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Abstract

Several subspace algorithms for the identification of bi-
linear systems have been proposed recently. A key prac-
tical problem with all of these is the very large size of
the data-based matrices which must be constructed in
order to ‘linearise’ the problem and allow parameter
estimation essentially by regression. Favoreel et al [5]
proposed an algorithm which gave unbiased results only
if the measured input signal was white. Favoreel and De
Moor [6] suggested an alternative algorithm for general
input signals, but which gave biased estimates. Chen
and Maciejowski proposed algorithms for the determin-
istic [2] and combined deterministic-stochastic [3] cases
which give asymptotically unbiased estimates with gen-
eral inputs, and for which the rate of reduction of bias
can be estimated. The computational complexity of
these algorithms was also significantly lower than the
earlier ones, both because the matrix dimensions were
smaller, and because convergence to correct estimates
(with sample size) appears to be much faster. In this
paper, we reduce the matrix dimensions further, by
making different choices of subspaces for the decom-
position of the input-output data. In fact we propose
two algorithms: an unbiased one for the case of l ≥ n,
(where l: number of outputs, n: number of states),
and an asymptotically unbiased one for the case l < n.
In each case, the matrix dimensions are smaller than
in earlier algorithms. Even with these improvements,
the dimensions remain large, so that the algorithms are
currently practical only for low values of n.

∗Corresponding author

1 Introduction

Several subspace algorithms for the identification of bi-
linear systems have been proposed recently. A key prac-
tical problem with all of these is the very large size of
the data-based matrices which must be constructed in
order to ‘linearise’ the problem and allow parameter
estimation essentially by regression.

Favoreel et al [5] proposed a ‘bilinear N4SID’ algorithm
which gave unbiased results only if the measured in-
put signal was white. Favoreel and De Moor [6] sug-
gested an alternative algorithm for general input sig-
nals. Verdult and Verhaegen [11] pointed out that this
algorithm gives biased results, and proposed an alter-
native algorithm, which involved a nonlinear optimiza-
tion step. Chen and Maciejowski proposed algorithms
for the deterministic [2] and combined deterministic-
stochastic [3] cases which give asymptotically unbiased
estimates with general inputs, and for which the rate
of reduction of bias can be estimated. The computa-
tional complexity of these algorithms was also signif-
icantly lower than the earlier ones, both because the
matrix dimensions were smaller, and because conver-
gence to correct estimates (with sample size) appears
to be much faster.
In this paper, we reduce the matrix dimensions further
for the combined deterministic-stochastic case, by mak-
ing different choices of subspaces for the decomposition
of the input-output data. In fact we propose two al-
gorithms: an unbiased ‘three-block’ algorithm for the
case of l ≥ n, (where l is the number of outputs and n
is the number of states), and an asymptotically unbi-
ased ‘four-block’ algorithm for the case l < n. In each
case, the matrix dimensions are smaller than in earlier
algorithms. Even with these improvements, the dimen-
sions remain large, so that the algorithms are currently
practical only for low values of n. We include three
examples, which illustrate the cases (l = 1, n = 2),
(l = 2, n = 2), (l = 1, n = 3).

The outline of the paper is as follows. Some notations
for block data matrices are introduced in section 2.
Some important new notations (compared with [3]) are
introduced. Some theoretical results is given in section
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3. The three block algorithm for the case l ≥ n is in-
troduced in section 4. The four block algorithm for the
case l < n is presented in section 5. Section 6 contains
the examples. All proofs are omitted here, but can be
found in [1].

2 Notation

The use of much specialised notation seems to be un-
avoidable in the current context. Mostly we follow the
notation used in [7, 2], but we introduce all the notation
here for completeness.

We use ⊗ to denote the Kronecker product and � the
Khatri-Rao product of two matrices with F ∈ Rt×p

and G ∈ Ru×p defined in [8, 10]:

F �G , [f1 ⊗ g1, f2 ⊗ g2, . . . , fp ⊗ gp]

+,⊕ and ∩ denote the sum, the direct sum and the
intersection of two vector spaces, ·⊥ denotes the or-
thogonal complement of a subspace with respect to the
predefined ambient space, the Moore-Penrose inverse is
written as ·†, and the Hermitian as ·∗ .

