
SUBSPACE IDENTIFICATION METHOD FOR
COMBINED DETERMINISTIC-STOCHASTIC

BILINEAR SYSTEMS

Huixin Chen and Jan Maciejowski 1

Department of Engineering
University of Cambridge

Cambridge CB2 1PZ, U.K.

Abstract: In this paper, a ‘four-block’ subspace system identification method for
combined deterministic-stochastic bilinear systems is developed. Estimation of state
sequences, followed by estimation of system matrices, is the central component of
subspace identification methods. The prominent difference of our new approach is a
‘four-block’ arrangement of data matrices which leads to a linearization of the system
state equation, when written in block form. A major advantage of this approach, over
a previous bilinear subspace algorithm, is that the measured input is not restricted to
be white. We show that, providing a certain data-dependent eigenvalue condition is
met, our algorithm provides asymptotically unbiased estimates, and we indicate the
rate at which the bias decreases. Simulation results show that this algorithm requires
a smaller sample size than earlier algorithms (for comparable performance) and that
the computational complexity is significantly lower. Copyright c©2000 IFAC
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1. INTRODUCTION

There has been much study of the identification
problem of bilinear systems. A three-block subspace
identification method for deterministic bilinear sys-
tem is presented in (Chen and Maciejowski, 1999).
In this paper we present a very closely related
method for identifying a combined deterministic-
stochastic bilinear state-space model. A method for
subspace identification of combined deterministic-
stochastic bilinear systems subject to white noise in-
puts was derived in (Favoreel et al., 1996), (Favoreel
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et al., 1997), (Favoreel et al., 1999), which was the
first effort to use subspace methodology to identify
the state-space model of a bilinear system in the
stochastic case. A subspace identification algorithm
which can be used with a non-white input was
proposed in (Favoreel and De Moor, 1998), but it
results in biased estimates of the system. A ‘three-
block’ subspace identification algorithm is given in
(Chui and Maciejowski, 1998), which can remove
the effects of unmeasured noise sources and obtain
accurate estimates. In the linear system case, the
three-block algorithm is linked with the system’s
Markov parameters. Unfortunately, the realization



theory for bilinear systems is more complicated
than for linear systems. In our ‘four-block’ subspace
method for bilinear systems, the four-block data
matrix arrangement and the observation matrix
equation are used to linearise the system equation
in the block matrix form using linear and bilinear
algebra. This allows bilinear models to be obtained
from row and column spaces of certain matrices,
calculated from the input-output data by means of
some bilinear-algebraic operations. All the proofs
are omitted here, but can be found in (Chen and
Maciejowski, 2000).

2. NOTATIONS

The use of much specialised notation seems to be
unavoidable in the current context. Mostly we follow
the notation used in (Favoreel et al., 1999), (Chen
and Maciejowski, 1999), but we introduce all the
notation here for completeness.

We use ⊗ to denote the Kronecker product and
� the Khatri-Rao product of two matrices with
F ∈ Rt×p and G ∈ Ru×p defined in (Khatri and
Rao, 1968), (Suda et al., 1973):

F �G , [f1 ⊗ g1, f2 ⊗ g2, . . . , fp ⊗ gp]
+,⊕ and ∩ denote the sum, the direct sum and
the intersection of two vector spaces, ·⊥ denotes the
orthogonal complement of a subspace with respect
to the predefined ambient space, the Moore-Penrose
inverse is written as ·†, and the Hermitian as ·∗ .

In this paper we consider combined deterministic-
stochastic time-invariant bilinear system of the
form:

xt+1 =Axt +Nut ⊗ xt + But + wt

yt =Cxt +Dut + vt (1)

where xt ∈ Rn, yt ∈ Rl, ut ∈ Rm, and N =
[N1 N2 ...Nm] ∈ Rn×nm, Ni ∈ Rn×n (i = 1, ...,m).

