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Abstract

In this paper, a subspace method for the identifica-
tion of deterministic bilinear systems is developed.
The input signal to the system does not have to
be white, which is a major advantage over an ex-
isting subspace method for bilinear systems. Simu-
lation results also show that the new algorithm con-
verges much more rapidly (with sample size) than
the existing method, and hence is more effective with
small sample sizes. The faster convergence is pre-
sumably due to the insensitivity of the algorithm to
the sample-spectrum of the input signal. These ad-
vantages are achieved by a different arrangement of
the input-output equations into ‘blocks’, and projec-
tions onto different spaces than the ones used in the
existing method. A further advantage of our algo-
rithm is that the dimensions of the matrices involved
are significantly smaller, so that the computational
complexity is lower.

1 Introduction

Bilinear systems are attractive models for many dy-
namical processes, because they allow a significantly
larger class of behaviours than linear systems, yet
retain a rich theory which is closely related to the fa-
miliar theory of linear systems [11]. They exhibit
phenomena encountered in many engineering sys-
tems, such as amplitude-dependent time constants.
Many practical system models are bilinear, and more
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general nonlinear systems can often be well approx-
imated by bilinear models [13].

Most studies of the identification problem of bilinear
systems have assumed an input-output formulation.
Standard methods such as recursive least squares,
extended least squares, recursive auxiliary variable
and recursive prediction error algorithms, have been
applied to identifying bilinear systems. Simulation
studies have been undertaken [10], and some statis-
tical results (strong consistency and parameter esti-
mate convergence rates) are also available [3].

In this paper, we consider the identification of (multi-
variable) bilinear systems in state-space form. There
are many advantages of using state-space models,
particularly in the multivariable case [4]. In recent
years ‘subspace’ methods have been developed which
have proved to be extremely effective for the identi-
fication of linear systems [5, 14, 16, 17]. In [6, 7, 9]
extension of such methods were given for bilinear sys-
tems, but the algorithm presented there was effective
only if the measured input signal to the system be-
ing identified is white. To our knowledge this was
the first extension of the subspace approach to bilin-
ear systems. In [8] another subspace algorithm for
bilinear systems was presented by the same authors,
which apparently does not require a white input sig-
nal. However this algorithm is known to give biased
results, and it must therefore be questioned whether
it can really be considered to be an effective algo-
rithm for the case of non-white inputs.

In this paper an alternative subspace algorithm for
identifying bilinear systems is proposed. It does not
require the measured input to be white, and the
matrices which need to be constructed and oper-
ated upon are much smaller than those which appear
in [9]. Simulations show that it works well when the
input signal is not white; they also show that if the
input signal is white, then good results are obtained
with much smaller sample sizes than are required for
the algorithm of [9].

This paper deals only with the deterministic case,
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in which all the inputs to the system are measured,
and there are no stochastic disturbances or other un-
measured inputs. In the companion paper [2] we
deal with the combined deterministic-stochastic case
(which is the case treated in [9]). All proofs are omit-
ted here, but can be found in [1].

2 Notation

The use of much specialised notation seems to be
unavoidable in the current context. Mostly we follow
the notation used in [9], but we introduce all the
notation here for completeness.

We use ⊗ to denote the Kronecker product and � the
Khatri-Rao product of two matrices with F ∈ Rt×p

and G ∈ Ru×p defined in [12, 15]:

F �G , [f1 ⊗ g1, f2 ⊗ g2, . . . , fp ⊗ gp]

+,⊕ and ∩ denote the sum, the direct sum and the
intersection of two vector spaces, ·⊥ denotes the or-
thogonal complement of a subspace with respect to
the predefined ambient space, the Moore-Penrose in-
verse is written as ·†, and the Hermitian as ·∗ .

We consider deterministic time-invariant bilinear
systems of the form:

xt+1 = Axt +Nut ⊗ xt +But
yt = Cxt +Dut (1)

where xt ∈ Rn, yt ∈ Rl, ut ∈ Rm, and N =
[N1 N2 ...Nm] ∈ Rn×nm, Ni ∈ Rn×n (i = 1, ...,m).

