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Abstract

Several subspace algorithms for the identification of bilinear
systems have been proposed recently. A key practical problem
with all of these is the very large size of the data-based matrices
which must be constructed in order to ‘linearise’ the problem
and allow parameter estimation essentially by regression. An-
other shortcoming of currently known subspace algorithms for
bilinear systems is that the results are biased for most input
signals. This paper focuses on the cause of this bias. A con-
ceptual algorithm which can achieve unbiased estimation under
less restrictive assumptions on the system and input signals is
presented. It is pointed out that one combination of an existing
algorithm and particular conditions on the input is an instance
of this conceptual algorithm. Also, the conceptual algorithm
may shed light on the trade-off between accuracy and compu-
tational complexity which has been noted in our earlier work.

1 Introduction

Recently, subspace methods have been developed for the esti-
mation of bilinear systems. Shortcomings of the methods pro-
posed to date are that they typically give biased estimates for
most input signals, and that their computational complexity is
extremely high, impeding their practical application.

Favoreelet al [6] proposed a ‘bilinear N4SID’ algorithm which
gave unbiased results only if the measured input signal was
white. Favoreel and De Moor [7] suggested an alternative al-
gorithm for general input signals. Verdult and Verhaegen [12]
pointed out that this algorithm gives biased results, and pro-
posed an alternative algorithm, which involved a nonlinear op-
timization step. Chen and Maciejowski [2, 3, 4] proposed
algorithms for the deterministic and combined deterministic-
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stochastic cases which give asymptotically unbiased estimates
with general inputs, and for which the rate of reduction of bias
can be estimated. The computational complexity of these algo-
rithms was also significantly lower than the earlier ones, both
because the matrix dimensions were smaller, and because con-
vergence to correct estimates (with sample size) appears to be
much faster.

In this paper, we propose a class of unbiased ‘four-block’ al-
gorithms which forms a basis for the analysis and comparison
of various subspace methods for bilinear systems. This class
can be viewed as a conceptual algorithm. Various concrete im-
plementations of this conceptual algorithm can be obtained by
making different choices of subspaces for the decomposition
of the input-output data. By using the framework we present
in this paper, we can explain why existing subpace methods
can achieve unbiased results, under certain assumptions about
the system and the input signals. We hope that the viewpoint
adopted here will help to clarify the relations between the var-
ious ‘bilinear subspace’ methods proposed so far, and assist
further developments.

The outline of the paper is as follows. Extensive notations are
introduced in section 2, and these are followed by some anal-
ysis in section 3. Readers familiar with earlier papers on ‘bi-
linear subspace’ methods can skip directly to section 4, which
introduces the conceptual algorithm referred to above. Some
conclusions are made in section 5.

2 Notation

The use of much specialised notation seems to be unavoidable
in the current context. Mostly we follow the notation used in [8,
2].

We use⊗ to denote the Kronecker product and� the Khatri-
Rao product of two matrices withF ∈ Rt×p andG ∈ Ru×p

defined in [9, 11]: F � G=̂ [f1 ⊗ g1, f2 ⊗ g2, . . . , fp ⊗ gp]
+,⊕ and∩ denote the sum, the direct sum and the intersection



of two vector spaces,·⊥ denotes the orthogonal complement
of a subspace with respect to the predefined ambient space, the
Moore-Penrose inverse is written as·†, and the Hermitian as·∗.

In this paper we consider combined deterministic-stochastic
time-invariant bilinear system of the form:

xt+1 = Axt +Nut ⊗ xt +But + wt

yt = Cxt +Dut + vt (1)

where xt ∈ Rn, yt ∈ Rl, ut ∈ Rm, and N =
[N1 N2 ...Nm] ∈ Rn×nm,Ni ∈ Rn×n (i = 1, ...,m). The in-
putut is assumed to be independent of the measurement noise
vt and the process noisewt. The covariance matrix ofwt and
vt is:

E

[(
wp
vp

)(
wq
vq

)T]
=
[
Q S
ST R

]
δpq ≥ 0

We assume that the sample size isÑ , namely that input-output
data{u(t), y(t) : t = 0, 1, . . . , Ñ} are available.

Our objective is to estimate the matricesA,B,C,D,N (up to
state-coordinate transformations) and possiblyQ,R, S.

