CUEDSID 1.0 System Identification Toolbox

User's Guide

Eric C. Kerrigan, Huixin Chen and Jan M. Maciejowski
Cambridge University Engineering Department
Cambridge CB2 1PZ England
jmm@eng.cam.ac.uk

Software for subspace identification of linear and bilinear dynamic systems and for prediction-error identification using balanced parametrizations.

For use with Matlab.

25 June 2002

This software has been developed to work with:

- Matlab Version 6.0 or higher,
- Matlab System Identification Toolbox Version 5.0, and
- Matlab Control System Toolbox Version 5.0.

Acknowledgement

The research leading to this software was supported by the Engineering and Physical Sciences Research Council of the UK under research grant GR/M08332/01
Integration of subspace and parametric system identification for linear and bilinear systems.

Copyright ©Cambridge University Engineering Department, 2002. All Rights Reserved.

Contents

1 Getting Started 5
1.1 Installation 5
1.2 Main Functions 6
1.3 Auxiliary Functions 6
2 Subspace Identification of Linear Systems 7
2.1 Overview 7
2.2 Example 8
3 System Identification of Linear Systems Using Balanced Parameterizations 13
3.1 Overview 14
3.2 Example 15
4 Subspace Identification of Bilinear Systems 23
4.1 Overview 24
4.2 Example 25
5 Function Reference 33
List of Functions 33
balpem 34
bilin 39
bilin/compare 42
bilin/isstable 44
bilin/pe 46
bilin/sim 48
bilinid 50
blochank 55
bloctoep 57
coorproj 59
isbalanced 61
ismpbalanced 62
khatri 63
mpbal 64
obmat 67
orthproj 69
soltritoep 70
subid3b 72
Bibliography 77

Chapter 1

Getting Started

The Cambridge University Engineering Department System Identification (CUEDSID) Toolbox for Matlab can be downloaded from:
http://www-control.eng.cam.ac.uk/jmm/cuedsid

1.1 Installation

The CUEDSID Toolbox requires the following software to be pre-installed:

- Matlab Version 6.0 or higher,
- Matlab System Identification Toolbox Version 5.0, and
- Matlab Control System Toolbox Version 5.0.

NB: It is assumed throughout this guide that the user is already acquainted with the use of Matlab and its System Identification and Control System Toolboxes. The CUEDSID Toolbox can be thought of as an add-on to the Matlab System Identification Toolbox.
Once the files have been downloaded, they should be decompressed into the user's Matlab directory (e.g. mymatlab). The following lines should be added to the startup.m file in order to add the files to the Matlab search path:

```
addpath mymatlab/cuedsid
addpath mymatlab/cuedsid/balpemsid
addpath mymatlab/cuedsid/bilinidsid
addpath mymatlab/cuedsid/linsid
```

Once Matlab has been started, the on-line help can be invoked by typing:

```
>> help cuedsid
```


1.2 Main Functions

The three main functions provided with the $C U E D S I D$ Toolbox are:
subid3b: Subspace identification of linear systems - see Chapter 2.
balpem: System identification using balanced parameterizations - see Chapter 3.
bilinid: Subspace identification of bilinear systems - see Chapter 4.

1.3 Auxiliary Functions

A number of auxiliary functions are also provided with the $C U E D S I D$ Toolbox:

bilin	Create a discrete-time, bilinear, state-space system
bilin/compare	Compare simulated data with measured data
bilin/isstable	Determine whether a given bilinear system is stable
bilin/pe	Compute prediction errors associated with a data set
bilin/sim	Simulate a given bilinear system (with noise)
blochank	Assemble a block Hankel matrix from a given block matrix
bloctoep	Assemble a block Toeplitz matrix from two given block matrices
coorproj	Orthogonal projection onto a complement subspace
isbalanced	Determines whether a state-space system is balanced
ismpbalanced	Determines whether a system is minimum-phase balanced
khatri	Compute the Khatri-Rao product of two matrices
mpbal	Computes a minimum-phase balanced realization
obmat	Construct the observability matrix with a given index
orthproj	Orthogonal projection onto a subspace
soltritoep	Solve for a lower-triangular, block Toeplitz matrix

The first five functions above are intended for use in conjunction with bilinid and the functions isbalanced, ismpbalanced and mpbal are intended for use in conjunction with balpem. The remaining functions are used by subid3b, balpem and bilinid, but can also be used as stand-alone functions.
The reader is referred to the following chapters and the function reference at the end of the guide for more details.

Chapter 2

Subspace Identification of Linear Systems

Most methods of system identification rely on iterative, nonlinear optimisation to fit parameters in a pre-selected model structure, so as to best fit the observed data [Lj99]. Subspace methods are an alternative class of identification methods which are 'one-shot' rather than iterative, and rely on linear algebra rather than on optimisation. They are very easy to use, and generally give very good results. They can also be used as sources of initial models which can be refined further using the optimisation approach, if required.
Standard subspace algorithms, such as the one implemented in the Matlab System Identification Toolbox function n4sid, split the available input-output data into two blocks, which can be thought of as the past and the future. The basic versions of these standard subspace methods suffer from systematic errors (bias) - unless the measured input is white which reduce as the so-called block size parameter increases These errors can be avoided by algorithms of additional complexity (as implemented in n4sid, for example) [VODM96].
An alternative approach to reducing these systematic errors is presented in [CM98] and has been implemented in the CUEDSID Toolbox function subid3b. This algorithm splits the data into three blocks, which we denote the past, the current and the future blocks. The result of using this approach is that the bias is reduced, even when the noise is not white.

2.1 Overview

Given a set of input-output data, subid3b aims to identify a discrete-time, state-space model in innovation form:

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+B u(t)+K e(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$ and the Kalman gain $K \in \mathbb{R}^{n \times p} ; x$ denotes the state, u the input signal, y the output signal and e the process noise. T_{s} is the sample time and x_{0} is the initial state.

The function subid3b has been written to be used in conjunction with the Matlab System

Identification Toolbox. Input-output data has to be passed to subid3b as an iddata object and the estimated model is returned from subid3b as an idss object. The GUI, ident, and other Matlab System Identification Toolbox functions, such as idmodel/compare and idmodel/resid, can be used to process data for identification and validation of the model.

When calling subid3b to identify a model, the user can choose whether or not to override the automatic selection of the following:

- System order n,
- Block size k,
- Whether D is to be estimated or set to zero, and
- The specific variant of the three-block algorithm, which can be one of the following approaches:
- Markov parameter,
- Shift invariance, or
- State sequence.

For more details, the user is referred to the function reference and [CM98].

2.2 Example

The function subid3b is very easy to use. A short example will illustrate the typical steps involved in identifying and verifying a model using subid3b.
The first step is to process some data for identification and validation. This can be done using the Matlab System Identification Toolbox. The following command will load some processed data into the Matlab workspace:

```
>> load example3block
>> who
Your variables are:
data sys
>> data
Data set with 300 samples.
Sampling interval: 1
Outputs Unit (if specified)
    y1
    y2
Inputs Unit (if specified)
```

 u1
 u2
 u3
 >> sys
State-space model: $x(t+T s)=A x(t)+B u(t)+K e(t)$
$y(t)=C x(t)+D u(t)+e(t)$
$\mathrm{A}=$

	x1	x2	x3
x1	-0.40759	0.45403	-0.045775
x2	-0.072194	0.025234	-0.73298
x3	-0.45058	-0.57994	0.37359

$B=$

	u 1	u	u
x1	2.1157	-1.2466	-1.9128
x2	0	0	0
x3	1.0462	0.53008	1.5283

C $=$

	x 1	x 2	x 3
y 1	1.3543	1.8706	-0.45374
y 2	0	0.8012	0.94957

$\mathrm{D}=$

	u 1	u 2	u 3
y1	1.1574	0.088764	0.98312
y2	-1.1595	0	-0.87049

$\mathrm{K}=$

	$y 1$	$y 2$
$x 1$	0	0
$x 2$	0	0
x3	0	0

$x(0)=$

$x 1$	0
$x 2$	0
$x 3$	0

Figure 2.1: Plot of singular values resulting from SVD decomposition in three-block algorithm

This model was not estimated from data.
Sampling interval: 1

The variable data is an iddata object and sys is the actual system that was that was used to generate the data (after adding some noise). sys is an idss object.
The following commands extract different parts of data for identification and validation:

```
>> identdata = data(1:250);
>> valdata = data(251:300);
```

The following call to subid3b uses the shift invariance approach to help estimate the order of the system. A logarithmic plot of the singular values that resulted from the SVD decomposition is displayed and the user is prompted to select the system order. The block size k is not specified and hence chosen by the algorithm. As can be seen in Figure 2.1, the first three singular values are a lot larger than the rest, hence one can accurately estimate that $n=3$.

```
>> Msi = subid3b(identdata,[1:10])
Block size k = 20.
Please select model order: 3
State-space model: x(t+Ts) = A x (t) + B u(t) + K e(t)
```

$$
y(t)=C x(t)+D u(t)+e(t)
$$

$\mathrm{A}=$

	x1	x2	x3
x1	0.95181	-0.084857	0.00053211
x2	0.0021275	-0.61431	0.4012
x3	0.057737	-0.33869	-0.34948

$B=$

	u1	u2	u3
x1	0.025562	0.071337	0.16243
x2	-0.17306	0.050237	0.042829
x3	0.02156	-0.05271	-0.10584

C $=$

	x 1	x 2	x 3
y 1	-17.233	-16.594	-2.3172
y2	3.1321	-6.7352	-11.604

D =

	u1	u2	u3
y1	1.158	0.097347	0.98285
y2	-1.1522	-0.017377	-0.87642

$\mathrm{K}=$

	$y 1$	$y 2$
x1	-0.00030967	0.00023064
x2	0.0014415	-0.0015581
x3	0.0013428	-0.0019277

$x(0)=$

$x 1$	0
$x 2$	0
$x 3$	0

```
Estimated using SUBID3B - Shift invariance approach
Loss function
Sampling interval: 1
```

The next two commands estimate two additional models using the state sequence and Markov parameter approaches:

Figure 2.2: Comparison of different models obtained using the three-block algorithm

```
>> Mss = subid3b(identdata,3,[],[],'ss');
Block size k = 20.
>> Mmp = subid3b(identdata,3, [], [] ,'mp');
Block size k = 20.
```

Finally, each of the three models are compared against one another using the validation data. Figure 2.2 results from making the following call to the Matlab System Identification Toolbox function idmodel/compare:

```
>> compare(valdata,sys,Msi,Mss,Mmp)
```

As can be seen in Figure 2.2, all three models fit the data well. The models appears to predict the data as well as the original system sys that was used to generate the data.

