurate four-block deterministic-stochastic algorithm. Valid only if the
number of outputs ≥ max(n).

If ALG is not specified, then the most appropriate algorithm is automatically cho-
sen, based on the number of outputs. If the number of outputs < max(n), then
ALG=’general’. If the number of outputs ≥ max(n), then ALG=’accurate’.

• LS determines the choice of least squares method used in estimating the system matrices
and can be one of:

’cls’: Constrained least squares (default).

’ols’: Ordinary least squares.

Example

>> load example2i2s2o
>> data
Data set with 550 samples.
Sampling interval: 1

Outputs Unit (if specified)
y1
y2

Inputs Unit (if specified)
u1
u2

>> [m,extra] = bilinid(data,2)

51

bilinid

Number of outputs >= system order. Using accurate four-block algorithm.
Constrained least squares will be used when estimating system matrices.

Block size k = 3.
Step 1/5. Decomposing the block equation...
...1/9...
...2/9...
...3/9...
...4/9...
...5/9...
...6/9...
...7/9...
...8/9...
...9/9...
Step 2/5. Computing the constant matrix via pseudo-inverse...
Garbage collection...
Step 3/5. Constructing matrices for SVD decomposition...
...1/9...
...2/9...
...3/9...
...4/9...
...5/9...
...6/9...
...7/9...
...8/9...
...9/9...
Step 4/5. Performing SVD decomposition...
Garbage collection...
Step 5/5. Determining the system matrices using constrained least squares...
Garbage collection...
Finally, determining the noise covariance matrix...

Done.

Discrete-time bilinear state-space model:
x(t+Ts) = A x(t) + N kron(u(t),x(t)) + B u(t); x(0) = X0

y(t) = C x(t) + D u(t)

A =
0.3011 -0.0184

-0.0098 0.4983

B =
0.7763 -0.0188

52

bilinid

0.0399 0.5451

C =
-0.1024 1.8279
-2.5645 -0.1099

D =
1.0000 -0.0141
0.0215 1.0064

N =
0.4256 -0.0235 0.4452 -0.0432
0.0250 0.6812 0.0450 0.2123

Initial state X0 =
0
0

Sampling time Ts =
1

extra =

ls: [2x4 double]
sv: [26x1 double]

COV: [4x4 double]
Q: [2x2 double]
R: [2x2 double]
S: [2x2 double]

>> extra.COV

ans =

1.0e-03 *

0.0776 -0.0055 0.0031 -0.0265
-0.0055 0.0563 0.0114 0.0044
0.0031 0.0114 0.1718 0.0206

-0.0265 0.0044 0.0206 0.4013

>> [YH,FIT] = compare(m,valdata)

53

bilinid

Data set with 50 samples.
Sampling interval: 1

Outputs Unit (if specified)
y1
y2

FIT =

93.4257
92.3414

See Also

BILIN, BILIN/COMPARE, BILIN/ISSTABLE, BILIN/SIM, BILIN/PE.

54

blochank

blochank

Assembles a block Hankel matrix from a given block matrix.

Usage

Y = blochank(C,M,N)

C is a block matrix and given by

C =

C1

C2
...
CN

 ,
where all the Ci are matrices with the same dimensions. M and N are positive integers with
M ≤ N .

The resulting block Hankel matrix Y is given by

Y =

C1 C2 C3 · · · CN−M+1

C2 C3 C4 · · · CN−M+2

C3 C4 C5 · · · CN−M+3
...

...
...

. . .
...

CM CM+1 CM+2 · · · CN

Example

>> C = [1 2; 3 4; 5 6; 7 8; 9 10;
11 12; 13 14; 15 16; 17 18; 19 20]

C =

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

>> Y = blochank(C,3,5)

Y =

55

blochank

1 2 5 6 9 10
3 4 7 8 11 12
5 6 9 10 13 14
7 8 11 12 15 16
9 10 13 14 17 18

11 12 15 16 19 20

See Also

HANKEL, BLOCTOEP, TOEPLITZ.

56

bloctoep

bloctoep

Assembles a block Toeplitz matrix from two given block matrices.

Usage

Y = bloctoep(C,R,N)

C and R are block matrices given by

C =

C1

C2
...
CN

and

R =

R1

R2
...
RN

where all the Ci and Rj are matrices with the same dimensions. It is assumed that C1 = R1.
N is a positive integer and is the number of block matrices in C and R.