For arbitraryt we define

Xt=̂[xt xt+1 ... xt+j−1] ∈ Rn×j

but for the special casest = 0 andt = k we define, with some
abuse of notation,

Xp =̂ [x0 x1 ... xj−1] ∈ Rn×j

Xc =̂ [xk xk+1 ... xk+j−1] ∈ Rn×j

Xf =̂ [x2k x2k+1 ... x2k+j−1] ∈ Rn×j

Xr =̂ [x3k x3k+1 ... x3k+j−1] ∈ Rn×j

wherek is the row block size. The sufficesp, c, f andr are
supposed to be mnemonic, representing ‘past’, ‘current’, ‘fu-
ture’ and ‘remote future’ respectively. We defineUt, Up, Uf ,
Ur, Yt, Yp, Yf , Yr, Wt, Wp, Wf , Wr, Vt, Vp, Vf , Vr, sim-
ilarly. These matrices will later be used to construct larger
matrices with a ‘generalised block-Hankel’ structure. In order
to use all the available data in these, the number of columns
j is such thatÑ = 4k + j − 1 in the case ofl ≥ n and
Ñ = 4k+j−1 in the case ofl < n. Letdi = Σip=1(m+1)p−1l

andei = Σip=1(m+ 1)p−1m.

For arbitraryq andi ≥ q + 2, we define

Xq|q =̂
(

Xq

Uq �Xq

)
∈ R(m+1)n×j

Xi−1|q =̂
(

Xi−2|q
Ui−1 �Xi−2|q

)
∈ R(m+1)i−qn×j

Yq|q =̂ Yq

Yi−1|q =̂

 Yi−1

Yi−2|q
Ui−1 � Yi−2|q

 ∈ Rdi−q×j

U+
q|q =̂ Uq

U+
i−1|q =̂

 U+
i−2

Ui−1

Ui−1 � U+
i−2|q

 ∈ Rei−q×j

Letting:

Xp =̂ Xk−1|0, X
c=̂X2k−1|k

Xf =̂ X3k−1|2k, X
r=̂X4k−1|3k

Up =̂ Uk−1|0, U
c=̂U2k−1|k

Uf =̂ U3k−1|2k, U
r=̂U4k−1|3k

Y p, Y c, Y f , Y r, W p,W c, W f , W r, V p, V c, V f , V r, U+p,
U+c, U+f andU+r can be defined similarly.

Remark 1. We denote byUp the space spanned by all the rows
of the matrixUp. That is, Up := span{α∗Up, α ∈ Rm}
Uc, Uf , Ur, Yp, Yc, Yf , Yr , Up, Yp, Uf andYf etcare defined
similarly.

3 Analysis

Lemma 1 The system (1) can be rewritten in the following ma-
trix equation form:

Xt+1 = AXt +NUt �Xt +BUt +Wt

Yt = CXt +DUt + Vt (2)

Lemma 2 For i ≥ 0, and the block sizek, we have

Xk−1+i|i =
(

Xi

U+
k−1+i|i �Xi

)

Lemma 3 For F,G,H, J of compatible dimensions,F ∈
Rk×l,G ∈ Rl×m,H ∈ Rp×l, J ∈ Rl×m:

(FG⊗HJ) = (F ⊗H)(G⊗ J)
(FG�HJ) = (F ⊗H)(G� J)

Lemma 4 (Input-Output Equation) For the combined
deterministic-stochastic system (1) andi ≥ 0, we have the
following Input-Output Equation

Xk+i+1 = 4Xk Xk+i|i−1 +4Uk Uk+i|i−1

+4Wk Wk−1+i|i

Yk+i|i = LXk Xk+i|i−1 + LUk Uk+i|i−1

+LWk Wk+i|i−1 + LVk Vk+i|i−1

where

4Xt =̂ [A4Xt−1, N14Xt−1, . . . , Nm4Xt−1]

4X1 =̂ [A,N1, . . . , Nm]



4Ut =̂ [B,A4Ut−1, N14Ut−1, . . . , Nm4Ut−1]

4U1 =̂ B

4Wt =̂ [In×n, A4Wt−1, N14Wt−1, . . . , Nm4Wt−1]

4W1 =̂ In×n

LXt =̂


C4Xt−1 0 ... 0
LXt−1 0 ... 0

0 LXt−1 ... 0
...

...
. . .

...

0 0
... LXt−1



LUt =̂


D C4Ut−1 0 . . . 0
0 LUt−1 0 . . . 0
0 0 LUt−1 . . . 0
...

