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Systems, Subspace Methods, Bilinear Systems. with general inputs, and for which the rate of reduction of bias
can be estimated. The computational complexity of these algo-
Abstract rithms was also significantly lower than the earlier ones, both

because the matrix dimensions were smaller, and because con-
Several subspace algorithms for the identification of bilinesérgence to correct estimates (with sample size) appears to be
systems have been proposed recently. A key practical problewch faster.

with all of these is the very large size of the data-based matrigasis paper, we propose a class of unbiased “four-block’ al-
which must be constructed in order to ‘linearise’ the proble rithms which forms a basis for the analysis and comparison
and allow parameter estimation essentially by regression. “various subspace methods for bilinear systems. This class
oj[her shortcoming of currenty knawn subspace algorithm§ f8£n be viewed as a conceptual algorithm. Various concrete im-
b.|I|near sys_tems is that the results are biased .for .most N mentations of this conceptual algorithm can be obtained by
signals. Th'S_ paper focuses on_the cause of th'S_ b|a§. Ac aking different choices of subspaces for the decomposition
ceptual algorithm which can achieve unbiased estimation un ehhe input-output data. By using the framework we present
less restrictivg ass_umptions on the system ar_ld input Sigr_]a!ﬁni?his paper, we can explain why existing subpace methods
prese_nted. Itis p0|_nted out th".# one comblnatlon_ of an existigy, 4chieve unbiased results, under certain assumptions about
algorithm and particular conditions on the input is an instange. system and the input signals. We hope that the viewpoint
of this conceptual algorithm. Also, the conceptual algorith%Iopted here will help to clarify the relations between the var-

may shed light on the_trade—off between accuracy a_nd COMPYis “bilinear subspace’ methods proposed so far, and assist
tational complexity which has been noted in our earlier workfurther developments

The outline of the paper is as follows. Extensive notations are
introduced in section 2, and these are followed by some anal-
Recently, subspace methods have been developed for the ¥§tf in section 3. Readers familiar with earlier papers on ‘bi-
mation of bilinear systems. Shortcomings of the methods piilear subspace’ methods can skip directly to section 4, which
posed to date are that they typically give biased estimates fgfoduces the conceptual algorithm referred to above. Some
most input signals, and that their computational complexity $9nclusions are made in section 5.

extremely high, impeding their practical application.

Favoreekt al[6] proposed a ‘bilinear N4SID’ algorithm which 2~ Notation

gi\./e uEblased lresglté o'r\1/lly i t;‘e measuredd mpult 3|gnal W#%e use of much specialised notation seems to be unavoidable
white. Favoreel and De Moor [7] suggested an alternative ?j'the current context. Mostly we follow the notation used in [8,

1 Introduction

gorithm for general input signals. Verdult and Verhaegen [1%

pointed out that this algorithm gives biased results, and pro-

posed an alternative algorithm, which involved a nonlinear ope use® to denote the Kronecker product aadthe Khatri-
timization step. Chen and Maciejowski [2, 3, 4] proposedao product of two matrices with' € R"*? andG € R"*?

algorithms for the deterministic and combined deterministigefined in [9, 11]: F © G=[f1 ® g1, f2 ® g2, - - -, fp @ gy
+, @ andn denote the sum, the direct sum and the intersection
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of two vector spaces;- denotes the orthogonal complement U(;l“q = U,
of a subspace with respect to the predefined ambient space, the

+
Moore-Penrose inverse is written-dsand the Hermitian as. o+ . gi” c Réi-axJ
i-1lg i1 o
In this paper we consider combined deterministic-stochastic a Ui-1 0 Ulim
time-invariant bilinear system of the form:
T+l — Axt + N’Z,Lt X xy + But -+ wy Lettlng
yy = Cx¢+ Dug+ vy 1) XP = kal\()a Xcﬁng,Mk
where z; € Ry, € RLu, € R™ and N = X' = Xapoapon, X"=Xa 131
[N1 N3 ...N,,] e R"*"™ N, e R"*" (i =1,...,m). Thein- UP = Up_1jo, USUsp_1i
putu, is assumed to be independent of the measurement noise Ut U ULl
v, and the process noise,. The covariance matrix af, and T U8k-li2ky ¥ T AR—13k
vy IS:
el w,\'| [ Q@ S 5 0 ye ye v, YT, wewe, W, wr, ve, ve, vE, v, U+e,
Vp vy | ST R |TM U+e, U+ andU+" can be defined similarly.