The resulting block Toeplitz matrix Y has C as its first block column and R as its first block
row, i.e.

Y =

C1 R2 R3 · · · RN
C2 C1 R2 · · · RN−1

C3 C2 C1 · · · RN−2
...

...
...

. . .
...

CN CN−1 CN−2 · · · C1

Example

>> C = [1 2; 3 4; 5 6; 7 8; 9 10; 11 12; 13 14; 15 16]

C =

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16

57

bloctoep

>> R = [1 2; 3 4; 17 18; 19 20; 21 22; 23 24; 25 26; 27 28]

R =

1 2
3 4

17 18
19 20
21 22
23 24
25 26
27 28

>> Y = bloctoep(C,R,4)

Y =

1 2 17 18 21 22 25 26
3 4 19 20 23 24 27 28
5 6 1 2 17 18 21 22
7 8 3 4 19 20 23 24
9 10 5 6 1 2 17 18

11 12 7 8 3 4 19 20
13 14 9 10 5 6 1 2
15 16 11 12 7 8 3 4

See Also

TOEPLITZ, BLOCHANK, HANKEL.

58

coorproj

coorproj

Orthogonal projection onto a complement subspace.

Usage

Y = coorproj(A,B)

Projects the row vectors of matrix A ∈ Rm×p onto the subspace that is orthogonal to the
subspace spanned by the row vectors of matrix B ∈ Rn×p, i.e.

Y = ΠB⊥A := ACT (CCT)†C,

where Π is the orthogonal projection operator, B := span{αTB,α ∈ Rn}, B⊥ is the orthogonal
complement of B,

C := I −BT (BBT)†B

and (·)† denotes the Moore-Penrose (pseudo-inverse) of a matrix.

The number of columns of A and B must be the same.

Example

>> A = rand(3,5)

A =

0.9153 0.9305 0.1339 0.1292 0.1953
0.4045 0.6019 0.6317 0.3885 0.2160
0.5885 0.3396 0.2573 0.1179 0.5965

>> B = [1 0 0 0 0; 1 1 0 0 0; 1 1 1 0 0]

B =

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0

>> Y = coorproj(A,B)

Y =

0 0 0 0.1292 0.1953
0 0 0 0.3885 0.2160
0 0 0 0.1179 0.5965

59

coorproj

See Also

ORTHPROJ, PINV.

60

isbalanced

isbalanced

Determines whether a given state-space system is balanced.

Usage

isbalanced(sys)

isbalanced(sys) is true if (A,B,C) of sys is balanced and false if it is not balanced.

The system is balanced if and only if the observability gramian Wo and the controllability
gramian Wc of (A,B,C) are equal and diagonal.

sys has to be a stable state-space system, given as an ss or idss object.

Example

if isbalanced(sys)
disp(’System is balanced.’)

else
disp(’System is not balanced.’)

end

See Also

GRAM, BALREAL, MPBAL, ISMPBALANCED, BALPEM.

61

ismpbalanced

ismpbalanced

Determines whether a given state-space system is minimum-phase balanced.

Usage

ismpbalanced(sys)

ismpbalanced(sys) is true if (A,B,C,D) of sys is minimum-phase balanced and false if it
is not minimum-phase balanced.

The system is minimum-phase balanced if and only if the controllability gramian Wc of
(A,B,C,D) is equal to the observability gramian Wo of the inverse of (A,B,C,D).

sys has to be a square, stable and minimum-phase state-space system, given as an ss or idss
object.

Example

if ismpbalanced(sys)
disp(’System is minimum-phase balanced.’)

else
disp(’System is not minimum-phase balanced.’)

end

See Also

MPBAL, GRAM, ISBALANCED, BALREAL, BALPEM.

62

khatri

khatri

Computes the Khatri-Rao product of two matrices.

Usage

Y = khatri(A,B)

Computes the Khatri-Rao product of two matrices A ∈ Rm×p and B ∈ Rn×p with the same
number of columns, i.e. Y ∈ Rmn×p is formed by taking the Kronecker tensor products
between the respective columns of A := [a1 a2 · · · ap] and B := [b1 b2 · · · bp], i.e.