The input ut is assumed to be independent of the
measurement noise vt and the process noise wt. The
covariance matrix of wt and vt is:

E

[(
wp
vp

)(
wq
vq

)T]
=
[
Q S

ST R

]
δpq ≥ 0

We assume that the sample size is Ñ , namely that
input-output data {u(t), y(t) : t = 0, 1, . . . , Ñ} are
available. For arbitrary t we define

Xt , [xt xt+1 ... xt+j−1] ∈ Rn×j

but for the special cases t = 0, t = k, t = 2k and
t = 3k we define, with some abuse of notation,

Xp , [x0 x1 ... xj−1] ∈ Rn×j

Xc , [xk xk+1 ... xk+j−1] ∈ Rn×j

Xf , [x2k x2k+1 ... x2k+j−1] ∈ Rn×j

Xr , [x3k x3k+1 ... x3k+j−1] ∈ Rn×j

where k is the row block size. The suffices p, c, f
and r are supposed to be mnemonic, representing
‘past’, ‘current’, ‘future’ and ‘remote future’ respec-
tively. This division of the state history into four
(overlapping) segments is the reason for referring
to our algorithm as a ‘four-block’ method. In the
deterministic case the ‘remote future’ segment is
not necessary, and a simpler ‘three-block’ method
results (Chen and Maciejowski, 1999).

We define Ut, Up, Uf , Ur, Yt, Yp, Yf , Yr, Wt, Up,
Wf , Wr, Vt, Vp, Vf , Vr, similarly. These matrices
will later be used to construct larger matrices with
a ‘generalised block-Hankel’ structure. In order to
use all the available data in these, the number of
columns j is such that Ñ = 3k + j − 1 and let
di = Σip=1(m + 1)p−1l, ei = Σip=1(m + 1)p−1m and
fk = ek + m

2 (m+ 1)k + l[(m+ 1)k − 1] + e2
k.

For arbitrary q and i ≥ q + 2, we define

Xq|q ,
(

Xq

Uq �Xq

)
∈ R(m+1)n×j

Xi−1|q ,
(

Xi−2|q
Ui−1 �Xi−2|q

)
∈ R(m+1)i−qn×j

Yq|q , Yq

Yi−1|q ,

 Yi−1

Yi−2|q
Ui−1 � Yi−2|q

 ∈ Rdi−q×j

U+
q|q ,Uq

U+
i−1|q ,

 U+
i−2

Ui−1

Ui−1 � U+
i−2|q

 ∈ R((m+1)i−q−1)×j

U++
q|q ,


Uq,1 � Uq

Uq,2 � Uq(2 : m, :)
Uq,3 � Uq(3 : m, :)

...
Uq,m � Uq,m

 ∈ R
m(m+1)

2 ×j

U++
i−1|q ,

(
U++
i−2|q

Ui−1 � U++
i−2|q

)
∈ R

m
2 (m+1)i−q×j



Uyi−1|q ,U
+
i−1|q � Yq

Uu,yi+k−1|k+q ,


Ui+k−1|k+q

U++
i+k−1|k+q

Uyi+k−1|k+q

U+
i+k−1|k+q � Ui−1|q


Ui−1|q,Wi−1|q and Vi−1|q and can be defined simi-
larly.

Remark 1. The meaning of U+
i−1|q is different

from that in (Favoreel et al., 1996). U++
i−1|q is newly

introduced here.

Xc ,X2k−1|k, X
f , X3k−1|2k, X

r , X4k−1|3k

Up ,Uk−1|0, U
c , U2k−1|k, U

f , U3k−1|2k

Up,y ,U+p � Yp, U c,y , U+c � Yc
Uf,y ,U+f � Yf , U r,y , U+r � Yr,

U c,u,y ,


U c

U++c

U c,y

U+c � Up

 , Uf,u,y ,


Uf

U++f

Uf,y

U+f � U c


U r, Y p, Y c, Y f , Y r,W c,W f ,W r, V c, V f , V r, U+c, U+f ,
U+r, U++c, U++f , U++r and U r,u,y can be de-
fined similarly. Finally, we denote by Up the space
spanned by all the rows of the matrix Up. That is,

Up := span{α∗Up, α ∈ Rkm}
Uc, Uf , Ur, Yp, Yc, Yf , Yr, Up, Yp, Uf , Yf , Up,u,y,
Uf,u,y etc are defined similarly.