In this paper we consider combined deterministic-
stochastic time-invariant bilinear system of the form:

xt+1 = Axt +Nut ⊗ xt +But + wt
yt = Cxt +Dut + vt (1)

where xt ∈ Rn, yt ∈ Rl, ut ∈ Rm, and N =
[N1 N2 ...Nm] ∈ Rn×nm, Ni ∈ Rn×n (i = 1, ...,m).
The input ut is assumed to be independent of
the measurement noise vt and the process noise wt.
The covariance matrix of wt and vt is:

E
[(

wp
vp

)(
wq
vq

)T]
=
[
Q S
ST R

]
δpq ≥ 0

We assume that the sample size is Ñ , namely that
input-output data {u(t), y(t) : t = 0, 1, . . . , Ñ} are
available. For arbitrary t we define

Xt , [xt xt+1 ... xt+j−1] ∈ Rn×j

but for the special cases t = 0 and t = k we define, with
some abuse of notation,

Xp , [x0 x1 ... xj−1] ∈ Rn×j

Xc , [xk xk+1 ... xk+j−1] ∈ Rn×j

Xf , [x2k x2k+1 ... x2k+j−1] ∈ Rn×j

Xr , [x3k x3k+1 ... x3k+j−1] ∈ Rn×j

where k is the row block size. The suffices p, c, f and
r are supposed to be mnemonic, representing ‘past’,
‘current’, ‘future’ and ‘remote future’ respectively. We
define Ut, Up, Uf , Ur, Yt, Yp, Yf , Yr, Wt, Up, Wf ,
Wr, Vt, Vp, Vf , Vr, similarly. These matrices will later

be used to construct larger matrices with a ‘generalised
block-Hankel’ structure. In order to use all the available
data in these, the number of columns j is such that
Ñ = 3k+ j− 1 in the case of l ≥ n and Ñ = 4k+ j − 1
in the case of l < n. and let di = Σip=1(m+1)p−1l, ei =
Σip=1(m+1)p−1m, fk = ek+ m

2 (m+1)k+l[(m+1)k−1]
and gk = ek + e2

k.

For arbitrary q and i ≥ q + 2, we define

Xq|q ,
(

Xq
Uq �Xq

)
∈ R(m+1)n×j

Xi−1|q ,
(

Xi−2|q
Ui−1 �Xi−2|q

)
∈ R(m+1)i−qn×j

Yq|q , Yq

Yi−1|q ,
(

Yi−1
Yi−2|q

Ui−1 � Yi−2|q

)
∈ Rdi−q×j

U+
q|q , Uq

U+
i−1|q ,

 U+
i−2

Ui−1

Ui−1 � U+
i−2|q

 ∈ Rei−q×j

U++
q|q ,


Uq,1 � Uq

Uq,2 � Uq(2 : m, :)
Uq,3 � Uq(3 : m, :)

...
Uq,m � Uq,m

 ∈ R
m(m+1)

2 ×j

U++
i−1|q ,

(
U++
i−2|q

Ui−1 � U++
i−2|q

)
∈ R

m
2 (m+1)i−q×j

Uui+k−1|q+k ,
(

Ui+k−1|q+k
U+
i+k−1|q+k � Ui−1|q

)
Uyi−1|q , U+

i−1|q � Yq

Ũu,yi+k−1|k+q ,

 Ui+k−1|k+q

U++
i+k−1|k+q

Uyi+k−1|k+q



Xc , X2k−1|k, X
f , X3k−1|2k, X

r , X4k−1|3k

Up , Uk−1|0, U
c , U2k−1|k, U

f , U3k−1|2k

Up,y , U+p � Yp, U c,y , U+c � Yc
Uf,y , U+f � Yf ,

Ũp,u,y ,
(

Up

U++p

Up,y

)
, Ũ c,u,y ,

(
U c

U++c

U c,y

)

U c,u ,
(

U c

U+c � Up
)
, Uf,u ,

(
Uf

U+f � U c
)

U r, Y p, Y c, Y f , Y r, W c, W f , W r, V c, V f , V r, U+c,
U+f , U+r, U++c, U++f , Ui−1|q, Wi−1|q, Vi−1|q, Ũf,u,y
and U r,u can be defined similarly.