...
...

. . .
...

0 0 0
... LUt−1



LWt =̂


0 C4Wt−1 0 . . . 0
0 LWt−1 0 . . . 0
0 0 LWt−1 . . . 0
...

...
...

. . .
...

0 0 0
... LWt−1



LVt =̂


Il×l 0 . . . 0

0 LVt−1 . . . 0
...

...
. . .

...
0 0 . . . LVt−1


with

LX1 =̂ [C, 0l×m] , LU1 =̂D, LW1 =̂0l×n, LV1 =̂Il×l

Remark 2. For proofs of Lemmas 1–4 see [1].

Lemma 5 For the combined deterministic-stochastic system
(1) andi ≥ 0, we have the following Block Form Input-Output
Equation

Xk+i+1 = 4Xk,1Xk+i +4Xk,2(U+
k−1+i|i �Xk+i)

+4Uk Uk+i|i−1 +4Wk Wk−1+i|i

Yk+i|i = LXk,1Xk+i + LXk,2(U+
k−1+i|i �Xk+i)

+LUk Uk+i|i−1 + LWk Wk+i|i−1 + LVk Vk+i|i−1

where4Xk,1 and4Xk,2 are the firstn columns and last((m +
1)k − 1)n columns of the matrix4Xk ; LXk,1 andLXk,2 are the
firstn columns and last((m+1)k−1)n columns of the matrix
LXk respectively.

Proof: From the definitions of4Xk,1,4Xk,2,LXk,1 andLXk,2, it is
easy to get Lemma 5 from Lemma 4.

Lemma 6 The system (1) can be written as the following block
form equations:

Y c = LXk,1Xc + LXk,2(U+c �Xc)

+LUk U c + LWk W c + LVk V c (3)

Y f = LXk,1Xf + LXk,2(U+f �Xf )

+LUk Uf + LWk W f + LVk V f (4)

Y r = LXk,1Xr + LXk,2(U+r �Xf )

+LUk U r + LWk W r + LVk V r (5)

Xf = 4Xk,1Xc +4Xk,2(U+c �Xc) +4Wk W c

Xr = 4Xk,1Xf +4Xk,2(U+f �Xf) +4Wk W f

4 A Conceptual Algorithm

The bias in bilinear subspace methods is due to the Khatri-
Rao product term in the block form equations. How to handle
this bilinear term is the key to solving the biased estimation
problem. If the system input is white, it is a comparatively
easy problem to handle, since the Khatri-Rao product term will
disappear after projection onto a suitable data-based subspace.
Then the identification problem becomes essentially the same
as in the linear case, and can be dealt with in the same way.
There are many algorithms which give unbiased results in the
linear case — see [6] and references therein. Since the require-
ment of a white input is a very tight restriction, we consider
general inputs in the rest of this paper. The main idea to solve
the biased problem is to ‘linearise’ the system equation, in a
sense, and try to find a subspace generated by data sets which
contains the block system state. Then bilinear systems can be
estimated in a similar way as linear systems.

In the followingΠAB denotes the orthogonal projection of the
rows of matrixB onto the space spanned by the rows of matrix
A.

Theorem 1 (Four Block Form Equation) Suppose that there
exists a block sizek, a constant (ie independent of data) matrix
H ∈ Rn×s and a mapping

f(.) : Rm×j ×Rm×j × . . .×Rm×j︸ ︷︷ ︸
2k+1

×Rl×j ×Rl×j × . . .×Rl×j︸ ︷︷ ︸
2k+1

−→ Rs×j

such that

Xk+i+1 = Hf(Uk+i, ..., Ui+1, Yk+i, ..., Yi+1,Wk+i, Vk+i) (6)

Let

Zk+i = f(Uk+i, ..., Ui+1, Yk+i, ..., Yi+1,Wk+i, Vk+i) (7)

where the mapping f(.) is constructed in such
a way that the rows of Zk+i are the rows of



Uk+i, ..., Ui+1, Yk+i, ..., Yi+1,Wk+i, Vk+i and their com-
binations of Khatri-Rao products. Then the system (1) can be
written in the following ‘four block’ form:

Y c = LXk,1Xc + T uk Ũ c,u,z

+LWk W c + LVk V c (8)

Y f = LXk,1Xf + T uk Ũf,u,z

+LWk W f + LVk V f (9)