Chapter 3

System Identification of Linear Systems Using Balanced Parameterizations

As briefly mentioned at the beginning of Section 2, most methods of system identification rely on iterative, nonlinear optimisation to fit parameters in a pre-selected model structure, so as to best fit the observed data. Such optimisation has to be performed subject to certain constraints, in order to avoid undesirable models such as unstable ones, and to keep the search process well-conditioned. (The parameter space being searched is of higher dimension than the 'behaviour space'.)
A method of performing such an optimisation without constraints, by exploiting an explicit parametrisation of the lower-dimensional 'behaviour space', is presented in [CM97]. The approach is based on the so-called balanced parameterization, initially developed by Ober [Ob87], and has some advantages over the use of the better-known canonical forms, such as the observable form.
For example, a state-space system that is close to being non-minimal gives rise to an illconditioned parameter estimation problem; perturbations of the parameter estimates in certain directions (in the parameter space) have very little effect on the input-output behaviour of the estimated model. The consequence of this is that the accuracy of parameter estimation is low. In a sense, because the balanced realization of a given system can be thought of as the one that is 'furthest away' from non-minimality, the use of a balanced parameterization gives an estimation problem that is as well-conditioned as possible.
Balanced parametrizations of several classes of linear systems have been developed [Ob91]. These allow the parameters to vary almost without constraints (typically they are required to be positive), without leaving the class of system being parametrised. Parametrizations of the classes of stable systems and of minimum-phase systems are supported by the CUEDSID Toolbox.

3.1 Overview

The function balpem, that implements the prediction-error identification method of [CM97] using balanced parameterizations, has been designed around the Matlab System Identification Toolbox function pem. To be more precise, balpem uses the idgrey class to set up the balanced parameterizations described in [CM97, Sect. IV] and [CM97, Sect. V.A], and then calls pem to improve on the initial estimate of the model.
The function balpem is easy to use; the minimum number of arguments required in balpem is the sequence of input-output data, given as an iddata object, and an initial estimate of the model, given as an idss object. The final estimate is returned from balpem as an idss object in innovation form:

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+B u(t)+K e(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$ and the Kalman gain $K \in \mathbb{R}^{n \times p} ; x$ denotes the state, u the input signal, y the output signal and e the process noise. T_{s} is the sample time and x_{0} is the initial state.
Provided the initial estimate is stable ${ }^{1}$, the final estimate is stable and balanced in one of the following two ways, as specified by the user:

- (A, B, C, D) is balanced in the usual sense of the controllability gramian of (A, B, C, D) being diagonal and equal to the observability gramian of (A, B, C, D).
As a default, D is estimated without any constraints. Alternatively, the user can choose to set D to zero.
The Kalman gain K is set to zero ${ }^{2}$ (i.e. it is assumed that the only source of noise is measurement noise).
- (A, K, C, I) is minimum-phase and balanced in the sense that the controllability gramian of (A, K, C, I) is diagonal and equal to the observability gramian of the inverse of (A, K, C, I) (i.e. the observability gramian of $(A-K C, K,-C, I)$).
As a default, B and D are estimated without any constraints. Alternatively, the user can choose to set B and/or D to zero.

Three auxiliary functions have also been provided for use in conjunction with balpem:
isbalanced: Tests whether a model is balanced in the usual sense.
ismpbalanced: Tests whether a model is balanced in the minimum-phase sense.
mpbal: Computes a minimum-phase balanced realization of a given continuous-time, statespace model.

The reader is referred to the function reference for details on using these functions.

[^0]
3.2 Example

A short example will illustrate the typical steps involved in identifying and verifying a model using subid3b. The following commands load some data and an initial estimate into the Matlab workspace:

```
>> data
Data set with 300 samples.
Sampling interval: 1
Outputs Unit (if specified)
    y1
    y2
Inputs Unit (if specified)
    u1
    u2
    u3
>> sys
State-space model: x(t+Ts) = A x (t) + B u(t) + K e(t)
                    y(t) = C x (t) + D u(t) +e(t)
A =
\begin{tabular}{lrrr} 
& x1 & x2 & x3 \\
x1 & -0.40759 & 0.45403 & -0.045775 \\
x2 & -0.072194 & 0.025234 & -0.73298 \\
x3 & -0.45058 & -0.57994 & 0.37359
\end{tabular}
```

B =

x1	2.1157	-1.2466	-1.9128
x2	0	0	0
x3	1.0462	0.53008	1.5283

$C=$

	x 1	x 2	x 3
y 1	1.3543	1.8706	-0.45374
y 2	0	0.8012	0.94957

D =

	$u 1$	$u 2$	$u 3$
y1	1.1574	0.088764	0.98312
y2	-1.1595	0	-0.87049

$\mathrm{K}=$		
	y1	y2
x 1	0	0
x2	0	0
x3	0	0
$x(0)=$		
x1	0	
x 2	0	
x3	0	

```
This model was not estimated from data.
Sampling interval: 1
```

The variable data is an iddata object, sys is the actual system that was that was used to generate the data (after adding some noise) and mi is an initial estimate of the system, computed using subid3b; sys and mi are idss objects.

The following commands extract different parts of data for identification and validation:

```
>> identdata = data(1:250);
>> valdata = data(251:300);
```

Since the current mi is already a good estimate of sys (see Section 2.2), in order to make things more interesting mi, the D matrix of mi is set to zero:

```
>> mi.d=mi.d*0
State-space model: x(t+Ts) = A x (t) + B u(t) + K e(t)
    y(t) = C x (t) + D u(t) + e(t)
```

$\mathrm{A}=$

	x 1	x 2	x
x1	0.95181	-0.084857	0.00053211
x2	0.0021275	-0.61431	0.4012
x3	0.057737	-0.33869	-0.34948

$B=$

	u1	u2	u3
x1	0.025562	0.071337	0.16243
x2	-0.17306	0.050237	0.042829
x3	0.02156	-0.05271	-0.10584

```
C =
\begin{tabular}{lrrr} 
& x 1 & x 2 & x 3 \\
y 1 & -17.233 & -16.594 & -2.3172 \\
y 2 & 3.1321 & -6.7352 & -11.604
\end{tabular}
D =
\begin{tabular}{rrrr} 
& u1 & u2 & u3 \\
y1 & 0 & 0 & 0 \\
y2 & 0 & 0 & 0
\end{tabular}
```

	$y 1$	$y 2$
x1	-0.00030967	0.00023064
x2	0.0014415	-0.0015581
x3	0.0013428	-0.0019277

$x 1$	0
$x 2$	0
$x 3$	0

```
K =
```

K =
x(0) =
x(0) =
Estimated using SUBID3B - Shift invariance approach
Estimated using SUBID3B - Shift invariance approach
Loss function
Loss function
Sampling interval: 1

```
Sampling interval: 1
```

Given this new mi as an initial estimate of sys, the following command calls balpem to obtain an improved, stable and balanced estimate of sys:

```
>> msb = balpem(identdata,mi)
Warning: Mi.K is not allowed to be non-zero if ALG is 'sb'. Setting Mi.K = 0.
State-space model: x(t+Ts) = A x (t) + B u(t) + K e(t)
                            y(t) = C x (t) + D u(t) + e(t)
```

$\mathrm{A}=$

	x1	x2	x3
x1	0.95009	-0.088849	0.0010244
x2	-0.029647	-0.6211	0.38655
x3	0.058536	-0.35747	-0.33828

$B=$

$$
\begin{array}{rrrr}
& \mathrm{u} 1 & \mathrm{u} 2 & \mathrm{u} 3 \\
\mathrm{x} 1 & -0.24568 & -0.70906 & -1.6163
\end{array}
$$

x 2	1.7186	-0.48791	-0.41359
x3	-0.16203	0.51618	1.0584
$\mathrm{C}=$			
	x1	x2	x3
y1	1.7646	1.6646	0.25344
y2	-0.30981	0.64502	1.1528
$\mathrm{D}=$			
	u1	u2	u3
y1	1.1542	0.09694	0.99212
y2	-1.156	-0.0057658	-0.87074
$\mathrm{K}=$			
	y1	y2	
x1	0	0	
x 2	0	0	
x3	0	0	
$x(0)=$			
x 1	0		
x2	0		
x3	0		
Estimated using BALPEM from data set data			
Loss function 1.0554 and FPE 1.21917			
Sampling interval: 1			

The following command verifies that the new estimate is indeed balanced:

```
>> isbalanced(msb)
System is balanced; norm(Wc-Wo) = 3.60e-14.
```

Given the same mi as an initial estimate of sys, the following command calls balpem to obtain an improved, stable and minimum-phase balanced estimate of sys:

```
>> mmp = balpem(identdata,mi, [],'mp')
State-space model: x(t+Ts) = A x (t) + B u(t) + K e(t)
    y(t) = C x (t) + D u(t) + e(t)
```

$\mathrm{A}=$
x1
x2
x3

x1	0.93912	-0.046301	0.021775
x2	-0.28714	-0.31407	0.33817
x3	0.011313	-0.41523	-0.64119

$B=$
$C=$

	x1	x2	x3
y1	0.05171	-0.15319	0.043295
y2	-0.041494	-0.15013	-0.052353

$\mathrm{D}=$

	u1	u2	u3
y1	0.23033	0.016489	0.19553
y2	-0.24727	-0.0034688	-0.18705

$\mathrm{K}=$

	y 1	y 2
x1	0.039789	-0.082934
x2	0.10217	-0.17631
x3	0.015062	0.026313

$x(0)=$

x 1	0
x 2	0
x 3	0

Estimated using BALPEM from data set data
Loss function 111.718 and FPE 135.445
Sampling interval: 1