2



Remark 1. The meaning of U+
i−1|q is different from

that in [4]. U++
i−1|q, U

u
i+k−1|q+k, Uyi−1|q, Ũ

u,y
i+k−1|k+q and

U c,u etc are newly introduced in this paper.

Finally, we denote by Up the space spanned by all the
rows of the matrix Up. That is,

Up := span{α∗Up, α ∈ Rkm}

Uc, Uf , Ur, Yp, Yc, Yf , Yr, Up, Yp, Uf , Yf , Ũp,u,y,
Ũf,u,y and Ur,u etc are defined similarly.

3 Analysis

Lemma 1 The system (1) can be rewritten in the fol-
lowing matrix equation form:

Xt+1 = AXt +NUt �Xt +BUt +Wt

Yt = CXt +DUt + Vt (2)

Lemma 2 For j ≥ 0, and the block size k, we have

Xk−1+j|j =
(

Xj

U+
k−1+j|j �Xj

)
Lemma 3 For F,G,H, J of compatible dimensions,
F ∈ Rk×l, G ∈ Rl×m, H ∈ Rp×l, J ∈ Rl×m:

(FG⊗HJ) = (F ⊗H)(G⊗ J)
(FG�HJ) = (F ⊗H)(G� J)

Lemma 4 (Input-Output Equation) For the com-
bined deterministic-stochastic system (1) and j ≥ 0, we
have the following Input-Output Equation

Xk+j+1 = 4Xk Xk+j|j−1 +4Uk Uk+j|j−1

+4Wk Wk−1+j|j

Yk+j|j = LXk Xk+j|j−1 + LUk Uk+j|j−1

+LWk Wk+j|j−1 + LVk Vk+j|j−1

where

4Xn , [A4Xn−1, N14Xn−1, . . . , Nm4Xn−1]

4X1 , [A,N1, . . . , Nm]

4Un , [B,A4Un−1, N14Un−1, . . . , Nm4Un−1]

4U1 , B

4Wn , [In×n, A4Wn−1, N14Wn−1, . . . , Nm4Wn−1]

4W1 , In×n

LXk ,


C4Xk−1 0 ... 0
LXk−1 0 ... 0

0 LXk−1 ... 0
...

...
. . .

...

0 0
... LXk−1



LUk ,


D C4Uk−1 0 . . . 0
0 LUk−1 0 . . . 0
0 0 LUk−1 . . . 0
...

...
...

. . .
...

0 0 0
... LUk−1



LWk ,


0 C4Wk−1 0 . . . 0
0 LWk−1 0 . . . 0
0 0 LWk−1 . . . 0
...

...
...

. . .
...

0 0 0
... LWk−1



LVk ,


Il×l 0 . . . 0

0 LVk−1 . . . 0
...

...
. . .

...
0 0 . . . LVk−1


with

LX1 , [C, 0l×m] , LU1 , D, LW1 , 0l×n, LV1 , Il×l

Lemma 5 For system (1), if

λ = max
j=0,...,Ñ

|σ(A+
n∑
i=1

uj,iNi)| < 1, (3)

then

Xt = 4UnUt−1|t−k +4Wn Wt−1|t−k + o(λk)

where σ is the maximum sigular value of a matrix and
o(λk) is used to denote a matrix M , such that ‖M‖1 =
o(λk).

4 Three Block Algorithm

In this section, a three-block algorithm is set up for the
case of l ≥ n. Here only data blocks ‘p’, ‘c’ and ‘f’ are
used (hence ‘3-block’) and Ñ = 3k + j − 1.