Y = A�B :=
[
a1 ⊗ b1 a2 ⊗ b2 · · · ap ⊗ bp

]
,

where ⊗ is the Kronecker product operator.

Example

>> A = [1 2; 3 4]

A =

1 2
3 4

>> B = [5 6; 7 8]

B =

5 6
7 8

>> Y = khatri(A,B)

Y =

5 12
7 16

15 24
21 32

See Also

KRON.

63

mpbal

mpbal

Minimum-phase balancing of a minimum-phase state-space realization.

Usage

[balsys,G,T,Ti] = mpbal(sys)

balsys is a minimum-phase, balanced realization of the system sys in the sense that the
controllability gramian of balsys and the observability gramian of the inverse of balsys are
equal and diagonal [CM97, Sect. V.A].

sys has to be a continuous-time, controllable, stable, minimum-phase state-space system,
given as an ss object. The inverse of sys must be observable.

Optional Outputs

G is a vector containing the diagonal of the gramian of the minimum-phase balanced real-
ization. The matrix T is the state transformation z = Tx that was used to convert sys to
balsys, and Ti is its inverse.

Example

>> sys = rss(3)

a =
x1 x2 x3

x1 -2.7113 -0.32309 -0.056596
x2 -0.32309 -0.45836 0.022362
x3 -0.056596 0.022362 -0.34326

b =
u1

x1 -1.7509
x2 -0.82862
x3 1.3862

c =
x1 x2 x3

y1 0.27187 -0.61306 0.021796

d =
u1

64

mpbal

y1 1.0392

Continuous-time model.

>> [balsys,G,T,Ti] = mpbal(sys)

a =
x1 x2 x3

x1 -0.30374 -0.70872 0.10028
x2 0.68176 -2.7244 0.75233
x3 -0.096421 0.75196 -0.4848

b =
u1

x1 0.41672
x2 -0.41414
x3 0.065091

c =
x1 x2 x3

y1 0.57419 0.41703 -0.067346

d =
u1

y1 1.0392

Continuous-time model.

G =

0.2859
0.0315
0.0044

T =

0.2290 -0.9776 0.0054
0.3033 -0.0031 0.0824

-0.2071 0.7487 0.2329

Ti =

65

mpbal

-0.8588 3.1894 -1.1081
-1.2067 0.7493 -0.2369
3.1149 0.4267 4.0692

>> Wc = gram(balsys,’c’)

Wc =

0.2859 0.0000 -0.0000
0.0000 0.0315 -0.0000

-0.0000 -0.0000 0.0044

>> Wo = gram(inv(balsys),’o’)

Wo =

0.2859 -0.0000 0.0000
-0.0000 0.0315 0.0000
0.0000 0.0000 0.0044

>> ismpbalanced(sys)
System is not minimum-phase balanced; norm(Wc(SYS)-Wo(inv(SYS))) = 3.47e+00.
>> ismpbalanced(balsys)
System is minimum-phase balanced; norm(Wc(SYS)-Wo(inv(SYS))) = 7.79e-16.

See Also

GRAM, ISBALANCED, BALREAL, BALPEM.

66

obmat

obmat

Constructs the observability matrix with a given index.

Usage

Y = obmat(A,C,k)

Given matrices A ∈ Rn×n and C ∈ Rp×n of a state-space system (A,B,C,D) with n states
and p outputs, the truncated (k < n), standard (k = n) or extended (k > n) observability
matrix is constructed, i.e.

Y = Ok :=

C
CA
CA2

...
CAk−1

Example

>> A = [1 -0.1; -0.1 1]

A =

1.0000 -0.1000
-0.1000 1.0000

>> C = [1 0; 1 1]

C =

1 0
1 1

>> Y = obmat(A,C,4)

Y =

1.0000 0
1.0000 1.0000
1.0000 -0.1000
0.9000 0.9000
1.0100 -0.2000
0.8100 0.8100
1.0300 -0.3010
0.7290 0.7290

67

obmat

See Also

OBSV.

68

orthproj

orthproj

Orthogonal projection onto a subspace.

Usage

Y = orthproj(A,B)

Projects the row vectors of matrix A ∈ Rm×p onto the subspace spanned by the row vectors
of matrix B ∈ Rn×p, i.e.