The following command verifies that (A, K, C, I) of the new estimate mmp is indeed minimumphase balanced:

```
>> ismpbalanced(ss(mmp.a,mmp.k,mmp.c,eye(2),1))
System is minimum-phase balanced; norm(Wc(SYS)-Wo(inv(SYS))) = 1.24e-16.
```


Figure 3.1: Comparison of the initial estimate and the new estimate obtained using balpem

Finally, the initial and new estimates are compared against one another using the validation data. Figure 3.1 results from making the following call to the Matlab System Identification Toolbox function idmodel/compare:
>> compare(valdata,sys,mi,msb,mmp)
As can be seen in Figure 3.1, the initial model mi did not do very well in matching the data, whereas the new models msb and mmp are better estimates.
On further investigation, it is possible to improve a little on the minimum-phase balanced estimate mmp by increasing 'MaxIter'.
>> mmp.estimationinfo
ans =

```
            Status: 'Estimated model (PEM)'
            Method: 'BALPEM'
            LossFcn: 111.7176
            FPE: 135.4453
            DataName: 'data'
            DataLength: 250
                DataTs: 1
```

```
    DataInterSample: {3x1 cell}
            WhyStop: 'Maxiter reached'
        UpdateNorm: 113.2507
    LastImprovement: '0.069766%'
        Iterations: 20
        InitialState: 'Model'
>> mmp = balpem(identdata,mi, [],'mp','MaxIter',50);
>> mmp.estimationinfo
ans =
            Status: 'Estimated model (PEM)'
            Method: 'BALPEM'
            LossFcn: 82.9515
                            FPE: 100.5695
            DataName: 'data'
            DataLength: 250
                DataTs: 1
    DataInterSample: {3x1 cell}
            WhyStop: 'Maxiter reached'
            UpdateNorm: 121.2604
    LastImprovement: '0.083681%'
            Iterations: 50
            InitialState: 'Model'
>> msb.estimationinfo
ans =
            Status: 'Estimated model (PEM)'
            Method: 'BALPEM'
            LossFcn: 1.0554
                    FPE: 1.2192
            DataName: 'data'
            DataLength: 250
                DataTs: 1
    DataInterSample: {3x1 cell}
            WhyStop: 'Near (local) minimum, (norm(g)<tol).'
            UpdateNorm: 1.8941e-04
    LastImprovement: '0.00018941%'
            Iterations: 3
            InitialState: 'Model'
>> [yh,fit] = compare(valdata,sys,mi,msb,mmp); fit
fit(:,:,1) =
```

fit(:,:,2) =
$92.2662 \quad 48.2088 \quad 92.3172 \quad 64.7854$

It is interesting to note that, as the above analysis shows, msb results in a much better estimate than mmp after fewer iterations. As a matter of fact, msb fits the data as well as the original system sys that was used to generate it, whereas mmp can still be improved upon.

Chapter 4

Subspace Identification of Bilinear Systems

Most commonly the models obtained by system identification allow only linear relationships between the inputs and outputs. One of the objectives of this toolbox is to allow the identification of discrete-time bilinear models of the form

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+N(u(t) \otimes x(t))+B u(t)+w(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+v(t)
\end{aligned}
$$

in which $u(t)$ and $y(t)$ are vectors of time-indexed observed input and output data, $x(t)$ is a time-indexed (unobserved) state vector, $w(t)$ and $v(t)$ are unobserved random processes, and A, B, C, D and N are matrices of suitable (but initially unknown) dimensions. The term $N(u(t) \otimes x(t))$, where \otimes is the Kronecker product operator, is bilinear; if this term is absent then the model is linear.
Continuous-time bilinear models are important in process control (flow $x \times$ concentration u), aerodynamics (speed $x \times$ surface deflection u), and other applications. Discrete-time equivalents of continuous-time bilinear models are no longer exactly bilinear, but for small sampling times they remain approximately bilinear. Also discrete-time bilinear models can be regarded as a useful enlargement of the model class from linear models, even if there is no physical basis for expecting a bilinear structure. Furthermore, certain bilinear models can be regarded as examples of the increasingly important class of piecewise-linear models [Ve02].
The CUEDSID Toolbox provides bilinid, a subspace algorithm for the identification of discrete-time bilinear systems, analogous to the existing methods for linear systems - in particular, the ideas underlying the work reported in [CM98] (and implemented in subid3b) are exploited for this purpose.
Most subspace algorithms split the data into two blocks, which are conventionally labelled past and future. In [CM99] the data is split into three blocks when performing deterministic identification, namely when it is assumes that the noise terms $w(t)$ and $v(t)$ are absent. The third block is labelled current, and it allows one to estimate part of the system's inputoutput behaviour. (This idea is inherited from [CM98]; for linear systems a finite sequence of Markov parameters would be estimated in this way). This estimated behaviour is then used in a second step to estimate the state dimension of the system being identified, and two
consecutive state sequences. In a third step these state sequences are used to estimate the matrices of the bilinear model.
In the stochastic case, when the noises $w(t)$ and $v(t)$ are assumed to be present, a fourth block is introduced, labelled remote future, which allows the random effects of these noises to be averaged out, before applying the same 'three-block' strategy as for the deterministic case. (This parallels the difference between the 'deterministic' and 'stochastic' cases in subspace identification of linear systems). The function bilinid implements this algorithm, the details of which can be found in [CM99]. The algorithms implemented in bilinid were introduced in [CM00a, CM00b]. Note that the deterministic 3-block algorithm (for the case when the w and v terms are absent), is not implemented in Version 1.0 of the CUEDSID Toolbox.
Alternative subspace algorithms for bilinear systems have been published in [FDV99, VV99]. The algorithm in [FDV99] assumes that the measured input is white. The algorithm in [VV99] is a two-stage method which employs hill-climbing optimization in the second stage.

4.1 Overview

The CUEDSID Toolbox provides a number of easy-to-use functions that allow the user to identify and validate discrete-time, bilinear state-space models. The main function is bilinid, which implements the four-block algorithm described in [CM99]. A bilin class, which functions in a fashion similar to the idss and ss classes, has also been defined. The methods that have been overloaded for the bilin class, include the following:

- compare
- isstable
- sim

- pe

One can simulate a bilinear system by first creating a bilin object in the same fashion as one would create an idss or ss object. Once a bilin object has been created, one can generate input-output data and add noise to it by using the method bilin/sim; bilin/sim returns input-output data as an iddata object that can then be manipulated using the Matlab System Identification Toolbox.
Given a set of input-output data as an iddata object, bilinid aims to identify a discretetime, bilinear state-space model in the form:

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+N(u(t) \otimes x(t))+B u(t)+w(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+v(t)
\end{aligned}
$$

where \otimes is the Kronecker product operator, the matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}, N:=\left[N_{1} N_{2} \cdots N_{m}\right] \in \mathbb{R}^{n \times n m}$ and each $N_{i} \in \mathbb{R}^{n \times n}$. T_{s} is the sample time and x_{0} is the initial state.
When calling bilinid to identify a model, the user has can choose whether or not to override the automatic selection of the following:

- System order n,
- Block size k,
- Whether D is to be estimated or set to zero, and
- The specific variant of the four-block algorithm that is used, which can be one of the following:
- General,
- Fast (for the case when the number of outputs $p<n$), or
- Accurate (for the case when the number of outputs $p \geq n$).
bilinid returns the estimate of the bilinear system to the user as a bilin object. Once this bilin object has been obtained, one could use the methods bilin/compare, bilin/isstable and bilin/pe to validate the model.
Suppose that the true system, together with the data, satisfies the following assumption, which is a kind of stability condition:

$$
\lambda=\max _{t} \bar{\sigma}\left(A+\sum_{i} u_{i}(t) N_{i}\right)<1
$$

where $\bar{\sigma}(\cdot)$ denotes the greatest singular value of a matrix and $u_{i}(t)$ is the i 'th element of $u(t)$. Then the systematic error (bias) inherent in bilinid reduces as $o\left(\lambda^{k}\right)$ (if $p<n$). However, the computational complexity increases exponentially with k, so in practice one is restricted to rather small values of k, and hence of n, since it is generally required that $k>n$. The condition $\lambda<1$ is tested (for a model) by the function bilin/isstable.

The user should be aware that, even with small values of k, the computational complexity and memory requirements of the bilinid function are both high, and computation times are likely to be very large on low-performance computers.
For more details, the user is referred to the function reference and [CM99].

4.2 Example

This example will demonstrate how to create, manipulate and simulate a bilin object. Once some data has been generated, bilinid will be used to identify a bilinear model from this data. Finally, the estimated model will be validated using some of the functions supplied with the CUEDSID Toolbox.
The following commands create a bilin object called sys:

```
>> A = diag([0.5 0.5]);
>> B = [0 1; -1 0];
>> C = [1 0; 0 2];
>> D = [1 0; 1 1];
>> N1 = [0.6 0; 0 0.4];
```

```
>> N2 = [0.2 0; 0 0.5];
>> sys = bilin(A,B,C,D,[N1 N2])
Discrete-time bilinear state-space model:
    x(t+Ts) = A x (t) + N kron(u(t), x (t)) + B u(t); x(0) = X0
        y(t) = C x (t) + D u(t)
A =
        0.5000 rra
B =
        0}
C =
        1 
D =
        1 0
        1 1
N =
        rrrr
Initial state X0 =
    0
    0
Sampling time Ts =
    1
```

One can extract or set the properties of sys in a similar way as with idss objects:

```
>> sys.n
ans =
    0.6000 rrrr
```

```
>> set(sys,'Ts',2)
Discrete-time bilinear state-space model:
    x(t+Ts) = A x (t) + N kron(u(t),x(t)) + B u(t); x(0) = X0
        y(t) = C x (t) + D u(t)
A =
    0.5000 0
            0 0.5000
B =
        0 1
    -1 0
C =
        1 0
        0
D =
        1 0
        1 1
N =
    0.6000 rrrr
Initial state X0 =
    0
    0
Sampling time Ts =
    2
```