Theorem 1 (Three Block Form Equation) The
system (1) can be written in the following ‘three block’
form:

Y p = OkXp + T uk Ũp,u,y

+T vk U+p � Vp + LWk W p + LVk V p (4)

Y c = OkXc + T uk Ũ c,u,y

+T vk U+c � Vc + LWk W c + LVk V c (5)

Y f = OkXf + T uk Ũf,u,y

+T vk U+f � Vf + LWk W f + LVk V f (6)

Xc = FkXp + Guk Ũp,u,y + GvkU+p � Vp +4Wk W p

Xf = FkXc + Guk Ũ c,u,y + GvkU+c � Vc +4Wk W f
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where Ok, T uk , T vk ,Fk,Guk and Gvk are system-dependent
constant matrices.

Theorem 2 If the linear part of the system (1) is ob-
servable and  Y p

Ũp,u,y

Ũ c,u,y

Ũf,u,y

 (7)

is a full row rank matrix, then Suppose condition (7)
holds. Denote S̃ = Yp + Ũp,u,y + Ũc,u,y + Ũf,u,y and
R̃ = ΠS̃Yc + Ũc,u,y, then,

ΠR̃⊥ΠS̃Y
f = T uk ΠR̃⊥Ũ

f,u,y (8)

The orthogonal projection operator Π is defined as in [4]

Algorithm:
1. Decompose Y f into OkXf and T uk Ũf,u,y using or-
thogonal projection: from (8) of Theorem 2, estimate
T uk as

T̂ uk = (ΠR̃⊥ΠS̃Y
f )(ΠR̃⊥ Ũ

f,u,y)† (9)

2. Obtain the SVD decomposition and partition as[
ΠS̃Y3k−1|2k ΠS̃Y3k|2k+1

]
− T̂ uk

[
Ũu,y3k−1|2k Ũ

u,y
3k|2k+1

]
=: ΓΣΩ∗ = [ Γ1 Γ2 ]

[
Σ1 0
0 Σ2

] [
Ω∗1
Ω∗2

]
Since we expect

ΓΣΩ∗ = Γ1Σ1Ω∗1 = Ok [X3k−1 X3k]

from (4-6), (rank(Σ1) = n and rank(Σ2) = 0), form the
estimates Ôk = Γ1Σ1/2

1 and [X̂3k−1 X̂3k] = Σ1/2
1 Ω∗1,

retaining only n̂ significant singular values in Σ1. (Ôk
is not needed later.)

3. Estimate the parameters A,B,C,D,N on the basis
of equation (2), by solving[

X̂3k
Y3k−1

]
=
[
A N B
C 0 D

] [ X̂3k−1

U3k−1 � X̂3k−1
U3k−1

]
(10)

in a least-squares sense.

4. Estimate the covariance matrix by calculating[
εw
εv

]
=

[
X̂3k
Y3k−1

]
−
[
Â N̂ B̂
Ĉ 0 D̂

] [ X̂3k−1

U3k−1 � X̂3k−1
U3k−1

]

then estimating Q, S, R from the sample covariance of
[εTw, ε

T
v ]T .

5 Four Block Algorithm

In this section, a ‘four-block’ algorithm is proposed for
the case l < n. Now all four data blocks: ‘p’,‘c’, ‘f’ and
‘r’ are needed (Up is involved in the definition of U c,u

etc). Here Ñ = 4k + j − 1.

Theorem 3 (Four Block Form Equation) The
system (1) can be written in the following form:

Y c = Ok,1Xc + T uk,1U c,u + T vk,1U+c � Vc
T wk,1U+c �W p + LWk W c + LVk V c + o(λk)

Y f = Ok,1Xf + T uk,1Uf,u + T vk,1U+f � Vf
T wk,1U+f �W c + LWk W f + LVk V f + o(λk)

Y r = Ok,1Xr + T uk,1U r,u + T vk,1U+r � Vr
T wk,1U+r �W f + LWk W r + LVk V r + o(λk)

Xf = Fk,1Xc + Guk,1U c,u + Gvk,1U+c � Vc
Gwk,1U+c �W p +4Wk,1W c + o(λk)

Xr = Fk,1Xf + Guk,1Uf,u + Gvk,1U+f � Vf
Gwk,1U+f �W c +4Wk,1W f + o(λk)

where Ok,1, T uk,1, T vk,1, T wk,1,Fk,1,Guk,1,Gwk,1 and Gvk,1 are
system-dependent constant matrices.