We assume that the sample size is Ñ , namely that
input-output data {u(t), y(t) : t = 0, 1, . . . , Ñ} are
available.
For arbitrary t we define

Xt , [xt xt+1 ... xt+j−1] ∈ Rn×j

but for the special cases t = 0 and t = k we define,
with some abuse of notation,

Xp , [x0 x1 ... xj−1] ∈ Rn×j

Xf , [xk xk+1 ... xk+j−1] ∈ Rn×j

where k is the row block size. The suffices p and
f are supposed to be mnemonic, representing ‘past’
and ‘future’ respectively.

We define Ut, Up, Uf , Yt, Yp, and Yf similarly:

Ut , [ut ut+1 ... ut+j−1] ∈ Rm×j

Up , [u0 u1 ... uj−1] ∈ Rm×j

Uf , [uk uk+1 ... uk+j−1] ∈ Rm×j

Yt , [yt yt+1 ... yt+j−1] ∈ Rl×j

Yp , [y0 y1 ... yj−1] ∈ Rl×j

Yf , [yk yk+1 ... yk+j−1] ∈ Rl×j

These matrices will later be used to construct larger
matrices with a ‘generalised block-Hankel’ structure
such as (2). In order to use all the available data
in these, the number of columns j is such that Ñ =
2k + j − 1.

For arbitrary q and i ≥ q + 2, we define

Xq|q ,
(

Xq
Uq �Xq

)
∈ R(m+1)n×j

Xi−1|q ,
(

Xi−2|q
Ui−1 �Xi−2|q

)
∈ R(m+1)i−qn×j

Yq|q , Yq

Yi−1|q ,
(

Yi−1
Yi−2|q

Ui−1 � Yi−2|q

)
∈ Rdi−q×j

Uq|q , Uq

Ui−1|q ,
(

Ui−1
Ui−2|q

Ui−1 � Ui−2|q

)
∈ Rei−q×j

U+
q|q , Uq

U+
i−1|q ,

 U+
i−2

Ui−1

Ui−1 � U+
i−2|q

 ∈ R((m+1)i−q−1)×j

U++
q|q ,


Uq,1 � Uq

Uq,2 � Uq(2 : m, :)
Uq,3 � Uq(3 : m, :)

...
Uq,m � Uq,m

 ∈ R
m(m+1)

2 ×j

U++
i−1|q ,

(
U++
i−2|q

Ui−1 � U++
i−2|q

)
∈ R

m
2 (m+1)i−q×j

Remark 1 The meaning of U+
i−1|q is different from

that in [6]. U++
i−1|q is newly introduced here.

Uui−1|q , U++
i−1|q � Uq

Uyi−1|q , U+
i−1|q � Yq

Uu,yi−1|q ,

 Ui−1|q
Uui−1|q
Uyi−1|q


Xp , Xk−1|0 ∈ R(m+1)kn×j

Xf , X2k−1|k ∈ R(m+1)kn×j

Up , Uk−1|0 ∈ Rek×j

Uf , U2k−1|k ∈ Rek×j

Y p , Yk−1|0 ∈ Rdk×j

Y f , Y2k−1|k ∈ Rdk×j

U++p , U++
k−1|0 ∈ R

m
2 (m+1)k×j

U++f , U+
2k−1|k ∈ R

m
2 (m+1)k×j
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Up,y , U+p � Yp ∈ Rl[(m+1)k−1]×j

Uf,y , U+f � Yf ∈ Rl[(m+1)k−1]×j

Up,u,y ,
(

Up

U++p

Up,y

)
∈ Rfk×j

Uf,u,y ,

 Uf

U++f

Uf,y

 ∈ Rfk×j

where di = Σip=1(m+ 1)p−1l, ei = Σip=1(m+ 1)p−1m

and fk = ek + m
2 (m+ 1)k + l[(m+ 1)k − 1] . Finally,

we denote by Up the space spanned by all the rows
of the matrix Up. That is,

Up := span{α∗Up, α ∈ Rkm}

Uf , Yp, Yf , Up, Yp, Uf , Yf , Up,u,y, Uf,u,y etc can
be defined similarly.