The following code generates some random input and noise sequences that will be used to generate some data for identification:

```
>> W = iddata([],idinput([600 2],'RGS',[],[-0.01 0.01]));
>> V = iddata([],idinput([600 2],'RGS',[],[-0.01 0.01]));
>> U = iddata([],idinput([600 2],'RGS',[],[-0.1 0.1]));
```

The input sequence generated can be tested to see whether it satisfied the stability assumption made in [CM98]:

Figure 4.1: Input-output data generated from the bilinear system sys

```
>> isstable(sys,U)
The system satisfies the stability condition: Lambda = 6.91e-01 < 1.
```

One can now simulate the system with the given input sequence U, process noise W and measurement noise V :
>> [Y,X,YU] = sim(sys, [U W V]);
Figure 4.1 is a plot of the the first input and first output of YU, and was produced by:
>> plot(YU)
The following commands extract different parts of YU for identification and validation:
>> identdata $=\mathrm{YU}(1: 550)$;
>> valdata $=\mathrm{YU}(551: 600)$;
The function bilinid is now invoked to identify a bilinear system from the identification data.

```
>> M = bilinid(identdata,[1:4])
```

```
Using general four-block, deterministic-stochastic algorithm.
Constrained least squares will be used when estimating system matrices.
Block size k = 2.
Step 1/5. Decomposing the block equation...
...1/9...
...2/9...
...3/9...
. . .4/9...
. . .5/9...
...6/9...
...7/9...
...8/9...
...9/9...
Step 2/5. Computing the constant matrix via pseudo-inverse...
Garbage collection...
Step 3/5. Constructing matrices for SVD decomposition...
...1/9...
...2/9...
...3/9...
...4/9...
...5/9...
...6/9...
...7/9...
...8/9...
...9/9...
Step 4/5. Performing SVD decomposition...
Please select model order: 2
Garbage collection...
Step 5/5. Determining the system matrices using constrained least squares...
Done.
Discrete-time bilinear state-space model:
    x(t+Ts) = A x (t) + N kron(u(t),x(t)) + B u(t); x(0) = X0
        y(t) = C x (t) + D u(t)
A =
    0.4916 -0.0068
    -0.0058 0.5079
B =
    0.7579 0.0004
    -0.0009 0.5311
```

```
C =
    -0.0095 1.8727
    -2.6179 0.0075
D =
    0.9870 0.0058
N =
    0.4806 -0.0075 0.4995 -0.0767
    0.0549 0.6120 0.0911 0.0784
Initial state XO =
    0
    0
Sampling time Ts =
    1
```

Figure 4.2 is a plot of the singular values that resulted from the SVD decomposition phase. As can be seen, the first two singular values are a significantly larger than the rest and the user correctly chose $n=2$.

One can once again verify whether the estimated model satisfies the stability assumption of [CM99]:

```
>> isstable(M,U)
The system satisfies the stability condition: Lambda = 6.90e-01 < 1.
```

Finally, the estimated model can be validated using the functions bilin/compare or bilin/pe. Figure 4.3 results from the following call to the CUEDSID Toolbox function bilin/compare:

```
>> compare(M,valdata)
Percentage Fit:
    y1 - 93.41%
    y2 - 89.84%
>> compare(sys,valdata)
Percentage Fit:
    y1 - 93.45%
    y2 - 92.78%
```

As can be seen, M appears to be a good, initial estimate of sys.

Figure 4.2: Plot of singular values resulting from the SVD decomposition phase in bilinid

Figure 4.3: Comparison between the first output sequence in valdata and data that was simulated by using the estimated bilinear model M

Chapter 5

Function Reference

Subspace identification of linear systems

subid3b	Main function for linear subspace identification

Identification of linear systems using a balanced parameterization

balpem	Main function for identification using a balanced parameterization
isbalanced	Determines whether a state-space system is balanced
ismpbalanced	Determines whether a system is minimum-phase balanced
mpbal	Computes a minimum-phase balanced realization

Subspace identification of bilinear systems

bilin	Create a discrete-time, bilinear, state-space system
bilin/compare	Compare simulated data with measured data
bilin/isstable	Determine whether a given bilinear system is stable
bilin/pe	Compute prediction errors associated with a data set
bilin/sim	Simulate a given bilinear system (with noise)
bilinid	Main function for bilinear subspace identification

Other functions

blochank	Assemble a block Hankel matrix from a given block matrix
bloctoep	Assemble a block Toeplitz matrix from two given block matrices
coorproj	Orthogonal projection onto a complement subspace
khatri	Compute the Khatri-Rao product of two matrices
obmat	Construct the observability matrix with a given index
orthproj	Orthogonal projection onto a subspace
soltritoep	Solve for a lower-triangular, block Toeplitz matrix

balpem

Identifies a balanced state-space model from input-output data using a balanced parameterization prediction-error method.

Usage

```
M = balpem(DATA,Mi)
M = balpem(DATA,Mi,BD)
M = balpem(DATA,Mi,BD,ALG)
M = balpem(DATA,Mi,BD,ALG,Property_1,Value_1, ...,Property_n,Value_n)
```

DATA is the input-output data given as an iddata object and Mi is an initial state-space estimate of the model, given as an idss object. The initial estimate Mi must be stable for the algorithm to work.
The estimated discrete-time, state-space model M is returned in innovation form as an idss object:

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+B u(t)+K e(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

where T_{s} is the sample time and x_{0} is the initial state. The estimated model M is stable, minimal and balanced in some sense (as determined by the choice of ALG).
See [CM97] for details of the algorithm.

Optional Inputs

- BD is used when estimating the B and D matrices and can be one of:
'Estimate': Estimate B and D matrices (default).
A warning is displayed if Mi.nk is not equal to $[0 \ldots 0]$.
'ZeroD': Estimate B and set $D=0$.
A warning is displayed if Mi.nk is not equal to $[1 \ldots 1]$.
'ZeroB': Set $B=0$ and estimate D. Valid only if ALG is ' mp '.
A warning is displayed if Mi.B is not equal to 0 or Mi.nk is not equal to $[0 \ldots 0]$.
'ZeroBD': Set $B=0$ and $D=0$. Valid only if ALG is 'mp'.
A warning is displayed if $\mathrm{Mi} . \mathrm{B}$ is not equal to 0 or Mi .nk is not equal to $[1 \ldots 1]$.
- ALG determines the choice of balanced parameterization and can be one of:
'sb': Stable, balanced parameterization (default). The estimated M is such that (A, B, C, D) is balanced and $K=0$. The algorithm is described in [CM97, Sect. IV].
A warning is displayed if Mi.K is not equal to zero.
An error message is displayed if the initial estimate Mi is not minimal.
'mp': Minimum-phase balanced parameterization. The estimated M is such that the sub-system (A, K, C, I) of M is minimum-phase and balanced in the sense that the controllability gramian of (A, K, C, I) is diagonal and equal to the observability gramian of the inverse of (A, K, C, I). The algorithm is described in [CM97, Sect. V.A].
An error message is displayed if (A, K, C, I) of the initial estimate Mi is not minimum-phase and controllable, or the inverse of (A, K, C, I) is not observable.
- Property, Value: See IDPROPS ALGORITHMS or IDPROPS IDGREY for a list of possible Property/Value pairs. Typical properties that could be set include 'MaxIter', 'InitialState' and 'DisturbanceModel'. Setting the latter is sensible only when ALG='sb'.

Example

```
>> load examplebalpem
>> data
Data set with 300 samples.
Sampling interval: 1
Outputs Unit (if specified)
    y1
    y2
Inputs Unit (if specified)
    u1
    u2
    u3
>> idata = data(1:250);
>> valdata = data(251:300);
>> msb = balpem(idata,mi)
Warning: Mi.K is not allowed to be non-zero if ALG is 'sb'. Setting Mi.K = 0.
State-space model: x(t+Ts) = A x (t) + B u(t) + K e(t)
                            y(t) = C x (t) + D u(t) + e(t)
A =
\begin{tabular}{rrrr} 
& x1 & x2 & x3 \\
x1 & 0.95002 & -0.08897 & 0.0010067 \\
x2 & -0.029711 & -0.62096 & 0.38682 \\
x3 & 0.058523 & -0.35815 & -0.33842
\end{tabular}
B =
\begin{tabular}{rrrr} 
& u 1 & u 2 & u 3 \\
x 1 & -0.24589 & -0.70888 & -1.6172 \\
x 2 & 1.7191 & -0.48856 & -0.41401
\end{tabular}
```



```
\begin{array} { l l l l } { x 3 } & { 1 9 . 9 5 8 ~ - 1 0 . 9 4 6 ~ - 1 6 . 0 7 7 } \end{array}
C =
\begin{tabular}{lrrr} 
& x1 & x2 & x3 \\
y1 & 0.056768 & -0.16425 & 0.047706 \\
y2 & -0.044647 & -0.16137 & -0.055189
\end{tabular}
D =
\begin{tabular}{rrrr} 
& u 1 & u & u \\
y 1 & 1.1577 & 0.097444 & 0.98383 \\
y2 & -1.1524 & -0.016652 & -0.87598
\end{tabular}
K =
\begin{tabular}{rrr} 
& y 1 & y 2 \\
x 1 & 0.062722 & -0.076409 \\
x 2 & 0.12789 & -0.17769 \\
x 3 & -0.023432 & 0.0040451
\end{tabular}
x(0) =
\begin{tabular}{ll}
x 1 & 0 \\
x 2 & 0 \\
x 3 & 0
\end{tabular}
Estimated using BALPEM from data set data
Loss function 1.12066 and FPE 1.35868
Sampling interval: 1
>> [yh,fit] = compare(valdata,mi,msb,mmp); fit
fit(:,:,1) =
    97.4080 97.4773 97.4719
fit(:,:,2) =
    92.3844 92.3163 92.3620
>> isbalanced(msb) % Check whether (A,B,C,D) of msb is balanced
System is balanced; norm(Wc-Wo) = 8.30e-15.
>> mpsys = ss(mmp.a,mmp.k,mmp.c,eye(2),mmp.Ts);
>> ismpbalanced(mpsys) % Check whether (A,K,C,I) of
```

\% mmp is minimum-phase balanced
System is minimum-phase balanced; norm(Wc(SYS)-Wo(inv(SYS))) = 6.36e-17.