Remark 3 This differs from Theorem 1 of [3] by the
use of U c,u instead of U c,u,y, Uf,u instead of Uf,u,y, and
U r,u instead of U r,u,y.

Theorem 4 Suppose that the linear part of the system
(2) is observable and Y c

U c,u

Uf,u

U r,u

 (11)

is a full row rank matrix. Denote S1 = Yc + Uc,u +
Uf,u + Ur,u and R1 = ΠS1Yf + Uf,u. Then

ΠR⊥1 ΠS1Yr = T uk,1ΠR⊥1 U
r,u + o(λk) (12)

Algorithm:
1. Decompose Y r into Ok,1Xr and T uk,1U r,u using or-
thogonal projection: from (12) of Theorem 4, estimate
T uk,1 as

T̂ uk,1 = (ΠR⊥1 ΠS1Yr)(ΠR⊥1 U
r,u)† (13)

2. Obtain the SVD decomposition and partition ac-
cordingly by selecting a model order as shown in the
three-block algorithm.[

ΠS1Y4k−1|3k ΠS1Y4k|3k+1

]
−T̂ uk,1

[
Uu4k−1|3k U

u
4k|3k+1

]
=: ΓΣΩ∗ = [ Γ1 Γ2 ]

[
Σ1 0
0 Σ2

] [
Ω∗1
Ω∗2

]
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3. Estimate the parameters A,B,C,D,N,Q, S,R as
in steps 3 and 4 of the three-block algorithm in the
previous section.

Remark 4 The ‘full row rank’ requirement in Theo-
rems 2 and 4 can only be met if k ≥ n.

Remark 5 We envisage that one would usually start by
using the ‘four-block’ algorithm. If the singular values
indicated that l ≥ n might be a possibility, then one
could try the ‘three-block’ algorithm.

6 Examples

The first two examples are taken from [4, 7], respec-
tively.

Example 1. The true system is

A =
(

0 0.5
−0.5 0

)
, B =

(
1
1
)
, C = ( 1 1 ) ,

D = 2, N1 =
(

0.4
0
)
, N2 =

(
0

0.3
)

and the noise covariance matrices are

Q =
(

0.16 0
0 0.04

)
, R = 0.09, S =

(
0
0
)

(14)

Since l < n, the four-block algorithm is applied. In [4],
the input was white noise and k = 3, j = 8191 were
used. In the cases of I and II, the system input is a
uniform distribution with mean value 0, variance 1, and
λ = 0.7809. Case I is for the system noise (14). For
case II we increased the signal to noise ratio:

Q =
(

0.0016 0
0 0.0004

)
, R = 0.0009, S =

(
0
0
)

(15)

For cases III and IV, we used a coloured noise input
signal u with mean 0, standard deviation 1.1664, λ =
0.7906 and rq = Eukuk+q = 0.5q, q = 0, 1, 2, . . . . Case
III had noise covariances (14) and case IV had noise
covariances (15). For all the cases I–IV we used j = 595
with our new algorithm. The results are shown in Table
1.

eig(A) eig(N)
True ±0.5i 0.4, 0.3

N4SID −0.0027± 0.4975i 0.4011, 0.3055
Case I −0.0076± 0.4960i 0.3838, 0.2829
Case II 0.0000± 0.5000i 0.4005, 0.3030
Case III 0.0044± 0.4847i 0.4048, 0.2688
Case IV 0.0089± 0.4945i 0.3906, 0.3149

Table 1: Example 1: Results with different inputs, noise
ratios and algorithms

Example 2. The true system is defined by:

A =
(

0.5 0
0 0.3

)
, B =

(
0 1
−1 0

)
, C =

(
1 0
0 2

)