3 Analysis

Lemma 1

Xp =
(

Xp

U+p �Xp

)
Xf =

(
Xf

U+f �Xf

)

Lemma 2 ¿From (1) we have, modulo a state-
coordinate transformation,

Xp = C†(Yp −DUp)
Xf = C†(Yf −DUf )

Remark 2 This holds for any right inverse of C. Dif-
ferent choices of right inverse correspond to different
choices of state coordinates. Note that the spaces
Xp and Xf do not depend on this choice. We will
assume that the Moore-Penrose pseudo-inverse of C
is used.

Lemma 3 For F,G,H, J of compatible dimensions,
F ∈ Rk×l, G ∈ Rl×m, H ∈ Rp×l, J ∈ Rl×m:

(FG⊗HJ) = (F ⊗H)(G⊗ J)
(FG�HJ) = (F ⊗H)(G� J)

Lemma 4 (Input-Output Equation)

Y pk−1|0 = ΓkX
p
k−1|0 +HkU

p
k−1|0 (2)

Xf = AkX
p
k−1|0 +4dkU

p
k−1|0 (3)

where

Γi ,


CAi−1 0 . . . 0
Γi−1 0 . . . 0
0 Γi−1 . . . 0
...

...
. . .

...
0 0 . . . Γi−1

 ∈ Rdi×(m+1)in

Γ1 , (C 0l×(m+1)n)

Hi ,


D C4di−1 0 . . . 0
0 Hi−1 0 . . . 0
0 0 Hi−1 . . . 0
...

...
...

. . .
...

0 0 0 . . . Hi−1

 ∈ Rdi×ei

H1 , D,

where

4dn ,
[
B A4dn−1 N14dn−1 . . . , Nm4dn−1

]
4d1 , B

Ai , (AAi−1 N1Ai−1 . . . NmAi−1),

A0 , In×n

Theorem 1 (Input-Output Equation in Two Block Form)
The system (1) can be written in the following ‘two
block’ form:

Y p = CkXp +DkUp,u,y (4)

Y f = CkXf +DkUf,u,y (5)

Xf = AkXp + BkUp,u,y (6)

Theorem 2 If the following condition is satisfied(
Y p

Up,u,y

Uf,u,y

)
(7)

is a full row rank matrix, then

Xf ⊂ Yp + Up,u,y

Xf + Uf,u,y = Xf ⊕ Uf,u,y

⊂ (Yp + Up,u,y)⊕ Uf,u,y (8)

4 Algorithm

1. Decompose Y f into CkXf and DkUf,y,u using
orthogonal projection: from (5) and (8) it follows
that

ΠΩ⊥Y
f = DkΠΩ⊥U

f,u,y (9)
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where Ω = Yp + Up,u,y. Determine Dk ∈
Rdk×(ek+m

2 (m+1)k+l[(m+1)k−1]) from

Dk =
(
ΠΩ⊥Y

f
) (

ΠΩ⊥U
f,u,y

)†
(10)

2. Obtain the SVD decompositon and partition ac-
cordingly by selecting an model order[

Y2k−2|k−1 Y2k−1|k
]
−Dk

[
Uu,y2k−2|k−1 Uu,y2k−1|k

]
=: ΓΣΩ∗ = [ Γ1 Γ2 ]

[ Σ1 0
0 Σ2

] [ Ω∗1
Ω∗2

]
(11)

Since we expect

ΓΣΩ∗ = Γ1Σ1Ω∗1 = Ck [Xk−1 Xk] (12)

from (4) and (5) (rank(Σ1) = n and rank(Σ2) = 0),
form the estimates Ĉk = Γ1Σ1/2

1 and [X̂k−1 X̂k] =
Σ1/2

1 Ω∗1, retaining only significant singular values in
Σ1. (Ĉk is not needed later.)

3. Estimate the parameters A,B,C,D,N by solving[
X̂k
Yk−1

]
=
[
A N B
C 0 D

] X̂k−1

Uk−1 � X̂k−1
Uk−1

 (13)

in a least-squares sense.