Y r = LXk,1Xr + T uk Ũ r,u,z

+LWk W r + LVk V r (10)

Xf = 4Xk,1Xc + Guk Ũ c,u,z +4Wk W c (11)

Xr = 4Xk,1Xf + Guk Ũf,u,z +4Wk W f (12)

whereT uk andGuk are system-dependent constant matrices and

Ũ c,u,z =
(

U c

U+c � Zk−1

)
, Ũf,u,z =

(
Uf

U+f � Z2k−1

)
Ũ r,u,z =

(
U r

U+r � Z3k−1

)
Proof outline:

From (3) and Lemma 3, we have

Y c = LXk,1Xc + LXk,2(U+c �Xc)

+LUk U c + LWk W c + LVk V c

= LXk,1Xc + LXk,2(U+c �HZk−1)

+LUk U c + LWk W c + LVk V c

= LXk,1Xc + (LXk,2 ⊗H)(U+c � Zk−1)

LUk U c + LWk W c + LVk V c

= LXk,1Xc + T uk Ũ c,u,z

+LWk W c + LVk V c

where

T uk = [LUk , (LXk,2 ⊗H)]

which proves (8). Equations (9) - (12) can be obtained using
similar manipulations.

In this and the following theorem ‘p’ (past), ‘c’ (current), ‘f ’
(future) and ‘r’ (remote future) data blocks are used. Hence we
refer to the algorithm which follows as a ‘four-block’ algorithm
— note thatZk−1 andẐk−1 contain ‘past’ data, and that̃N =
4k + j − 1. Let

Û c,u,z =
(

U c

U+c � Ẑk−1

)
, Ûf,u,z =

(
Uf

U+f � Ẑ2k−1

)
Û r,u,z =

(
U r

U+r � Ẑ3k−1

)
where

Ẑk+i = ΠFZk+i (13)

and F is the subspace spanned by the rows of
f(Uk+i, ..., Ui+1, Yk+i, ..., Yi+1, 0, 0).

Theorem 2 Suppose that the linear part of the system (1) is
observable and 

Y c

Û c,u,z

Ûf,u,z

Û r,u,z

 (14)

is a full row rank matrix. DenotẽS = Yc + Ûc,u,z + Ûf,u,z +
Ûr,u,z andR̃ = ΠS̃Yf + Ûf,u,z, then

ΠR̃⊥ΠS̃Yr = T uk ΠR̃⊥ Û
r,u,z (15)

Proof: (15) is obtained using manipulations as in [1].

Algorithm:

1. DecomposeY r into OkXr and T uk Û r,u,z using or-
thogonal projection: from (15) of Theorem 2, estimateT uk
as

T̂ uk = (ΠR̃⊥ΠS̃Yr)(ΠR̃⊥ Û r,u,z)† (16)

2. Obtain the SVD decomposition and partition as[
ΠS̃Y4k−1|3k ΠS̃Y4k|3k+1

]
− T̂ uk

[
Ûu,z4k−1|3k Û

u,z
4k|3k+1

]
=: ΓΣΩ∗ =

[
Γ1 Γ2

] [ Σ1 0
0 Σ2

] [
Ω∗1
Ω∗2

]
Since we expect

ΓΣΩ∗ = Γ1Σ1Ω∗1 = LXk,1 [X4k−1 X4k]

from (8–10), (rank(Σ1) = n and rank(Σ2) = 0), form the

estimatesL̂Xk,1 = Γ1Σ1/2
1 and[X̂4k−1 X̂4k] = Σ1/2

1 Ω∗1, re-

taining only n̂ significant singular values inΣ1. (L̂Xk,1 is not
needed later.)

3. Estimate the parametersA,B,C,D,N on the basis of equa-
tion (2), by solving

[
X̂4k

Y4k−1

]
=
[
A N B
C 0 D

] X̂4k−1

U4k−1 � X̂4k−1

U4k−1

 (17)

in a least-squares sense.

4. Estimate the covariance matrix by calculating[
εw
εv

]
=

[
X̂4k

Y4k−1

]

−
[
Â N̂ B̂

Ĉ 0 D̂

] X̂4k−1

U4k−1 � X̂4k−1

U4k−1


then estimatingQ, S, R from the sample covariance of
[εTw, ε

T
v ]T .