See Also

PEM, SUBID3B, N4SID, ISBALANCED, ISMPBALANCED, MPBAL.

bilin

Create a discrete-time, bilinear state-space model.

Usage

$M=\operatorname{bilin}(A, B, C, D, N)$
$M=\operatorname{bilin}(A, B, C, D, N, X O)$
$M=\operatorname{bilin}(A, B, C, D, N, X O, T s)$

The output M is a discrete-time bilinear, state-space model, returned as a bilin object. The model M is given by

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+N(u(t) \otimes x(t))+B u(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

where \otimes is the Kronecker product operator, the matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}, N:=\left[\begin{array}{lll}N_{1} & N_{2} & \cdots\end{array} N_{m}\right] \in \mathbb{R}^{n \times n m}$ and each $N_{i} \in \mathbb{R}^{n \times n}$.
Optional arguments are X0, which sets the initial state x_{0} (default is $\mathrm{X} 0=\operatorname{zeros}(\mathrm{n}, 1)$), and Ts , which sets the sample time T_{s} (default is $\mathrm{Ts}=1$).

Example

```
>> A = [1 2; 3 4]; B = [5 6; 0 1]; C = [7 8]; D = [9 0];
> N1 = [10 11; 12 13]; N2 = [14 15; 16 17];
>> M = bilin(A,B,C,D,[N1 N2],[0.1;0.2],3)
Discrete-time bilinear state-space model:
    x(t+Ts) = A x (t) + N kron(u(t),x(t)) + B u(t); x(0) = X0
        y(t) = C x (t) + D u(t)
A =
        1 2
        3 4
B =
        5 6
        0 1
C =
        7 8
D =
```

```
        9 0
N =
    10}111\quad14 15 
    12 13 16 17
Initial state X0 =
    0.1000
    0.2000
Sampling time Ts =
        3
>> M.D = [0 0] % Equivalent to set(M,'D',[[0 0}]\mathrm{ )
Discrete-time bilinear state-space model:
    x(t+Ts) = A x (t) + N kron(u(t), x(t)) + B u(t); x(0) = X0
        y(t) = C x (t) + D u(t)
A =
        1 2
        3 4
B =
        5 6
        0 1
C =
        7 8
D =
        0
N =
    10}11
    12 13 16 17
```

Initial state X0 =
0.1000
0.2000

```
Sampling time Ts =
    3
>> M.XO % Equivalent to get(M,'XO')
ans =
    0.1000
    0.2000
```


See Also

BILINID, BILIN/COMPARE, BILIN/ISSTABLE, BILIN/PE, BILIN/SIM.

bilin/compare

Compares simulated output data for a bilinear model with the measured data.

Usage

compare (M, DATA)
[YH,FIT] = compare(M,DATA)
[YH,FIT] = compare(M,DATA,INIT)
M is the bilinear system given as a bilin object and DATA is the input-output data given as an iddata object.
In the absence of output arguments, compare(M,DATA) outputs the percentage fit to the workspace and produces plots comparing the measured and simulated outputs.

Optional Outputs

YH is the resulting simulated/predicted output returned as an iddata object.
FIT is a vector containing the percentage of the measured output that is explained by the model, with FIT(1) being the percentage fit of the first output, etc.

Optional Input

The argument INIT determines how to deal with initial conditions and can be one of:
'estimate': Results in the initial state being chosen so that the norm of the prediction error is minimized (default).
'model': Uses M. XO as the initial state.
'zero': Sets the initial state to zero.
A column vector: Uses INIT as the initial state.

Example

```
>> load example2i2s2o
>> [YH,FIT] = compare(m,valdata)
Data set with 50 samples.
Sampling interval: 1
Outputs Unit (if specified)
    y1
    y2
```

FIT $=$
93.4257
92.3414

See Also
BILINID, BILIN, BILIN/ISSTABLE, BILIN/PE, BILIN/SIM, IDMODEL/COMPARE, IDDATA/PLOT.

bilin/isstable

Determines whether a bilinear system satisfies a kind of stability condition.

Usage

ISSTABLE (M, DATA)
[FVAL,LAMBDA] = ISSTABLE (M,DATA)
In [CM99] it is assumed that the discrete-time bilinear system

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+N(u(t) \otimes x(t))+B u(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

satisfies the following assumption, which is a kind of stability condition:

$$
\lambda=\max _{t} \bar{\sigma}\left(A+\sum_{i=1}^{m} u_{i}(t) N_{i}\right)<1, \quad \text { s.t. } t \in\{0, \ldots, \tilde{N}-1\},
$$

where $N:=\left[\begin{array}{lll}N_{1} & \cdots & N_{m}\end{array}\right], \bar{\sigma}(\cdot)$ denotes the greatest singular value of a matrix and $u_{i}(t)$ is the i 'th element of $u(t)$ in the sequence $\{u(0), \ldots, u(\tilde{N}-1)\}$.

The system M to be tested should be given as a bilin object.
DATA should be an iddata object and the input sequence $\{u(0), \ldots, u(\tilde{N}-1)\}$ is taken from DATA.InputData.
ISSTABLE(M,DATA) computes λ and is true if $\lambda<1$ and false if $\lambda \geq 1$.

Optional outputs

FVAL is returned as 1 if $\lambda<1$ and FVAL is returned as 0 if $\lambda \geq 1$.
LAMBDA is the computed value of λ.

Example

```
if isstable(m,U)
    disp('Lambda is less than 1.')
else
    disp('Lambda is not less than 1.)
end
```

or
>> isstable(sys,U)
The system satisfies the stability condition: Lambda $=7.28 \mathrm{e}-01<1$.
or
>> [fval,lambda]=isstable(sys,U)
fval =
1
lambda $=$
0.7277

See Also

BILINID, BILIN, BILIN/COMPARE, BILIN/PE, BILIN/SIM.

bilin/pe

Compute the prediction errors associated with a bilinear model and data set.

Usage

[$\mathrm{E}, \mathrm{XO}]=\mathrm{pe}(\mathrm{M}, \mathrm{DATA})$
[E,XO] = pe(M,DATA,INIT)
M is the bilinear system given as a bilin object and DATA is the input-output data given as an iddata object.
E is returned as an iddata object, so that E.OutputData contains the prediction errors that result when model M is applied to DATA.
E. InputData is set to DATA. InputData.

Optional Output

XO is the value that was used for the initial state.

Optional Input

The argument INIT determines how to deal with initial conditions and can be one of:
'estimate': Results in the initial state x 0 being chosen so that the norm of the prediction error is minimized (default).
'model': Uses M.XO as the initial state XO.
'zero': Sets the initial state X0 to zero.
A column vector: Uses INIT as the initial state XO.

Example

>> load example2i2s2o
>> $[E, X 0]=p e(m, v a l d a t a) ; \%$ estimate initial state $X 0$
>> norm(E.y)
ans $=$
0.1288
>> XO

X0 =

```
    0.0825
    0.1248
>> [E,X0] = pe(m,valdata,'zero'); % use initial state X0=0
>> norm(E.y)
ans =
    0.3599
>> XO
X0 =
    0
    0
```


See Also

BILINID, BILIN, BILIN/COMPARE, BILIN/ISSTABLE, BILIN/SIM, IDMODEL/PE, IDMODEL/RESID, IDDATA/PLOT

bilin/sim

Simulates a given bilinear system.

Usage

$[\mathrm{Y}, \mathrm{X}, \mathrm{YU}]=\operatorname{sim}(\mathrm{M}, \mathrm{UE})$
$[\mathrm{Y}, \mathrm{X}, \mathrm{YU}]=\operatorname{sim}(\mathrm{M}, \mathrm{UE}, \mathrm{INIT})$
M is the bilinear system given as a bilin object and UE is an iddata object with the input and/or noise data contained in UE. InputData.

UE can be given as $\mathrm{U},[\mathrm{U} \mathrm{W}$] or [U W V] where U, W and V are iddata objects with compatible dimensions; U. InputData should contain the input sequence $\{u(t)\}$, W. InputData the process noise sequence $\{w(t)\}$ and V. InputData the measurement noise sequence $\{v(t)\}$ of the bilinear system:

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+N(u(t) \otimes x(t))+B u(t)+w(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+v(t)
\end{aligned}
$$

where T_{s} is the sample time and x_{0} is the initial state.
Y, X and YU are iddata objects. Y. OutputData contains the output sequence $\{y(t)\}$, X. OutputData contains the state sequence $\{x(t)\}$ and YU contains the input-output data sequence $\{(y(t), u(t))\}$. YU. OutputData is the output sequence $\{y(t)\}$ and YU. InputData is the input sequence $\{u(t)\}$, i.e. YU.InputData=U.InputData.

Optional Input

The argument INIT determines how to deal with initial conditions and can be one of:
'model': Uses M. X0 as the initial state x_{0} (default).
'zero': Sets the initial state x_{0} to zero.
A column vector: Uses INIT as the initial state.