3. ANALYSIS

Lemma 1. The system (1) can be rewritten in the
following matrix equation form:

Xt+1 =AXt +NUt �Xt +BUt +Wt

Yt =CXt +DUt + Vt (2)

Lemma 2. For j ≥ 0, and the block size k, we have

Xk−1+j|j =
(

Xj

U+
k−1+j|j �Xj

)
Lemma 3. For F,G,H, J of compatible dimensions,
F ∈ Rk×l, G ∈ Rl×m, H ∈ Rp×l, J ∈ Rl×m:

(FG⊗HJ) = (F ⊗H)(G⊗ J)

(FG�HJ) = (F ⊗H)(G� J)

Lemma 4. (Input-Output Equation). For the com-
bined deterministic-stochastic system (1) and j ≥ 0,
we have the following Input-Output Equation

Xk+j =4Xk Xk−1+j|j +4Uk Uk−1+j|j +4Wk Wk−1+j|j

Yk−1+j|j =LXk Xk−1+j|j + LUk Uk−1+j|j + LWk Wk−1+j|j

+LVk Vk−1+j|j

where

4Xn , [A4Xn−1, N14Xn−1, . . . , Nm4Xn−1]

4X1 , [A,N1, . . . , Nm]

4Un , [B,A4Un−1, N14Un−1, . . . , Nm4Un−1], 4U1 , B
4Wn , [In×n, A4Wn−1, N14Wn−1, . . . , Nm4Wn−1]

4W1 , In×n

LXk ,

C4Xk−1 0
LXk−1 0

0 LXk−1

 , LUk ,
D C4Uk−1 0

0 LUk−1 0
0 0 LUk−1


LWk ,

 0 C4Wk−1 0
0 LWk−1 0
0 0 LWk−1

 , LVk ,
 Il×l 0 0

0 LVk−1 0
0 0 LVk−1


with

LX1 , [C, 0l×m] , LU1 , D, LW1 , 0l×n, LV1 , Il×l

Lemma 5. For system (1), if

λ = max
j=0,...,Ñ

|eig(A+
n∑
i=1

uj,iNi)| < 1, (3)

then

Xc =E(Yc −DUc − Vc) + (I − EC)4UnUp + o(λk)

Xf =E(Yf −DUf − Vf ) + (I − EC)4UnU c + o(λk)

Xr =E(Yr −DUr − Vr) + (I − EC)4UnUf + o(λk)

where o(λk) is used to denote a matrix M , such that
‖M‖1 = o(λk).

Remark 2 This holds for any matrix E of compat-
ible dimensions. In particular, it holds for E = C†,
where CC† = I, and if l ≥ n, then I−C†C = 0 and
the expression become exact. In the sequel, we will
assume the Moore-Penrose pseudo-inverse is used.

Theorem 1. The system (1) can be written in the
following form if the condition (3) holds:



Y c =OkXc + T uk U c,u,y + T vk U+c � Vc
+LWk W c + LVk V c + o(λk) (4)

Y f =OkXf + T uk Uf,u,y + T vk U+f � Vf +

LWk W f + LVk V f + o(λk) (5)

Y r =OkXr + T uk U r,u,y + T vk U+r � Vr
+LWk W r + LVk V r + o(λk) (6)

Xf =FkXc + GukU c,u,y + GvkU+c � Vc
+4Wk W c + o(λk)

Xr =FkXf + GukUf,u,y + GvkU+f � Vf
+4Wk W f + o(λk)

whereOk, T uk , T vk ,Fk,Guk and Gvk are system-dependent
constant matrices.