D = I, N1 = diag[0.6, 0.4], N2 = diag[0.2, 0.5], Q =
R = 0.01I, S = 0. Now l = n, so the three-block al-
gorithm is applied. The input was a two-dimensional
uniform distribution notation for cases V and VI and
coloured noise input u with Euiui+q = 0.9iI2 for cases
VII and VIII, with Ñ = 1000, k = 2 in all cases. In
cases V and VII, ordinary least-squares was used in
solving (10), while in cases VII and VIII a constrained
LS method was used, to take account of the known
structure of the solution (the zero block). Table 2 sum-
marises the results, including a comparison with the
results obtained in [7], where Ñ = 4095 and k = 2 were
used.

eig(A) eig(N1) eig( N2)
True 0.5, 0.3 0.6, 0.4 0.2, 0.5

N4SID 0.5001 0.4020 0.1914
(Ñ = 4095) 0.2979 0.5994 0.5016

case V 0.4936 0.6020 0.5030
(Ñ = 1000) 0.3022 0.4124 0.1965

case VI 0.5020 0.5990 0.4903
(Ñ = 1000) 0.3006 0.4028 0.2045

case VII 0.5002 0.5997 0.5005
(Ñ = 1000) 0.3009 0.4003 0.1996
case VIII 0.5000 0.6000 0.5009

(Ñ = 1000) 0.3011 0.4004 0.2000

Table 2: Example 2: Comparisons with different algo-
rithms, LS and constrained LS

Example 3. The true system is:

A =
( 0 0.5 0
−0.5 0 0

0 0 0.4

)
, B =

( 1
1
1

)
, C = BT ,

D = 3, N =
( 0.5 0 0

0 −0.2 0
0 0 0.2

)
and the noise is the same as (15). The four-block algo-
rithm is used, since l < n. Here, a coloured input with
mean 0, variance 0.01, Eukuk+q = 0.5q and λ = 0.8689
was used. Results with different block and sample sizes
are given in Table 3.

(k, Ñ) eig(A) eig(N)
True ±0.5i, 0.4 0.5, ±0.2

(3,800) 0.00± 0.49i, 0.29 0.47, 0.17, -0.08
(4,800) −0.01± 0.49i,0.41 0.47, 0.22, -0.12
(3,1200) 0.00± 0.50i, 0.40 0.49, 0.19, -0.09
(4,1200) 0.00± 0.50i,0.40 0.48, 0.22, -0.20
(3,1500) 0.00± 0.50i, 0.40 0.49, 0.18, -0.12
(4,1500) 0.00± 0.50i, 0.40 0.51, 0.19, -0.19

Table 3: Example 3: Effect of sample size and block
size
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Remark 6 Our new algorithm has considerably lower
computational complexity than the algorithms pro-
posed in [6] and [3]. The major computational load
is involved in finding the right-inverse in (9) and(13).
The row dimensions of the relevant matrices which ap-
pear in the algorithms presented here, in [6], and in [3],
are shown in Table 4 for the three examples. The algo-
rithm presented in this paper is denoted as ‘Algorithm
I’, where the row dimension is gk = ek + e2

k (l < n) for
Examples 1 and 3, and fk = ek+(m/2)(m+1)k+l[(m+
1)k−1] (l = n) for Example 2. The algorithm of the one
in [3] is denoted as ‘Algorithm II’; in this case the row
dimension is ek + (m/2)(m+ 1)k + l[(m+ 1)k − 1] + e2

k.
For the bilinear N4SID algorithm of [6] the row dimen-
sion is (dk + 2ek + ekdk + e2

k). In Table 4 it is assumed
that k = 2 for examples 1 and 2, and k = 3 for example
3.

Dimensions Algorithm I Algorithm II N4SID
Example 1 12 17 27
Example 2 33 97 152
Example 3 56 67 119

Table 4: Comparison of dimensions of matrices for Ex-
amples 1–3 and various algorithms

7 Conclusion

A new subspace identification algorithm which consists
of two sub-algorithms is proposed for the identification
of bilinear systems.

The main advantage of this algorithm over earlier ones
is that the computational complexity is lower, since the
matrices involved are of smaller dimensions.
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