Example

```
>> load example2i2s2o
>> sys % system with 2 inputs, 2 states and 2 outputs
Discrete-time bilinear state-space model:
    x(t+Ts) = A x (t) + N kron(u(t), x(t)) + B u(t); x (0) = X0
        y(t) = C x (t) + D u(t)
A =
    0.5000
```

 0 0.3000
 B =
0 1
-1 0
C =
1 0
0 2
D =
1 0
0 1
N =

0.6000	0	0.2000	0
0	0.4000	0	0.5000

Initial state XO =
0
0
Sampling time Ts =
1
>> U = idinput([600 2],'RGS',[],[-0.1 0.1]); % U, W, V are random sequences
>> W = idinput([600 2],'RGS',[],[-0.01 0.01]);
>> V = idinput([600 2],'RGS',[],[-0.01 0.01]);
>> U = iddata([],U); % input data
>> W = iddata([],W); % process noise
>> V = iddata([],V); % measurement noise
>> [Y,X,YU] = sim(sys,[U W V]); % simulate system
>> isstable(sys,U) % check whether system is stable with given input data
The system satisfies the stability condition: Lambda = 6.86e-01 < 1.
>> data = YU(1:550); % identification data
>> valdata = YU(551:600); % validation data

```

\section*{See Also}

BILINID, BILIN, BILIN/COMPARE, BILIN/ISSTABLE, BILIN/PE, IDINPUT, IDDATA, IDMODEL/SIM.

\section*{bilinid}

Deterministic-stochastic subspace identification of bilinear systems using a four-block configuration.

\section*{Usage}
```

[M,EXTRA] = bilinid(DATA)
[M,EXTRA] = bilinid(DATA,n)
[M,EXTRA] = bilinid(DATA,n,k)
[M,EXTRA] = bilinid(DATA,n,k,DMAT)
[M,EXTRA] = bilinid(DATA,n,k,DMAT,ALG)
[M,EXTRA] = bilinid(DATA,n,k,DMAT,ALG,LS)

```

DATA is the input-output data given as an iddata object.
\(M\) is the estimated discrete-time, bilinear state-space model returned as a bilin object:
\[
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+N(u(t) \otimes x(t))+B u(t)+w(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+v(t)
\end{aligned}
\]
where \(T_{s}\) is the sample time, \(x_{0}\) the initial state, \(\otimes\) is the Kronecker product operator, the matrices \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}, N:=\left[N_{1} N_{2} \cdots N_{m}\right] \in \mathbb{R}^{n \times n m}\) and each \(N_{i} \in \mathbb{R}^{n \times n}\).
See [CM99] for details of the algorithm.

\section*{Optional Output}

EXTRA is a structure containing additional information about the model and data:
- EXTRA.SV is a vector containing the singular values resulting from the SVD decomposition. See [CM99] for details.
- EXTRA.Q, EXTRA.R and EXTRA.S are the matrices that form the joint noise covariance matrix EXTRA.COV, which is given by EXTRA.COV = [Q S; S' R]; EXTRA.Q is the process noise covariance matrix and EXTRA. \(R\) is the output noise covariance matrix. See [CM99] for details.
- If LS='ols', then EXTRA.ls is a matrix containing information about the accuracy of the estimation and should be close to 0 for a good estimate. If LS='cls', then EXTRA.1s=0. See [CM99] for details.

\section*{Optional Inputs}
- n is the system order and can be one of the following:
- If n is empty, then the algorithm will automatically select the order such that \(\mathrm{n} \leq 10\) (default).
- If n is a scalar, then the system order is equal to n .
- If n is given as a row vector (e.g. [1 234 5]), a plot of singular values will be given and the user will be prompted to select an order.
- k specifies the block size, given as a positive integer. If k is not specified, the block size is chosen to be as large as possible while still trying to be compatible with the size of DATA. It is recommended that \(\mathrm{k} \geq \max (\mathrm{n})\).
- DMAT determines whether the \(D\) matrix of the system is to be estimated or set to zero. DMAT can be one of the following:
'Estimate': Estimate the \(D\) matrix (default).
'Zero': Set \(D=0\).
- ALG determines the specific algorithm to be used and can be one of the following:
'general': General four-block deterministic-stochastic algorithm.
'fast': Fast four-block deterministic-stochastic algorithm. Valid only if the number of outputs \(<\min (\mathrm{n})\).
'accurate': Accurate four-block deterministic-stochastic algorithm. Valid only if the number of outputs \(\geq \max (\mathrm{n})\).

If ALG is not specified, then the most appropriate algorithm is automatically chosen, based on the number of outputs. If the number of outputs \(<\max (n)\), then ALG='general'. If the number of outputs \(\geq \max (\mathrm{n})\), then \(A L G=\) 'accurate'.
- LS determines the choice of least squares method used in estimating the system matrices and can be one of:
'cls': Constrained least squares (default).
'ols': Ordinary least squares.

\section*{Example}
```

>> load example2i2s2o
>> data
Data set with 550 samples.
Sampling interval: 1
Outputs Unit (if specified)
y1
y2
Inputs Unit (if specified)
u1
u2
>> [m,extra] = bilinid(data,2)

```
```

Number of outputs >= system order. Using accurate four-block algorithm.
Constrained least squares will be used when estimating system matrices.
Block size k = 3.
Step 1/5. Decomposing the block equation...
...1/9...
...2/9...
...3/9...
. . 4/9...
...5/9...
...6/9...
...7/9...
...8/9...
...9/9...
Step 2/5. Computing the constant matrix via pseudo-inverse...
Garbage collection...
Step 3/5. Constructing matrices for SVD decomposition...
...1/9...
...2/9...
...3/9...
...4/9...
...5/9...
...6/9...
...7/9...
...8/9...
...9/9...
Step 4/5. Performing SVD decomposition...
Garbage collection...
Step 5/5. Determining the system matrices using constrained least squares...
Garbage collection.
Finally, determining the noise covariance matrix...
Done.
Discrete-time bilinear state-space model:
x(t+Ts) = A x (t) + N kron(u(t), x(t)) + B u(t); x(0) = X0
y(t) = C x (t) + D u(t)
A =
0.3011 -0.0184
-0.0098 0.4983
B =
0.7763 -0.0188

```
```

 0.0399 0.5451
 C =
-0.1024 1.8279
-2.5645 -0.1099
D =
1.0000 -0.0141
0.0215 1.0064
N =
0.4256 -0.0235 0.4452 -0.0432
0.0250 0.6812 0.0450 0.2123
Initial state XO =
0
0
Sampling time Ts =
1
extra =
ls: [2x4 double]
sv: [26x1 double]
COV: [4x4 double]
Q: [2x2 double]
R: [2x2 double]
S: [2x2 double]
>> extra.COV
ans =
1.0e-03 *

0.0776	-0.0055	0.0031	-0.0265
-0.0055	0.0563	0.0114	0.0044
0.0031	0.0114	0.1718	0.0206
-0.0265	0.0044	0.0206	0.4013

>> [YH,FIT] = compare(m,valdata)

```

Data set with 50 samples.
Sampling interval: 1

Outputs Unit (if specified)
y1
y2

FIT \(=\)
93.4257
92.3414

\section*{See Also}

BILIN, BILIN/COMPARE, BILIN/ISSTABLE, BILIN/SIM, BILIN/PE.

\section*{blochank}

Assembles a block Hankel matrix from a given block matrix.

\section*{Usage}
\(\mathrm{Y}=\) blochank(C,M,N)
\(C\) is a block matrix and given by
\[
C=\left[\begin{array}{c}
C_{1} \\
C_{2} \\
\vdots \\
C_{N}
\end{array}\right],
\]
where all the \(C_{i}\) are matrices with the same dimensions. \(M\) and \(N\) are positive integers with \(M \leq N\).
The resulting block Hankel matrix \(Y\) is given by
\[
Y=\left[\begin{array}{ccccc}
C_{1} & C_{2} & C_{3} & \cdots & C_{N-M+1} \\
C_{2} & C_{3} & C_{4} & \cdots & C_{N-M+2} \\
C_{3} & C_{4} & C_{5} & \cdots & C_{N-M+3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{M} & C_{M+1} & C_{M+2} & \cdots & C_{N}
\end{array}\right]
\]

\section*{Example}
```

>> C = [1 2; 3 4; 5 6; 7 8; 9 10;
11 12; 13 14; 15 16; 17 18; 19 20]
C =

1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20

>> Y = blochank(C,3,5)
Y =

```
\begin{tabular}{rrrrrr}
1 & 2 & 5 & 6 & 9 & 10 \\
3 & 4 & 7 & 8 & 11 & 12 \\
5 & 6 & 9 & 10 & 13 & 14 \\
7 & 8 & 11 & 12 & 15 & 16 \\
9 & 10 & 13 & 14 & 17 & 18 \\
11 & 12 & 15 & 16 & 19 & 20
\end{tabular}

\section*{See Also}

HANKEL, BLOCTOEP, TOEPLITZ.

\section*{bloctoep}

Assembles a block Toeplitz matrix from two given block matrices.

\section*{Usage}
\(\mathrm{Y}=\mathrm{bloctoep}(\mathrm{C}, \mathrm{R}, \mathrm{N})\)
\(C\) and \(R\) are block matrices given by
\[
C=\left[\begin{array}{c}
C_{1} \\
C_{2} \\
\vdots \\
C_{N}
\end{array}\right]
\]
and
\[
R=\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{N}
\end{array}\right]
\]
where all the \(C_{i}\) and \(R_{j}\) are matrices with the same dimensions. It is assumed that \(C_{1}=R_{1}\). \(N\) is a positive integer and is the number of block matrices in \(C\) and \(R\).

The resulting block Toeplitz matrix \(Y\) has \(C\) as its first block column and \(R\) as its first block row, i.e.
\[
Y=\left[\begin{array}{ccccc}
C_{1} & R_{2} & R_{3} & \cdots & R_{N} \\
C_{2} & C_{1} & R_{2} & \cdots & R_{N-1} \\
C_{3} & C_{2} & C_{1} & \cdots & R_{N-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{N} & C_{N-1} & C_{N-2} & \cdots & C_{1}
\end{array}\right]
\]

\section*{Example}
>> \(C=[12 ; 34 ; 56 ; 78 ; 910 ; 1112 ; 1314 ; 1516]\)
\(\mathrm{C}=\)
\begin{tabular}{rr}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8 \\
9 & 10 \\
11 & 12 \\
13 & 14 \\
15 & 16
\end{tabular}
```

>> R = [1 2; 3 4; 17 18; 19 20; 21 22; 23 24; 25 26; 27 28]
R =
1 2
3 4
17 18
19 20
21 22
23 24
25 26
27 28
>> Y = bloctoep(C,R,4)
Y =