Remark 1. We denote byup the space spanned by all the rows
We assume that the sample S|z@\fsnamely that input-output ¢ the matrixU,. Thatis, U, := spafa*U,, o € R™}

data{u(t),y(t) : ¢ =0,1,..., N} are available. U, Uy, Ur,yp,yc,yf YV, uP, P, U’ and)’ etcare defined
Our objective is to estimate the matricaésB, C, D, N (up to Similarly.

state-coordinate transformations) and possipiy, S

For arbitraryt we define 3 Analysis

Lemma 1 The system (1) can be rewritten in the following ma-

Xo=[re Tpgq o Tegi_1] € R™Y . i
=l T ] trix equation form:

but for the special cases= 0 andt = k we define, with some

abuse of notation, X1 = AX 4+ NUO X + BU + Wy
4 Y, = CXy+DU:+V; (2
Xp = [xo Ty ... xj_1] € R™Y
Xe = [@k Thg1 . Thpj—1] € R Lemma 2 For¢ > 0, and the block siz&, we have
Xf = [lgk T2kt1 .- x2k+j71} S R X,
X, = [xgk T3k41 --- .’I}3k+j_1} e R™J Xk*l“ri‘i = < Uk 1+Z‘: o X; >

wherek is therow block size The sufficeg, ¢, f andr are

supposed to be mnemonic, representing ‘past’, ‘current’, ‘fllemma 3 For F, G, H,J of compatible dimensionst” €
ture’ and ‘remote future’ respectively. We defitig, U, U;, R**',G € R™™ H € RP, J € R™™

Uy, Ya, Yy, Yo, Yo, Wy, Woo, We, Wiy Vi, Vo, Vi, Vi, sim-
ilarly. Tﬁ)esef matrices wiTI Iatér be used i)o c{)nstruct larger (FGoHJ) = (FoH)(GoJ)
matrices with a ‘generalised block-Hankel’ structure. In order (FGoOHJ) = (FRH)(GOJ)
to use all the available data in these, the number of columns

j is such thatN = 4k + j — 1 in the case of > n and _emma 4 (Input-Output Equation) For the combined
N = 4k+j—Tlinthe case of < n. Letd; = ¥,-1(m+1)P~'  deterministic-stochastic system (1) and> 0, we have the
ande; = X! _, (m + 1)P"'m. following Input-Output Equation

For arbitraryg andi > ¢ + 2, we define

Xitriv1 = O Xppifio1 + OF Ukpijio
Xq\q - < Xq ) c R(’m,+1)n><_'j +AkWWk—1+i\i
Uy © Xq Yitio = /Ji-(Xkﬂ'\iq + ck(-]UkJrﬂifl
~ i—2 m+1)""Inxj w . Vv .
Kictg = ( Ui @X‘Z 2l ) € Rl FLE Wiepilio1 + Li Vierifi—
Y4 Y, where
Vi, - 2lq  Rii-axi Ai = [AAE L NIAY G N A
Ui 1®Y 2)q AT = [A/Nyp,...,Ny]



AV = [B,AAY | NIAY | NLAY ] Lemma 6 The system (1) can be written as the following block
N form equations:
A};V = [Ian,AAtMil,Nlﬁtvzl,...,Nmﬁﬁl] ye — Ei{lXc-Fﬁi{z(UJrC@Xc)
A2 +LYUC + LV We + LY Ve (3)
X
CAXH o .. 0 VIio= L8 X+ L75,(0 0 Xy)
LX, 0 .. 0 Uit Wt Vs
0 £X, .. 0 LU+ Ly W+ LV (4)
, V' o= LY X+ Lo (U © Xy)
+LlUT + LYW+ Ly vr (5)
X; = OASXe+00,(UT 0 X))+ A We
X, = MM X+ AU oXxp)+oFwW!

0 o : £X,

D CcAV, 0 ... 0
0o £Y, 0 ... 0 4 A Conceptual Algorithm
0 0 cy, ... 0 R _ _
. ) ] ] ) The bias in bilinear subspace methods is due to the Khatri-
Rao product term in the block form equations. How to handle
0 0 0 : cv this bilinear term is the key to solving the biased estimation
- problem. If the system input is white, it is a comparatively
0 CAY, 0 e 0 easy problem to handle, since the Khatri-Rao product term will
0 LY, 0 e 0 disappear after projection onto a suitable data-based subspace.
0 0 Ly 0 Then the identification problem becomes essentially the same
. : : : as in the linear case, and can be dealt with in the same way.
. There are many algorithms which give unbiased results in the
0 0 0 oLy linear case — see [6] and references therein. Since the require-
I~ 0 .0 ment of a white input is a very tight restriction, we consider
o V. ... 0 general inputs in the rest of this paper. The main idea to solve
Ly = . . . . the biased problem is to ‘linearise’ the system equation, in a
: : R sense, and try to find a subspace generated by data sets which
L 0 0 e LY contains the block system state. Then bilinear systems can be
estimated in a similar way as linear systems.