Y = ΠBA := ABT (BBT)†B

where Π is the orthogonal projection operator, B := span{αTB,α ∈ Rn} and (·)† denotes the
Moore-Penrose (pseudo-inverse) of a matrix.

The number of columns of A and B must be the same.

Example

>> A = rand(3,5)

A =

0.3468 0.1520 0.3879 0.8118 0.5601
0.8625 0.9218 0.8235 0.5281 0.2114
0.4751 0.4033 0.2914 0.2015 0.9282

>> B = [1 0 0 0 0; 1 1 0 0 0; 1 1 1 0 0]

B =

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0

>> Y = orthproj(A,B)

Y =

0.3468 0.1520 0.3879 0 0
0.8625 0.9218 0.8235 0 0
0.4751 0.4033 0.2914 0 0

See Also

COORPROJ, PINV.

69

soltritoep

soltritoep

Solves for a least squares, lower triangular, block Toeplitz matrix.

Usage

[T,H] = soltritoep(S,P,k)

Given two matrices S ∈ Rnk×p and P ∈ Rmk×p with the same number of columns and with
the number of rows divisible by k, the matrix

T =

H0 0 · · · 0 0
H1 H0 0
...

. . .
...

Hk−2 Hk−3 · · · H0 0
Hk−1 Hk−2 · · · H1 H0

is a least squares, lower triangular, block Toeplitz matrix solution to

S = TP.

The block matrix H is the first block column of T , i.e.

H =

H0

H1
...

Hk−1

and each Hi ∈ Rn×m.

See [CM98, Sect. 6] for a description of the algorithm.

Example

>> S = rand(4,1)

S =

0.5514
0.4373
0.3705
0.1322

>> P = rand(6,1)

P =

70

soltritoep

0.4460
0.9884
0.6820
0.7749
0.7643
0.7025

>> [T,H] = soltritoep(S,P,2)

T =

0 0.5578 0 0 0 0
0 0.4424 0 0 0 0
0 -0.0565 0 0 0.5578 0
0 -0.2084 0 0 0.4424 0

H =

0 0.5578 0
0 0.4424 0
0 -0.0565 0
0 -0.2084 0

See Also

BLOCTOEP, TOEPLITZ.

71

subid3b

subid3b

Deterministic-stochastic subspace identification of linear systems using a three-block config-
uration.

Usage

[M,P,SV] = subid3b(DATA)
[M,P,SV] = subid3b(DATA,n)
[M,P,SV] = subid3b(DATA,n,k)
[M,P,SV] = subid3b(DATA,n,k,DMAT)
[M,P,SV] = subid3b(DATA,n,k,DMAT,ALG)

DATA is the input-output data given as an iddata object and M is the estimated discrete-time,
state-space model in innovation form, returned as an idss object:

x(t + Ts) = Ax(t) +Bu(t) +Ke(t), x(0) = x0

y(t) = Cx(t) +Du(t) + e(t)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, K ∈ Rn×p, Ts is the sample time and x0

is the initial state.

See [CM98] for details of the algorithm.

Optional Outputs

• P is the associated Kalman filter covariance matrix [CM98, Sect. 9].

• SV is the retained singular values from the SVD decomposition.

Optional Inputs

• n is the system order and can be one of the following:

– If n is empty, then the algorithm will automatically select the order such that
n ≤ 10 (default).

– If n is a scalar, then the system order is equal to n.

– If n is given as a row vector (e.g. [1 2 3 4 5]), a plot of singular values will be given
and the user will be prompted to select an order.

• k specifies the block size, given as a positive integer. If k is not specified, the block size
is chosen to be as large as possible while still trying to be compatible with the size of
DATA.

It is recommended that the user ensure that k > max(n), but that k is still a lot smaller
than the size of DATA. For a more detailed discussion regarding the choice of block size,
see [CM98, p. 24].

72

subid3b

• DMAT determines whether the D matrix of the system is to be estimated or set to zero.
DMAT can be one of the following:

’Estimate’: Estimate the D matrix (default).

’Zero’: Set D = 0.

• ALG is set to choose the specific identification algorithm and can be one of the following:

’si’: Shift invariance approach (default).
See [CM98, Alg. 10.4] for details of the algorithm.

’ss’: State sequence approach.
See [CM98, Alg. 10.5] for details of the algorithm.