Remark 3. Theorem 1 allows the statesXc,Xf andXr of the
bilinear system (2) to be related linearly to each other, provided
that (6) holds. This is the basis of parameter estimation by
regression as in (17). Also, sincew andv are assumed to be
white sequences, and independent ofu, HẐk+i is a consistent
estimate ofXk+i+1 (asj → ∞) if condition (6) holds. Hence
the estimates obtained from (17) are asymptotically unbiased if
(6) holds.

Remark 4. The algorithm presented in [7] will be unbiased if
the condition:

X f ⊂

 Uf

Uf �
(
Uc
Yc

)  (18)

is met.

It is easy to show that the condition (18) is equivalent to (19)

Xk+i+1 = H

(
Uk+i|i+1

Yk+i|i+1

)
(19)

which is a special case of condition (6) of Theorem 1. This
explains why the algorithm presented in [7] can give unbiased
results in certain cases.

Remark 5. If l ≥ n holds, from [4], we can also deduce that
condition (6) of Theorem 1 holds: We have

Xk+i+1 = AXk+i +N(Uk+i �Xk+i) +BUk+i +Wk+i

= A
[
C†(Yk+i −DUk+i − Vk+i)

]
+N

(
Uk+i �

[
C†(Yk+i −DUk+i − Vk+i)

])
+BUk+i +Wk+i

=



(AC†)T

(B −AC†D)T

(−AC†)T
(N ⊗ C†)T
−(N ⊗ C†D)T

−(N ⊗ C†)T
I



T 

Yk+i

Uk+i

Vk+i

Uk+i � Yk+i

Uk+i � Uk+i

Uk+i � Vk+i

Wk+i


= Hf(Uk+i, Yk+i,Wk+i, Vk+i)

where

H =



(AC†)T

(B −AC†D)T

(−AC†)T
(N ⊗ C†)T
−(N ⊗ C†D)T

−(N ⊗ C†)T
I



T

Zk+i = f(Uk+i, Yk+i,Wk+i, Vk+i) =



Yk+i

Uk+i

Vk+i

Uk+i � Yk+i

Uk+i � Uk+i

Uk+i � Vk+i

Wk+i



Ẑk+i = ΠFZk+i =


Yk+i

Uk+i

Uk+i � Yk+i

Uk+i � Uk+i



Thus the unbiased algorithm (for the casel ≥ n) presented
in [4] is a special case of our new conceptual algorithm.

Remark 6.

Similarly, we can deduce the approximate unbiasedness of our
algorithm given in [4], if condition (6) of Theorem 1 holds only
approximately. In this case (8)–(12) hold only approximately;
in order that the approximation error should reduce with the
block sizek, some kind of stability condition must be imposed.
In previous work a rather severe sufficient condition has been
imposed for this purpose. It is not currently known how far this
condition can be relaxed.

5 Conclusion

Apart from the problem of bias, very high computational cost
is also a major problem of currently-proposed subspace meth-
ods for bilinear system identification. In our new conceptual
algorithm, the key dimensions of the matrices involved depend
on the mappingf(.). In particular, the smaller the dimension of
the row space spanned by the image of the mapping, the lower
the computional cost of the algorithm. The practical implica-
tion of this is that one can first try some relatively low dimen-
sional subspace (hence low computational cost) to estimate the
system matrices, then try a larger-dimensional subspace to see
whether better results are obtained. The various proposals put
forward in [1, 4, 7, 8] differ essentially in proposing different
mappingsf(.), or equivalently, different subspaces onto which
projections are made. (The proposal in [12] was different in na-
ture, using projection onto the same subspace as in [8] followed
by nonlinear processing to remove bias.)

In this paper we have attempted to clarify some aspects of the
differences between various proposals for ‘bilinear subspace’
algorithms, by formulating a conceptual algorithm which in-
cludes most of the existing proposals. The main idea is to find
a subspace constructed from input-output data, which contains
the system state block and allows the system to be ‘linearised’
so that an unbiased algorithm can be obtained. Both the re-
sulting bias and the computational complexity depend on the
choice of a suitable data-based subspace, on the system be-
haviour, and on the nature of the input signal. By reference
to this conceptual algorithm we have explained why some of
the existing proposals give unbiased results in certain circum-
stances.

We hope that this work will be useful in the development of
further algorithms with reduced bias and/or complexity, and in
the investigation of any inherent trade-off between these.
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