>

)’

with
In the followingIl 4 B denotes the orthogonal projection of the
LXZ[C, 01xm], LY=D, LY 20,5, LY =110 rows of matrixB onto the space spanned by the rows of matrix
A.

Remark 2. For proofs of Lemmas 1-4 see [1].
P [1] Theorem 1 (Four Block Form Equation) Suppose that there

exists a block sizk, a constant (ie independent of data) matrix
Lemma 5 For the combined deterministic-stochastic systed ¢ R™** and a mapping
(1) andi > 0, we have the following Block Form Input-Output

Equation FQ) o R™YXR™Y x .. x R™Y
2k+1
Xitivr = Ai(JXkJri + A?,Q(U]:;pr“i © Xkti) «R>X « R x . x RI>I
FAY Ungitio1 + O Wi 14y oK+l
Y = [’kXJXk'-&-i + 5252(U,j_1+i‘i © Xkti) — RS

LY Upifio1 + L8 Wigijio1 + L8 Vigijio such that

where A, and A}Y, are the firstn columns and last(m + Xrivs = Hf Unsis s Ups 1 Yisis oos Yist, Wesss Virs) ()
1)¥ — 1)n columns of the matrix\;\; £, and £}, are the

firstn columns and last(m + 1)* — 1)n columns of the matrix Let
L respectively.
Zvi = [(Urksis oo Uity Yieriy oo Yirt, Wi, Viers) — (7)

Proof: From the definitions of\\,, Af,, £¥, and Ly, itis where the mapping f(.) is constructed in such
easy to get Lemma 5 from Lemma 4. a way that the rows ofZ;,; are the rows of



Uktis ooy Uity Yiriy ooy Yir1, Wiai, Vers and their com- Theorem 2 Suppose that the linear part of the system (1) is
binations of Khatri-Rao products. Then the system (1) can bbservable and
written in the following ‘four block’ form:

YC
Yye — ‘Ci-(lxc + %uﬁc,u,z U’c,u,z
w c Ve Uf,u,z (14)
LV wWe s £l v ®) o
Yio= L5 X+ TR0
+Ly W+ Ly v (9) is afull row rank matrix. Denot& = Y© + yfe* + (= +
V' o= L X+ TRO Uz andR = g Y¥ + Ul then
+LYWT LYV 10 u A2
Xk ulfcuz Wrrc ( ) HﬁLHSyr:%HﬁiU 77 (15)
X; = AN X+ GHUS + AW (11)
X, = Mg Xp+GrUher+ nywl (12) Proof: (15) is obtained using manipulations as in [1].

whereZ,* andG} are system-dependent constant matrices aidgorithm:

frews — U« [hue — uf 1. DecomposeY” into O.X, and 7,*U"™“* using or-
Utco 7 ) +f oz At K ;
© L1 U™ © Zog—1 thogonal projection: from (15) of Theorem 2, estimd&ig

SR ur as
o= ( Ut ® Zsp— )

2. Obtain the SVD decomposition and partition as

T = (I, MgY") (I, U™%)T (16)
Proof outline:

From (3) and Lemma 3, we have

Yo = LY X+ L5(UT 6 X,) (g Yap-1jsn WgYarpeia] — 70 [Ufk’fugk UZAEHJ
+LYUC + LY We 4 Ly Ve TRt~ [Ty F2]|:21 0 HQT]
= L Xe+Lio(UT 0 HZy1) 0 %2 1%
+LlUC + L we 4 Lyve Since we expect
= LY X+ (LY, @ H) U Zp) . .
o e ISQ" =15:Qf = L3 [Xano1 Xal
EkUC+Ek WCJV_E]CV(/
— Lilec + q;cuUcyu»z from (8-10), tank(X;) = n andrank(X;) = 0), form the
’ . A 1/2 5 5 1/2 ~x
LLWwe g oy ve estimates’; , = Flzl/ and[Xap—1 Xu] = Z}/ O3, re-
taining onlyn significant singular values i&;. (Lifl is not
where needed later.)
T =Ly, (Lyy @ H)) 3. Estimate the parametefs B, C, D, N on the basis of equa-

. , . tion (2), by solving
which proves (8). Equations (9) - (12) can be obtained using

similar manipulations. Xup_1

Xup A N B !
In this and the following theorenp* (past), ‘¢’ (current), ‘f’ { Yies } = { C 0 D ] Use—1 © Xap—1 | (A7)
(future) and #’ (remote future) data blocks are used. Hence we Usk—1
refer to the algorithm which follows as a ‘four-block’ algorithm
— note thatZ,_; andZ,_; contain ‘past’ data, and that = In a least-squares sense.
4k +j — 1. Let

