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Describing function
Detects limit cycles in nonlinear feedback
systems.

Predicts amplitude, frequency and stability of
limit cycle.

Approximate but reliable (usually).

Relies on alow-pass assumption.

Generalises Nyquist stability theorem.
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Nonlinear feedback system

r(t)

−
e(t) u(t) y(t)f(·) g(s)

NONLINEAR LINEAR

Assumee(t) = E sin(ωt), andr(t) ≡ 0.
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Nonlinear feedback system

r(t)

−
e(t) u(t) y(t)f(·) g(s)

NONLINEAR LINEAR

Assumee(t) = E sin(ωt), andr(t) ≡ 0.

u(t) is periodic — has Fourier series.

Assumeg(s) is low-pass — y(t) has first
harmonic only.

But y(t) = −e(t) — harmonic balance.
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u(t) = U0 +
∞
∑

k=1

(Uk sin(kωt) + Vk cos(kωt)).
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u(t) = U0 +
∞
∑

k=1

(Uk sin(kωt) + Vk cos(kωt)).

U1 =
ω

π

∫ 2π/ω

0

f(E sinωt) sinωt dt

=
1

π

∫ 2π

0

f(E sin θ) sin θ dθ
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u(t) = U0 +
∞
∑

k=1

(Uk sin(kωt) + Vk cos(kωt)).

U1 =
ω

π

∫ 2π/ω

0

f(E sinωt) sinωt dt

=
1

π

∫ 2π

0

f(E sin θ) sin θ dθ

V1 =
1

π

∫ 2π

0

f(E sin θ) cos θ dθ.
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Harmonic balance
Suppose that

u(t) ≈ U1 sin(ωt) + V1 cos(ωt) = Im(U1 + jV1)e
jωt
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Harmonic balance
Suppose that

u(t) ≈ U1 sin(ωt) + V1 cos(ωt) = Im(U1 + jV1)e
jωt

In steady-state:

y(t) = Im[g(jω)(U1 + jV1)e
jωt]

Lent 2011 4F2: Nonlinear Systems and Control, Lectures 4–5 – p. 5/20



Harmonic balance
Suppose that

u(t) ≈ U1 sin(ωt) + V1 cos(ωt) = Im(U1 + jV1)e
jωt

In steady-state:

y(t) = Im[g(jω)(U1 + jV1)e
jωt]

But

0 ≡ y(t) + e(t)

⇒ 0 ≡ Im[(g(jω)(U1 + jV1) + E)ejωt] = 0

⇒ 0 = g(jω)(U1 + jV1) + E.
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Describing function
Define

N(E) =
U1 + jV1

E
.
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Describing function
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N(E) =
U1 + jV1

E
.

Then
0 = g(jω)(U1 + jV1) + E

is the same as

g(jω) =
−1

N(E)
.

Lent 2011 4F2: Nonlinear Systems and Control, Lectures 4–5 – p. 6/20



Describing function
Define

N(E) =
U1 + jV1

E
.

Then
0 = g(jω)(U1 + jV1) + E

is the same as

g(jω) =
−1

N(E)
.

Think of N(E) asequivalent linear gain.
Compare with Nyquist:g(jω) = −1

k .
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Graphical interpretation

Re

Im

g(jω)

−1
N(E)

Arrows denote
direction of
increasingω and
E
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Stability of limit cycle

ReRe

ImIm

g(jω)g(jω)

−1
N(E)

−1
N(E)

Prediction: STABLE Prediction: UNSTABLE
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DF of relay nonlinearity

f(e) = sign(e)

sign(sin(ωt)) is odd. HenceV1 = 0.

U1 =
1

π

∫ 2π

0

sign(E sin θ) sin θ dθ,

=
1

π

∫ π

0

sin θ dθ − 1

π

∫ 2π

π

sin θ dθ

=
4

π
.

Hence

N(E) =
4

πE
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DF of polynomial nonlinearity

f(e) = en (n odd)

sinn θ =
2

2n

n−1

2
∑

k=0

(−1)(
n−1

2
−k)

(

n

k

)

sin([n− 2k]θ)

Last term,k = n−1
2 , gives fundamental component.
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DF of polynomial nonlinearity

f(e) = en (n odd)

sinn θ =
2

2n

n−1

2
∑

k=0

(−1)(
n−1

2
−k)

(

n

k

)

sin([n− 2k]θ)

Last term,k = n−1
2 , gives fundamental component.