1	2	17	18	21	22	25	26
3	4	19	20	23	24	27	28
5	6	1	2	17	18	21	22
7	8	3	4	19	20	23	24
9	10	5	6	1	2	17	18
11	12	7	8	3	4	19	20
13	14	9	10	5	6	1	2
15	16	11	12	7	8	3	4

```

See Also

TOEPLITZ, BLOCHANK, HANKEL.

\section*{coorproj}

Orthogonal projection onto a complement subspace.

\section*{Usage}
\(Y=\operatorname{coorproj}(A, B)\)

Projects the row vectors of matrix \(A \in \mathbb{R}^{m \times p}\) onto the subspace that is orthogonal to the subspace spanned by the row vectors of matrix \(B \in \mathbb{R}^{n \times p}\), i.e.
\[
Y=\Pi_{\mathcal{B}^{\perp}} A:=A C^{T}\left(C C^{T}\right)^{\dagger} C
\]
where \(\Pi\) is the orthogonal projection operator, \(\mathcal{B}:=\operatorname{span}\left\{\alpha^{T} B, \alpha \in \mathbb{R}^{n}\right\}, \mathcal{B}^{\perp}\) is the orthogonal complement of \(\mathcal{B}\),
\[
C:=I-B^{T}\left(B B^{T}\right)^{\dagger} B
\]
and \((\cdot)^{\dagger}\) denotes the Moore-Penrose (pseudo-inverse) of a matrix.
The number of columns of \(A\) and \(B\) must be the same.

\section*{Example}
```

>> A = rand (3,5)
A =

0.9153	0.9305	0.1339	0.1292	0.1953
0.4045	0.6019	0.6317	0.3885	0.2160
0.5885	0.3396	0.2573	0.1179	0.5965

>> B =[11 0 0 0 0; 1 1 0 0 0; 1 1 1 0 0
B =

1	0	0	0	0
1	1	0	0	0
1	1	1	0	0

>> Y = coorproj(A,B)
Y =

0	0	0	0.1292	0.1953
0	0	0	0.3885	0.2160
0	0	0	0.1179	0.5965

```

\section*{See Also}

ORTHPROJ, PINV.

\section*{isbalanced}

Determines whether a given state-space system is balanced.

\section*{Usage}
isbalanced (sys)
isbalanced (sys) is true if \((A, B, C)\) of sys is balanced and false if it is not balanced.
The system is balanced if and only if the observability gramian \(W_{o}\) and the controllability gramian \(W_{c}\) of \((A, B, C)\) are equal and diagonal.
sys has to be a stable state-space system, given as an ss or idss object.

\section*{Example}
```

if isbalanced(sys)
disp('System is balanced.')
else
disp('System is not balanced.')
end

```

See Also

GRAM, BALREAL, MPBAL, ISMPBALANCED, BALPEM.

\section*{ismpbalanced}

Determines whether a given state-space system is minimum-phase balanced.

\section*{Usage}
ismpbalanced(sys)
ismpbalanced (sys) is true if \((A, B, C, D)\) of sys is minimum-phase balanced and false if it is not minimum-phase balanced.

The system is minimum-phase balanced if and only if the controllability gramian \(W_{c}\) of \((A, B, C, D)\) is equal to the observability gramian \(W_{o}\) of the inverse of \((A, B, C, D)\).
sys has to be a square, stable and minimum-phase state-space system, given as an ss or idss object.

\section*{Example}
```

if ismpbalanced(sys)
disp('System is minimum-phase balanced.')
else
disp('System is not minimum-phase balanced.')
end

```

See Also

MPBAL, GRAM, ISBALANCED, BALREAL, BALPEM.

\section*{khatri}

Computes the Khatri-Rao product of two matrices.

\section*{Usage}
\(Y=k h a t r i(A, B)\)

Computes the Khatri-Rao product of two matrices \(A \in \mathbb{R}^{m \times p}\) and \(B \in \mathbb{R}^{n \times p}\) with the same number of columns, i.e. \(Y \in \mathbb{R}^{m n \times p}\) is formed by taking the Kronecker tensor products between the respective columns of \(A:=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{p}\end{array}\right]\) and \(B:=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{p}\end{array}\right]\), i.e.
\[
Y=A \odot B:=\left[\begin{array}{llll}
a_{1} \otimes b_{1} & a_{2} \otimes b_{2} & \cdots & a_{p} \otimes b_{p}
\end{array}\right],
\]
where \(\otimes\) is the Kronecker product operator.

\section*{Example}
```

>>A=[11 2; 3 4]
A =
1 2
3 4
>> B = [5 6; 7 8]
B =
5 6
7 8
>> Y = khatri(A,B)
Y =
5 12
7 16
15 24
21 32

```

\section*{See Also}

KRON.

\section*{mpbal}

Minimum-phase balancing of a minimum-phase state-space realization.

\section*{Usage}
[balsys,G,T,Ti] = mpbal(sys)
balsys is a minimum-phase, balanced realization of the system sys in the sense that the controllability gramian of balsys and the observability gramian of the inverse of balsys are equal and diagonal [CM97, Sect. V.A].
sys has to be a continuous-time, controllable, stable, minimum-phase state-space system, given as an ss object. The inverse of sys must be observable.

\section*{Optional Outputs}

G is a vector containing the diagonal of the gramian of the minimum-phase balanced realization. The matrix T is the state transformation \(z=T x\) that was used to convert sys to balsys, and Ti is its inverse.

\section*{Example}
```

>> sys = rss(3)
a =

	x1	x2	x3
x1	-2.7113	-0.32309	-0.056596
x2	-0.32309	-0.45836	0.022362
x3	-0.056596	0.022362	-0.34326

b =

	u 1
x1	-1.7509
x2	-0.82862
x3	1.3862

c =

$$
\begin{array}{rrrr}
& \mathrm{x} 1 & \mathrm{x} 2 & \mathrm{x} 3 \\
\mathrm{y} 1 & 0.27187 & -0.61306 & 0.021796
\end{array}
$$

$$
\mathrm{d}=
$$

```
    y1 1.0392
Continuous-time model.
>> [balsys,G,T,Ti] = mpbal(sys)
a =
\begin{tabular}{rrrr} 
& x1 & x2 & x3 \\
x1 & -0.30374 & -0.70872 & 0.10028 \\
x2 & 0.68176 & -2.7244 & 0.75233 \\
x3 & -0.096421 & 0.75196 & -0.4848
\end{tabular}
b =
\begin{tabular}{lr} 
& \(u 1\) \\
x1 & 0.41672 \\
x2 & -0.41414 \\
x3 & 0.065091
\end{tabular}
c =
\begin{tabular}{rrrr} 
& x 1 & x 2 & x 3 \\
y 1 & 0.57419 & 0.41703 & -0.067346
\end{tabular}
d =
    392
Continuous-time model.
G =
    0.2859
    0.0315
    0.0044
T =
\begin{tabular}{rrr}
0.2290 & -0.9776 & 0.0054 \\
0.3033 & -0.0031 & 0.0824 \\
-0.2071 & 0.7487 & 0.2329
\end{tabular}
Ti =
```

```
    -0.8588 3.1894 -1.1081
    -1.2067 0.7493 -0.2369
    3.1149 0.4267 4.0692
>> Wc = gram(balsys,'c')
Wc =
    0.2859 0.0000 -0.0000
    0.0000 0.0315 -0.0000
    -0.0000 -0.0000 0.0044
>> Wo = gram(inv(balsys),'o')
Wo =
\begin{tabular}{rrr}
0.2859 & -0.0000 & 0.0000 \\
-0.0000 & 0.0315 & 0.0000 \\
0.0000 & 0.0000 & 0.0044
\end{tabular}
>> ismpbalanced(sys)
System is not minimum-phase balanced; norm(Wc(SYS)-Wo(inv(SYS))) = 3.47e+00.
>> ismpbalanced(balsys)
System is minimum-phase balanced; norm(Wc(SYS)-Wo(inv(SYS))) = 7.79e-16.
```


See Also

GRAM, ISBALANCED, BALREAL, BALPEM.

obmat

Constructs the observability matrix with a given index.

Usage

$\mathrm{Y}=\operatorname{obmat}(\mathrm{A}, \mathrm{C}, \mathrm{k})$

Given matrices $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{p \times n}$ of a state-space system (A, B, C, D) with n states and p outputs, the truncated $(k<n)$, standard $(k=n)$ or extended $(k>n)$ observability matrix is constructed, i.e.

$$
Y=\mathcal{O}_{k}:=\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{k-1}
\end{array}\right]
$$

Example

```
> A = [1 -0.1; -0.1 1]
A =
            1.0000 -0.1000
    -0.1000 1.0000
>> C = [1 0; 1 1]
C =
    1 0
            1 1
>> Y = obmat(A,C,4)
Y =
\begin{tabular}{rr}
1.0000 & 0 \\
1.0000 & 1.0000 \\
1.0000 & -0.1000 \\
0.9000 & 0.9000 \\
1.0100 & -0.2000 \\
0.8100 & 0.8100 \\
1.0300 & -0.3010 \\
0.7290 & 0.7290
\end{tabular}
```


See Also

OBSV.

orthproj

Orthogonal projection onto a subspace.

Usage

$Y=\operatorname{orthproj}(A, B)$
Projects the row vectors of matrix $A \in \mathbb{R}^{m \times p}$ onto the subspace spanned by the row vectors of matrix $B \in \mathbb{R}^{n \times p}$, i.e.

$$
Y=\Pi_{\mathcal{B}} A:=A B^{T}\left(B B^{T}\right)^{\dagger} B
$$

where Π is the orthogonal projection operator, $\mathcal{B}:=\operatorname{span}\left\{\alpha^{T} B, \alpha \in \mathbb{R}^{n}\right\}$ and $(\cdot)^{\dagger}$ denotes the Moore-Penrose (pseudo-inverse) of a matrix.
The number of columns of A and B must be the same.