’mp’: Markov parameter approach.
See [CM98, Alg. 10.3] for details of the algorithm.

The shift invariance approach is the most computationally demanding algorithm, but
often results in obtaining the best estimate. The Markov parameter approach is often
the least robust.

Example

>> load example3block
>> data
Data set with 300 samples.
Sampling interval: 1

Outputs Unit (if specified)
y1
y2

Inputs Unit (if specified)
u1
u2
u3

>> idata = data(1:250);
>> valdata = data(251:300);
>> [m,p,sv]=subid3b(idata,3)
Block size k = 20.
State-space model: x(t+Ts) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

A =
x1 x2 x3

x1 0.95181 -0.084857 0.00053211
x2 0.0021275 -0.61431 0.4012
x3 0.057737 -0.33869 -0.34948

73

subid3b

B =
u1 u2 u3

x1 0.025562 0.071337 0.16243
x2 -0.17306 0.050237 0.042829
x3 0.02156 -0.05271 -0.10584

C =
x1 x2 x3

y1 -17.233 -16.594 -2.3172
y2 3.1321 -6.7352 -11.604

D =
u1 u2 u3

y1 1.158 0.097347 0.98285
y2 -1.1522 -0.017377 -0.87642

K =
y1 y2

x1 -0.00030967 0.00023064
x2 0.0014415 -0.0015581
x3 0.0013428 -0.0019277

x(0) =

x1 0
x2 0
x3 0

Estimated using SUBID3B - Shift invariance approach
Loss function
Sampling interval: 1

p =

1.0e-05 *

-0.2832 0.0492 0.0182
0.0492 -0.5308 -0.5354
0.0182 -0.5354 -0.8602

74

subid3b

sv =

1.0e+03 *

3.2066
0.6023
0.2707

>> [yh,fit] = compare(valdata,m,sys); fit % Compare estimated model to
% original system

fit(:,:,1) =

97.4080 97.4899

fit(:,:,2) =

92.3844 92.2662

See Also

IDDATA, IDSS, N4SID, BALPEM, PEM.

75

subid3b

76

Bibliography

[CM97] C.T. Chou and J.M. Maciejowski, “System identification using balanced parameter-
izations”, IEEE Trans. Auto. Contr., vol. 42, pp. 956–974, 1997.

[CM98] N.L.C. Chui and J.M. Maciejowski, “Subspace identification — a Markov parameter
approach,” Technical Report CUED/F-INFENG/TR.337, University of Cambridge, UK,
December 1998. Submitted to IEEE Trans. Auto. Contr.

[CM99] H. Chen and J.M. Maciejowski, “A new subspace identification method for bilinear
systems,” Technical Report CUED/F-INFENG/TR.357, University of Cambridge, UK,
May 2000. Submitted to Automatica.

[CM00a] H. Chen and J.M. Maciejowski, Subspace identification of combined deterministic-
stochastic bilinear systems, Proc. IFAC Symposium on System Identification SYSID
2000, Santa Barbara, June 2000.

[CM00b] H. Chen and J.M. Maciejowski, An improved subspace identification method for
bilinear systems, Proc. IEEE CDC Conference, Sydney, December 2000.

[FDV99] W. Favoreel, B. De Moor and P. Van Overschee, Subspace identification of bilinear
systems subject to white inputs, IEEE Trans. Auto. Contr., vol.44, no.6, 1157–1165,
1999.

[Lj99] L. Ljung, System Identification: Theory for the User (2nd ed.), Prentice Hall, 1999.

[Ob87] R.J. Ober, Balanced realizations: Canonical form, parametrization, model reduction,
Int. Journal of Control, vol.46, no.2, 643–670, 1987.

[Ob91] R.J. Ober, Balanced parametrization of classes of linear systems, SIAM J. Contr.
Optim., vol.29, 1251–1287, 1991.

[VODM96] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems:
Theory, Implementation, Applications, Kluwer Academic Publishers, 1996.

[VV99] V. Verdult and M. Verhaegen, Subspace-based identification of MIMO bilinear sys-
tems, Proc. European Control Conf., Karlsruhe, September 1999.

[Ve02] V. Verdult, Nonlinear System Identification: A State-Space Approach, Ph.D. Thesis,
University of Twente, The Netherlands, 2002.

77