We make the assumption that due to ergodicity and
stationarity of the variables, all the covariances used
in this paper can be estimated by replacing ensemble
means by time means. Therefore, we define the
expectation operator E is equivalent to the operator
Ej which is defined as follows:

E[•] = lim
j→∞

Ej [•] = lim
j→∞

1
j

j∑
k=0

[•]

The orthogonal projection operator ΠBA is defined
as in (Favoreel et al., 1996): ΠBA , ABT (BBT )†B

Theorem 2. If the linear part of the system (1) is
observable and 

Y c

U c,u,y

Uf,u,y

U r,u,y

 (7)

is a full row rank matrix, denoting S := Yc+Uc,u,y+
Uf,u,y + Ur,u,y and R = ΠSYf + Uf,u,y, then

ΠR⊥ΠSYr = T uk ΠR⊥U
r,u,y + o(λk) (8)

4. ALGORITHM

1. Decompose Y r into OkXr and T uk U r,y,u using
orthogonal projection: from (8) of Theorem 2, esti-
mated T uk

T̂ uk = (ΠR⊥ΠSYr)(ΠR⊥U r,u,y)† (9)

2. Obtain the SVD decomposition and partition as[
ΠSY2k−1|k ΠSY2k|k+1

]
− T̂ uk

[
Uu,y2k−1|k U

u,y
2k|k+1

]
=: ΓΣΩ∗ =

[
Γ1 Γ2

] [Σ1 0
0 Σ2

] [
Ω∗1
Ω∗2

]
Since we expect

ΓΣΩ∗ = Γ1Σ1Ω∗1 = Ok [Xk−1 Xk]

from (4-6) (rank(Σ1) = n and rank(Σ2) = 0), form
the estimates Ôk = Γ1Σ1/2

1 and [X̂k−1 X̂k] =
Σ1/2

1 Ω∗1, retaining only n̂ significant singular values
in Σ1. (Ôk is not needed later.)

3. Estimate the parameters A,B,C,D,N on the
basis of equation (2), as

[
X̂k

Yk−1

]
=
[
A N B
C 0 D

] X̂k−1

Uk−1 � X̂k−1

Uk−1

 (10)

in a least-squares sense.

Remark 3 Other estimates could be obtained by
using other right-inverses in steps 1 and 3, and
another factorisation in step 2. In (Favoreel et
al., 1999) it is suggested that constrained least-
squares could be used in step 3, because of the
known structure of the solution. Our initial simu-
lation experience is that this does not have much
effect on the estimated eigenvalues of matrix A and
N .

Estimate the covariance matrix by calculating

[
εw
εv

]
=
[
X̂k+1

Yk

]
−
[
Â N̂ B̂

Ĉ 0 D̂

] X̂k

Uk � X̂k

Uk


[
Q̂ Ŝ

ŜT R̂

]
= Ej

[(
εw
εv

)(
εw
εv

)∗]

5. EXAMPLES

In this section, two simple second order bilinear sys-
tems introduced in (Favoreel et al., 1996), (Favoreel
et al., 1999) are given to see how the new algorithm
works and how it compares with the algorithm in
(Favoreel et al., 1996), (Favoreel et al., 1999).

Example 1. The system matrices are



A =
(

0 0.5
−0.5 0

)
, B =

(
1
1

)
, C =

(
1 1

)
,

D = 2, N1 =
(

0.4
0

)
, N2 =

(
0

0.3

)
and the noise covariance matrices

Q =
(

0.16 0
0 0.04

)
, R = 0.09, S =

(
0
0

)
In (Favoreel et al., 1996), the input is a white noise
series and k = 3, j = 8191. In both Table 1 and
Table 2, the system input of case I has a uniform
distribution with mean value zero and variance 1
and λ = 0.7809. In case II, we adjust the system
noise as follows:

Q =
(

0.0016 0
0 0.0004

)
, R = 0.0009, S =

(
0
0

)
to increase the noise ratio between the input signal
and system noise. The estimation results are also
given in Table 1. It is shown that the greater the
ratio, the better the convergence. For cases III and
IV, we introduce a colored noise input signal z,
with mean 0, standard deviation 1.1664, λ = 0.7906
and rq = Ezkzk+q = 0.5q, q = 0, 1, 2, ... and the
system noise is taken the same as in cases I and II
respectively. The simulation results are also shown
in Table 1. The values k = 2, j = 595 were used in
all our simulations. These compare favourably with
the values k = 3, j = 8191 used by (Favoreel et
al., 1996) for the bilinear N4SID algorithm.