A Uec A U’
Cuyz . fou,z ~
v (U*CQZk_l )’U (U+f®Z2k-—1 )

7] - 4]
U:( v ) € Vi1

4. Estimate the covariance matrix by calculating

U B i 8 B Kipy
where - [ ¢ o D ] Us—1 © Xap—1
Zivi = UrZiys (13) Usk—1
and F is the subspace spanned by the rows dfien estimating@, S, R from the sample covariance of

f(Uk+i7"'7Ui+laYk+ia"'7n+170a0>' [GT ET]T'

wr v



Remark 3. Theorem 1 allows the staté§., X ; and X, of the Yieys

bilinear system (2) to be related linearly to each other, prowd%d — HaZi. — Uk+i
kti = Mrdpyi = 4 4

that (6) holds. This is the basis of parameter estimation by Ukti © Yiyg

regression as in (17). Also, sineeandv are assumed to be Uk1i © Ugys

white sequences, and independen&pHZkH is a consistent
estimate ofX;. ;11 (asj — oo) if condition (6) holds. Hence
the estimates obtained from (17) are asymptotically unbiased if
(6) holds.

Remark 4. The algorithm presented in [7] will be unbiased i

the condition: tI'hus the unbiased algorithm (for the cdse n) presented

in [4] is a special case of our new conceptual algorithm.
Remark 6.

X7 c uf®<uc) (18)
Similarly, we can deduce the approximate unbiasedness of our
] algorithm givenin [4], if condition (6) of Theorem 1 holds only
Is met. approximately. In this case (8)—(12) hold only approximately;
Itis easy to show that the condition (18) is equivalent to (19)in order that the approximation error should reduce with the
block sizek, some kind of stability condition must be imposed.
Xprin = H ( Uktifit1 ) (19) In previous work a rather severe sufficient condition has been
' Yivijir1 imposed for this purpose. Itis not currently known how far this

ondition can be relaxed.
which is a special case of condition (6) of Theorem 1. ThC

explains why the algorithm presented in [7] can give unbiased

results in certain cases. 5 Conclusion
Remark 5. If I > n holds, from [4], we can also deduce thaf\part from the problem of bias, very high computational cost
condition (6) of Theorem 1 holds: We have is also a major problem of currently-proposed subspace meth-
ods for bilinear system identification. In our new conceptual
Xivivr = AXppi + N(Ukti © Xiti) + BUkti + Witi algorithm, the key dimensions of the matrices involved depend
= A [CT(Ykﬂ- — DUpyi — Vieti)] on the mapping (.). In particular, the smaller the dimension of

AN (Uzm ® [CT(Ykﬂ- — DUpyi — VkJri)]) the row space spanned by the imgge of the mapp_ing,_the !ower
the computional cost of the algorithm. The practical implica-

+BUk+i + Wiy tion of this is that one can first try some relatively low dimen-

T

(ACHT Yiii sional subspace (hence low computational cost) to estimate the
(B - AC'D)T Ukti system matrices, then try a larger-dimensional subspace to see
(—ACHT Vieti whether better results are obtained. The various proposals put
= (N®chHT Ukti © Yirs forward in [1, 4, 7, 8] differ essentially in proposing different
—(NeCtD)T Ugti © Uk mappingsf(.), or equivalently, different subspaces onto which
—(NechHT Ui © Vi projections are made. (The proposal in [12] was differentin na-
I Wi ture, using projection onto the same subspace as in [8] followed
= HfUpsi, Yiri, Wesis Viers) by nonlinear processing to remove bias.)
In this paper we have attempted to clarify some aspects of the
where . . - ;
differences between various proposals for ‘bilinear subspace
(ACHT T algorithms, by formulating a conceptual algorithm which in-
(B - ACtD)T cludes most of the existing proposals. The main idea is to find
(—ACHT a subspace constructed from input-output data, which contains
H = (N®CchHT the system state block and allows the system to be ‘linearised’
—(N®CtD)T so that an unbiased algorithm can be obtained. Both the re-
—~(NoCchT sulting bias and the computational complexity depend on the
I choice of a suitable data-based subspace, on the system be-
haviour, and on the nature of the input signal. By reference
Vit to this conceptual algorithm we have explained why some of
Ukt the existing proposals give unbiased results in certain circum-
Vieti stances.
Zivi = fUktis Yiris Wieri, Vi) = | Uki © Y _ _ _
Uti © Upyi We hope that this work will be useful in the development of
Ui © Viers further algorithms with reduced bias and/or complexity, and in

Wi the investigation of any inherent trade-off between these.
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