Remark 3 Other estimates could be obtained by
using other right-inverses in steps 1 and 3, and an-
other factorisation in step 2. In [9] it is suggested
that constrained least-squares could be used in step
3, because of the known structure of the solution.
Our initial simulation experience is that this does
have not much effect the eigenvalues of matrices A
and N in [2].

5 Examples

In this section, two second-order bilinear systems in-
troduced in [6, 9] are used to see how the new al-
gorithm works, and how it compares with existing
algorithms.

Example 1 The system matrices are

A =
( 0 0.5
−0.5 0

)
, B =

( 1
1

)
, C = ( 1 1 ) ,

D = 2, N1 =
( 0.4

0

)
N2 =

( 0
0.3

)
Table 1 shows the eigenvalues of the estimated A
and N in various cases. The row labelled ‘N4SID’
gives the results obtained in [6], with a white input
and k = 3, j = 8191. ‘Case I’ is for a white input,
with uniform distribution in the interval [0,0.01] and
k = 2. ‘Case II’ is for a white input with normal
distribution N(0, 0.12) and k = 6. ‘Case III’ is for
a coloured input z with mean 0, standard deviation

3.3e-05 and rq = Ezkzk+q = 0.5q, q = 0, 1, 2, ...
and k = 2. ‘Case IV’ is for a white input with ex-
ponential distribution with parameter λ = 0.04 and
k = 2. In all the cases I–IV the number of columns is
only j = 597, compared with j = 8191 for the N4SID
case. It is seen that the eigenvalues of the true and
estimated matrices are very close to each other.

A N
True ±0.5i 0.4, 0.3

N4SID −0.0027± 0.4975i 0.4011, 0.3055
Case I 0.0000± 0.5001i 0.3994, 0.2952
Case II 0.0000± 0.4993i 0.4019 0.3064
Case III 0.0000± 0.5000i 0.3953 0.3085
Case IV 0.0006± 0.5011i 0.3934, 0.3007

Table 1: Example 1: Results with different inputs
and algorithms

Table 2 shows how the eigenvalues of the estimated
A and N depend on j, in each case with k = 2.

A N
True ±0.5i 0.4, 0.3
j=97 0.0000± 0.5003i 0.4092, 0.2789
j=297 0.0000± 0.5002i 0.4043, 0.2914
j=597 0.0000± 0.5001i 0.3994, 0.2952

Table 2: Example 1: Effect of sample size

Example 2 The system matrices are

A =
( 0.5 0

0 0.3

)
, B =

( 0 1
−1 0

)
, C =

( 1 0
0 2

)
D =

( 1 0
0 1

)
, N1 =

( 0.6 0
0 0.4

)
, N2 =

( 0.2 0
0 0.5

)
Table 3 shows the results obtained in [9] with j =
4095 and k = 2, but with stochastic inputs, and the
results obtained by our new algorithm with j = 597
and k = 2 in the deterministic case. A fairer compar-
ison is available in [1, 2]. In both cases the input sig-
nal was white, with a uniform two-dimensional dis-
tribution.

True N4SID New
A 0.5, 0.3 0.5001, 0.2979 0.5000, 0.3000
N1 0.6, 0.4 0.5994, 0.4020 0.6000, 0.4000
N1 0.2, 0.5 0.1914, 0.5016 0.2000, 0.5000

Table 3: Example 2: Results with different inputs
and algorithms
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Remark 4 Our new algorithm has considerably
lower computational complexity than the one given
in [8]. The major computational load is involved
in finding the right-inverse in (10). The matrix
involved here has dimensions fk × j, where fk =
ek + (m/2)(m + 1)k + l[(m + 1)k − 1]. For Exam-
ple 2, with k = 2, we have fk = 33. In [8], equation
(9), the matrix whose right-inverse has to be found
has dimensions (dk+2ek+ekdk+e2

k)×j. The row di-
mension increases exponentially quickly with k. For
Example 2 with k = 2 this row dimension is 152. Fur-
thermore, since our algorithm seems to require much
smaller values of j for comparable performance, the
column dimension is also much smaller for our algo-
rithm in practice.