Table 1. Example 1: Results with different
inputs, noise ratios and algorithms

eig(A) eig(N)

True ±0.5i 0.4, 0.3
N4SID −0.0027 ± 0.4975i 0.4011, 0.3055
Case I −0.0078 ± 0.4864i 0.4128, 0.3035
Case II 0.0000± 0.5000i 0.4005, 0.3030
Case III 0.0089± 0.4945i 0.3906, 0.3149
Case IV 0.0005± 0.4980i 0.4006, 0.2976

The simulation results with different sample sizes
for cases I and II are given in Table 2, to show the
relationship between the accuracy and the sample
size.

Example 2. The system matrices and the noise
covariance matrices are

Table 2. Example 1: Effect of sample size

eig(A) eig(N)

True ±0.5i 0.4, 0.3
j=95 (I) −0.0027 ± 0.5018i 0.3729, 0.3473
j=95 (II) 0.0059± 0.4982i 0.4026, 0.3095
j=295 (I) 0.0074± 0.4966i 0.4298, 0.3022
j=295 (II) 0.0031± 0.5008i 0.4012, 0.2988
j=595 (I) 0.0078± 0.4864i 0.4128, 0.3035
j=595 (II) 0.0000± 0.5000i 0.4005, 0.3030

A=
(

0.5 0
0 0.3

)
, B =

(
0 1
−1 0

)
, C =

(
1 0
0 2

)
D=

(
1 0
0 1

)
, N1 =

(
0.6 0
0 0.4

)
, N2 =

(
0.2 0
0 0.5

)
Q=

(
0.01 0

0 0.01

)
, R =

(
0.01 0

0 0.01

)
, S =

(
0 0
0 0

)
The input we selected here has a two-dimensional
uniform distribution. Table 3 shows the true and
estimated eigenvalues of A and N , as found by
(Favoreel et al., 1999) using the bilinear N4SID
algorithms with k = 2, j = 4095, and using our
new algorithm with k = 2, j = 597, λ = 0.7803,
and solving equation (10) using both ordinary least-
squares (Model I) and constrained least-squares
(Model II).

Table 3. Example 2: Comparisons with
different algorithms.

eig(A) eig(N1) eig(N2)

True 0.5, 0.3 0.6, 0.4 0.2, 0.5
N4SID 0.5001 0.5994 0.5016

(j=4095) 0.2979 0.4020 0.1914
Model I 0.4998 0.5998 0.5000
(j=597) 0.3002 0.4000 0.2001
Model II 0.5004 0.5998 0.4999
(j=597) 0.2990 03997 0.1997

It is seen that the eigenvalues of the system matrices
of the model and the original system are very close
to each other. From Table 1 and Table 3, it is seen
that the algorithm presented here has a quicker
convergence rate and smaller sample size require-
ment compared to the bilinear N4SID algorithm.
As stated in (Favoreel et al., 1996), (Favoreel et
al., 1999), the noise covariance estimates are not
very accurate since the k-parameter is too small
(k = 2).

Remark 4 Our new algorithm has considerably
lower computational complexity than the one given
in (Favoreel and De Moor, 1998). The major compu-
tational load is involved in finding the right-inverse
in (9). The matrix involved here has dimensions
fk × j, where fk = ek + (m/2)(m + 1)k + l[(m +
1)k − 1] + e2

k. For Example 2, with k = 2, we



have fk = 136. In (Favoreel and De Moor, 1998) ,
equation (9), the matrix whose right-inverse has to
be found has dimensions (dk + 2ek + ekdk + e2

k)× j.
The row dimension for both algorithms increases
exponentially with k. For Example 2 with k = 2
this row dimension is 152. Furthermore, since our
algorithm seems to require much smaller values of j
for comparable performance, the column dimension
is also much smaller for our algorithm in practice.

6. CONCLUSION

A new subspace identification algorithm has been
presented for the identification of a general com-
bined deterministic-stochastic bilinear system. The
main result in this paper is that the system input
does not have to be white noise, which is the main
restriction and assumption in the current bilinear
subspace system identification algorithms. Simula-
tion results and comparisons with subspace identi-
fication algorithm have been given.
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