Example

```
>> A = rand (3,5)
A =
\begin{tabular}{lllll}
0.3468 & 0.1520 & 0.3879 & 0.8118 & 0.5601 \\
0.8625 & 0.9218 & 0.8235 & 0.5281 & 0.2114 \\
0.4751 & 0.4033 & 0.2914 & 0.2015 & 0.9282
\end{tabular}
>> B =[[1 0 0 00 0; 1 1 0 0 0; 1 1 1 0 0]
B =
\begin{tabular}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{tabular}
>> Y = orthproj(A,B)
Y =
\begin{tabular}{lllll}
0.3468 & 0.1520 & 0.3879 & 0 & 0 \\
0.8625 & 0.9218 & 0.8235 & 0 & 0 \\
0.4751 & 0.4033 & 0.2914 & 0 & 0
\end{tabular}
```


See Also

COORPROJ, PINV.

soltritoep

Solves for a least squares, lower triangular, block Toeplitz matrix.

Usage

$[\mathrm{T}, \mathrm{H}]=\operatorname{soltritoep}(\mathrm{S}, \mathrm{P}, \mathrm{k})$

Given two matrices $S \in \mathbb{R}^{n k \times p}$ and $P \in \mathbb{R}^{m k \times p}$ with the same number of columns and with the number of rows divisible by k, the matrix

$$
T=\left[\begin{array}{ccccc}
H_{0} & 0 & \cdots & 0 & 0 \\
H_{1} & H_{0} & & & 0 \\
\vdots & & \ddots & & \vdots \\
H_{k-2} & H_{k-3} & \cdots & H_{0} & 0 \\
H_{k-1} & H_{k-2} & \cdots & H_{1} & H_{0}
\end{array}\right]
$$

is a least squares, lower triangular, block Toeplitz matrix solution to

$$
S=T P
$$

The block matrix H is the first block column of T, i.e.

$$
H=\left[\begin{array}{c}
H_{0} \\
H_{1} \\
\vdots \\
H_{k-1}
\end{array}\right]
$$

and each $H_{i} \in \mathbb{R}^{n \times m}$.
See [CM98, Sect. 6] for a description of the algorithm.

Example

```
>> S = rand(4,1)
S =
    0.5514
    0.4373
    0.3705
    0.1322
>> P = rand(6,1)
P =
```

```
    0.4460
    0.9884
    0.6820
    0.7749
    0.7643
    0.7025
>> [T,H] = soltritoep(S,P,2)
T =
\begin{tabular}{rrrrrr}
0 & 0.5578 & 0 & 0 & 0 & 0 \\
0 & 0.4424 & 0 & 0 & 0 & 0 \\
0 & -0.0565 & 0 & 0 & 0.5578 & 0 \\
0 & -0.2084 & 0 & 0 & 0.4424 & 0
\end{tabular}
H =
\begin{tabular}{rrr}
0 & 0.5578 & 0 \\
0 & 0.4424 & 0 \\
0 & -0.0565 & 0 \\
0 & -0.2084 & 0
\end{tabular}
```

See Also

BLOCTOEP, TOEPLITZ.

subid3b

Deterministic-stochastic subspace identification of linear systems using a three-block configuration.

Usage

```
[M,P,SV] = subid3b(DATA)
[M,P,SV] = subid3b(DATA,n)
[M,P,SV] = subid3b(DATA,n,k)
[M,P,SV] = subid3b(DATA,n,k,DMAT)
[M,P,SV] = subid3b(DATA,n,k,DMAT,ALG)
```

DATA is the input-output data given as an iddata object and M is the estimated discrete-time, state-space model in innovation form, returned as an idss object:

$$
\begin{aligned}
x\left(t+T_{s}\right) & =A x(t)+B u(t)+K e(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}, K \in \mathbb{R}^{n \times p}, T_{s}$ is the sample time and x_{0} is the initial state.
See [CM98] for details of the algorithm.

Optional Outputs

- P is the associated Kalman filter covariance matrix [CM98, Sect. 9].
- SV is the retained singular values from the SVD decomposition.

Optional Inputs

- n is the system order and can be one of the following:
- If n is empty, then the algorithm will automatically select the order such that $\mathrm{n} \leq 10$ (default).
- If n is a scalar, then the system order is equal to n .
- If n is given as a row vector (e.g. [1 2345]), a plot of singular values will be given and the user will be prompted to select an order.
- k specifies the block size, given as a positive integer. If k is not specified, the block size is chosen to be as large as possible while still trying to be compatible with the size of DATA.

It is recommended that the user ensure that $k>\max (\mathrm{n})$, but that k is still a lot smaller than the size of DATA. For a more detailed discussion regarding the choice of block size, see [CM98, p. 24].

- DMAT determines whether the D matrix of the system is to be estimated or set to zero. DMAT can be one of the following:
'Estimate': Estimate the D matrix (default).
'Zero': Set $D=0$.
- ALG is set to choose the specific identification algorithm and can be one of the following:
'si': Shift invariance approach (default).
See [CM98, Alg. 10.4] for details of the algorithm.
'ss': State sequence approach.
See [CM98, Alg. 10.5] for details of the algorithm.
'mp': Markov parameter approach.
See [CM98, Alg. 10.3] for details of the algorithm.
The shift invariance approach is the most computationally demanding algorithm, but often results in obtaining the best estimate. The Markov parameter approach is often the least robust.

Example

```
>> load example3block
>> data
Data set with 300 samples.
Sampling interval: 1
Outputs Unit (if specified)
    y1
    y2
Inputs Unit (if specified)
    u1
    u2
    u3
>> idata = data(1:250);
>> valdata = data(251:300);
>> [m,p,sv]=subid3b(idata,3)
Block size k = 20.
State-space model: x(t+Ts) = A x (t) + B u(t) + K e(t)
                            y(t)=Cx(t) + Du(t) +e(t)
A =
\begin{tabular}{rrrr} 
& x1 & x2 & x3 \\
x1 & 0.95181 & -0.084857 & 0.00053211 \\
x2 & 0.0021275 & -0.61431 & 0.4012 \\
x3 & 0.057737 & -0.33869 & -0.34948
\end{tabular}
```

```
B =
\begin{tabular}{rrrr} 
& u1 & u2 & u3 \\
x1 & 0.025562 & 0.071337 & 0.16243 \\
x2 & -0.17306 & 0.050237 & 0.042829 \\
x3 & 0.02156 & -0.05271 & -0.10584
\end{tabular}
C =
\begin{tabular}{rrrr} 
& x 1 & x 2 & x 3 \\
y 1 & -17.233 & -16.594 & -2.3172 \\
y2 & 3.1321 & -6.7352 & -11.604
\end{tabular}
D =
\begin{tabular}{rrrr} 
& u & u & u \\
y 1 & 1.158 & 0.097347 & 0.98285 \\
y2 & -1.1522 & -0.017377 & -0.87642
\end{tabular}
K =
\begin{tabular}{lrr} 
& \(y 1\) & \(y 2\) \\
x1 & -0.00030967 & 0.00023064 \\
x2 & 0.0014415 & -0.0015581 \\
x3 & 0.0013428 & -0.0019277
\end{tabular}
x(0) =
\begin{tabular}{ll}
x 1 & 0 \\
x 2 & 0 \\
x 3 & 0
\end{tabular}
Estimated using SUBID3B - Shift invariance approach
Loss function
Sampling interval: 1
```

```
p =
```

p =
1.0e-05 *
1.0e-05 *
-0.2832 0.0492 0.0182
-0.2832 0.0492 0.0182
0.0492 -0.5308 -0.5354
0.0492 -0.5308 -0.5354
0.0182 -0.5354 -0.8602

```
    0.0182 -0.5354 -0.8602
```

```
sv =
    1.0e+03*
    3.2066
    0.6023
    0.2707
>> [yh,fit] = compare(valdata,m,sys); fit % Compare estimated model to
                                    % original system
fit(:,:,1) =
    97.4080 97.4899
fit(:,:,2) =
    92.3844 92.2662
```


See Also

IDDATA, IDSS, N4SID, BALPEM, PEM.

Bibliography

[CM97] C.T. Chou and J.M. Maciejowski, "System identification using balanced parameterizations", IEEE Trans. Auto. Contr., vol. 42, pp. 956-974, 1997.
[CM98] N.L.C. Chui and J.M. Maciejowski, "Subspace identification - a Markov parameter approach," Technical Report CUED/F-INFENG/TR.337, University of Cambridge, UK, December 1998. Submitted to IEEE Trans. Auto. Contr.
[CM99] H. Chen and J.M. Maciejowski, "A new subspace identification method for bilinear systems," Technical Report CUED/F-INFENG/TR.357, University of Cambridge, UK, May 2000. Submitted to Automatica.
[CM00a] H. Chen and J.M. Maciejowski, Subspace identification of combined deterministicstochastic bilinear systems, Proc. IFAC Symposium on System Identification SYSID 2000, Santa Barbara, June 2000.
[CM00b] H. Chen and J.M. Maciejowski, An improved subspace identification method for bilinear systems, Proc. IEEE CDC Conference, Sydney, December 2000.
[FDV99] W. Favoreel, B. De Moor and P. Van Overschee, Subspace identification of bilinear systems subject to white inputs, IEEE Trans. Auto. Contr., vol.44, no.6, 1157-1165, 1999.
[Lj99] L. Ljung, System Identification: Theory for the User (2nd ed.), Prentice Hall, 1999.
[Ob87] R.J. Ober, Balanced realizations: Canonical form, parametrization, model reduction, Int. Journal of Control, vol.46, no.2, 643-670, 1987.
[Ob91] R.J. Ober, Balanced parametrization of classes of linear systems, SIAM J. Contr. Optim., vol.29, 1251-1287, 1991.
[VODM96] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, 1996.
[VV99] V. Verdult and M. Verhaegen, Subspace-based identification of MIMO bilinear systems, Proc. European Control Conf., Karlsruhe, September 1999.
[Ve02] V. Verdult, Nonlinear System Identification: A State-Space Approach, Ph.D. Thesis, University of Twente, The Netherlands, 2002.

[^0]: ${ }^{1}$ The function balpem also assumes that the initial estimate is minimal in some sense and that the Hankel singular values are distinct (see [CM97] for details and other, minor technical assumptions). Fortunately, most subspace algorithms, such as subid3b and n4sid usually provide good, initial estimates that satisfy the assumptions made by balpem.
 ${ }^{2}$ This can be overridden by the user, if desired, by setting the property 'DisturbanceModel' to 'Estimate'.