6 Conclusion

A new subspace algorithm for the identification of
deterministic bilinear systems has been developed.
Its main advantage is that the system input does
not have to be white. It also has lower computa-
tional complexity than the previously proposed al-
gorithm, because the dimensions of the matrices in-
volved in it are much smaller. Its wider applicability
has been demonstrated by two examples, which also
show that even when coloured inputs are available
the new algorithm converges to correct estimates rel-
atively quickly. The presumed reason for this is that,
since the algorithm does not depend on whiteness
of the input, it is insensitive to the large errors in
the sample spectrum which are inevitable with small
sample sizes.

7 Acknowledgement

The work reported in this paper was supported by
the UK Engineering and Physical Science Research
Council under Research Grant GR/M08332, and by
the European Research Network on System Identi-
fication (ERNSI) under TMR contract ERB FMRX
CT98 0206.

References

[1] Chen H. and Maciejowski J.M., New Subspace
Identification Method for Bilinear Systems,
Technical Report CUED/F-INFENG/TR.357
Cambridge University Engineering Department,
1999.

[2] Chen H. and Maciejowski J.M., Subspace iden-
tification of combined deterministic-stochastic
bilinear systems, Submitted to IFAC Symp. on
System Identification, SYSID 2000, Santa Bar-
bara, June 2000.

[3] Chen H., Zinober A.S.I. and Ruan R., Strong
Consistency and Convergence Rate of Pa-

rameter Identification for Bilinear Systems,
Int.J.Control, 1996, vol. 63, No.5 pp. 907-919

[4] Chou C.T. and Maciejowski J.M., System Iden-
tification Using Balanced Parameterizations,
IEEE Trans. Auto. Contr., Vol. 42, No. 7. July,
1997 pp.956-974.

[5] Chui N.L.C. and Maciejowski J.M., Sub-
space Identification – a Markov parame-
ter approach, Submitted to IEEE Trans.
Auto. Contr.. Also Technical ReportCUED/F-
INFENG/TR.337, Cambridge University Engi-
neering Department, December, 1998.

[6] Favoreel W, De Moor B. and Van Overschee P.,
Subspace identification of bilinear systems sub-
ject to white inputs, Technical Report ESAT-
SISTA/TR 1996-53I, Katholieke Universiteit
Leuven, 1996.

[7] Favoreel W, De Moor B. and Van Overschee P.,
Subspace identification of Balanced determin-
istic bilinear systems subject to white inputs,
Proc. European Ccontrol Conf, Brussels, 1997.

[8] Favoreel W and De Moor B, Subspace identifica-
tion of bilinear systems, Proc. MTNS, Padova,
1998. pp. 787-790.

[9] Favoreel W, De Moor B. and Van Overschee P.,
Subspace identification of bilinear systems sub-
ject to white inputs, IEEE Trans. Auto. Contr.,
Vol. 44, No. 6, June 1999. pp. 1157–1165.

[10] Fnaiech F. and Ljung L., Recursive Identifica-
tion of Bilinear System, Int.J. Control, vol. 45,
pp. 453-470., 1987.

[11] Isidori, A, Nonlinear Control Systems (3rd ed),
Berlin: Springer-Verlag, 1995.

[12] Khatri C.G. and Rao C.R., Solutions to some
functional equations and their applications to
characterization of probability distributions,
Sankhya : The Indian J. Stat., series A, 30, pp.
167-180, 1968.

[13] Krener A.J., Bilinear and nonlinear realizations
of input-output maps. SIAM Journal on Con-
trol, vol. 13, pp.827-834., 1975.

[14] Larimore,W.E, System identification, reduced-
order filtering and modeling via canonical vari-
ate analysis, Proc. American Contr.Conf., San
Francisco, (1983).

[15] Suda N., Kodama S. and Ikeda M., Matrix The-
ory in Automatical Control, Japanese Automat-
ical Control Association, 1973.

[16] Van Overschee P. and De Moor B., N4SID: sub-
space algorithms of combined deterministic and
stochastic systems, Automatica, vol. 30, No. 1,
pp. 75-93, 1994

[17] Verhaegen,M, and Dewilde,P.M, Subspace
model identification, Parts 1 and 2, Int. J.
Contr., 56, 1187-1241, (1992).

5