Example,n = 3: (Maths Databook)

(E sin θ)3 = E3

(

3

4
sin θ − 1

4
sin(3θ)

)

soU1 =
3E3

4 , V1 = 0, henceN(E) = 3E2

4 .
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Piecewise-linear non-linearity

m1δ

−m1δ

−δ
δ e

f(e)

m1
m2

f(e) =







m1e if |e| < δ

(m1 −m2)δ +m2e if e > δ

(m2 −m1)δ +m2e if e < −δ
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AgainV1 = 0.
E ≤ δ: U1 =

1
2π

∫ π

0 m1E sin2 θ dθ = m1E
E > δ:

U1 =
4

π

∫ π/2

0

f(E sin θ) sin θ dθ,

=
4

π

∫ sin−1(δ/E)

0

m1E sin2 θ dθ+

4

π

∫ π/2

sin−1(δ/E)

((m1 −m2)δ +m2E sin θ) sin θ dθ
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U1 =
2m1E

π

[

θ − 1

2
sin(2θ)

]sin−1(δ/E)

0

+

4(m2 −m1)δ

π
[cos θ]

π/2

sin−1(δ/E)
+

2m2E

π

[

θ − 1

2
sin(2θ)

]π/2

sin−1(δ/E)
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Usingcos(sin−1 x) =
√
1− x2 and

sin(2 sin−1 x) = 2x
√
1− x2 gives:

U1 =
2(m1 −m2)E

π

[

sin−1(
δ

E
) +

δ

E
(1− (

δ

E
)2)1/2

]

+m2E.

Hence

N(E) =

{

m1, if E < δ
2(m1−m2)

π

[

sin−1( δ
E ) +

δ
E (1− ( δ

E )
2)1/2

]

+m2

if E > δ
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Relay with hysteresis

R

−R

−δ
δ e

f(e)

f+(e)

f−(e)

Nonlinearitywith memory.
AssumeE > δ.
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N(E) =
1

πE

∫ 3π/2

−π/2

f(E sin θ)(sin θ + j cos θ) dθ

Note limits of integration.

N(E) =
1

πE

∫ π/2

−π/2

f+(E sin θ)(sin θ + j cos θ) dθ+

1

πE

∫ 3π/2

π/2

f−(E sin θ)(sin θ + j cos θ) dθ
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Real part of N(E)

Let ν = E sin θ, dν = E cos θ dθ.
Notecos θ > 0 if −π/2 < θ < π/2,
andcos θ < 0 if π/2 < θ < 3π/2.

ReN(E) =
1

πE

∫ E

−E

f+(ν)
( ν

E

) dν

E
√

1− (ν/E)2

− 1

πE

∫ −E

E

f−(ν)
( ν

E

) dν

E
√

1− (ν/E)2

=
1

πE

∫ E

−E

[f+(ν) + f−(ν)]
( ν

E

) dν

E
√

1− (ν/E
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Imaginary part of N(E)

ImN(E) =
1

πE

∫ E

−E

f+(ν)
dν

E
+

1

πE

∫ −E

E

f−(ν)
dν

E

=
1

πE2

∫ E

−E

[f+(ν)− f−(ν)]dν

= − ∆

πE2

∆ is area enclosed by the ‘loop’.
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N(E) for the relay

ReN(E) =
4R

πE

∫ E

δ

ν dν

E2
√

1− (ν/E)2

=
4R

πE

√

1− (
δ

E
)2

hence

N(E) =
4R

πE

(

√

1− (
δ

E
)2 − jδ

E

)

.
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Estimates of the DF
Example: Piecewise-linear nonlinearity:

m2 < N(E) ≤ m1
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Estimates of the DF
Example: Piecewise-linear nonlinearity:

m2 < N(E) ≤ m1

Example: Relay with dead-zone:

f(e) =







−1, if e ≤ −δ

0, if |e| < δ

+1, if e ≥ δ

N(E) increases rapidly for|e| just aboveδ, then
falls towards 0.
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