Module 4F2: Nonlinear Systems and Control

Lectures 1 – 2: Dynamical Systems

Jan Maciejowski

jmm@eng.cam.ac.uk

Department of Engineering University of Cambridge

'Nonlinear' overview — 7L

- Nonlinear dynamical systems
 - Continuous, discrete, hybrid
 - Examples
 - State-space description
 - Solutions, simulations
- Attractors, Stability, Lyapunov methods
 1.5 lectures
- Describing functions
- Circle criterion for stability

0.1

1.5 lectures

2 lectures

2 lectures

2 Examples papers, 1 Examples class

Dynamical system classification

Dynamical system: *Evolution of state over time*.

Types of state:

Continuous State x lives in Euclidean space \mathbb{R}^n — familiar, eg from 3F2. Write $x \in \mathbb{R}^n$.

Discrete State q takes values in finite or countable set $\{q_1, q_2, \ldots\}$. *Example:* Light switch, $q \in \{ON, OFF\}$.

Hybrid Part of state lives in \mathbb{R}^n , other part has values in finite set. *Example:* Computer control of inverted pendulum.

Types of time:

Continuous $\dot{x} = Ax$ (linear) or $\dot{x} = f(x)$ (nonlinear).

Discrete $x_{k+1} = Ax_k$ (linear) or $x_{k+1} = f(x_k)$ (nonlinear).

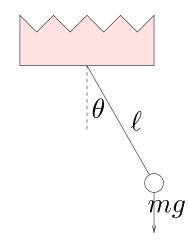
Hybrid System evolves over continuous time, but special things happen at particular instants.

We will deal mostly with:

Continuous-state, continuous-time, nonlinear

Example: Pendulum

Continuous-state, continuous-time, nonlinear



$m\ell\ddot{\theta} + d\ell\dot{\theta} + mg\sin(\theta) = 0$

Exercise: Derive this. Why is it *nonlinear*?

Solve the ODE:

Find

 $\theta(\cdot):\mathbb{R}\to\mathbb{R}$

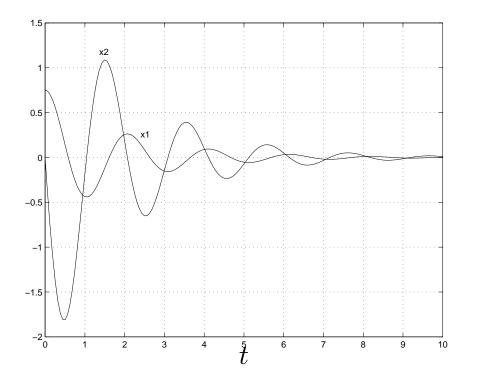
such that

$\begin{aligned} \theta(0) &= \theta_0 \\ \dot{\theta}(0) &= \dot{\theta}_0 \\ m\ell\ddot{\theta}(t) + d\ell\dot{\theta}(t) + mg\sin(\theta(t)) &= 0, \ \forall t \in \mathbb{R} \end{aligned}$

Usually difficult to find solution analytically. Find approximate solution by **simulation**.

Simulated solution

Parameters: $\ell = 1$, m = 1, d = 1, g = 9.8. Initial conditions: $\theta(0) = 0.75$, $\dot{\theta}(0) = 0$.



State-space form:

 $\dot{x} = f(x), \quad x \in \mathbb{R}^n, \quad n \geq 1$ For the pendulum, $x \in \mathbb{R}^2$:

$$x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} \theta \\ \dot{\theta} \end{array} \right]$$

which gives:

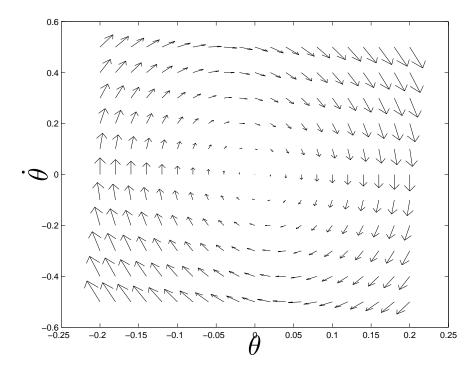
$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{\ell}\sin(x_1) - \frac{d}{m}x_2 \end{bmatrix} = f(x)$$

x is state. This system has dimension 2.

Vector field

$$\dot{x} = f(x), \qquad f(\cdot) : \mathbb{R}^2 \to \mathbb{R}^2 \qquad \text{is vector field}$$

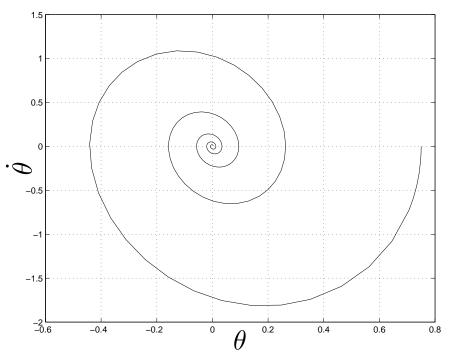
 $f(\cdot)$ assigns *velocity* vector to each state vector.



Solve the ODE (another view):

Find $x(\cdot) : \mathbb{R} \to \mathbb{R}^2$ such that

$$x(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} \theta_0 \\ \dot{\theta}_0 \end{bmatrix}$$
$$\dot{x}(t) = f(x(t)), \ \forall t \in \mathbb{R}.$$



Lent 2011

For certain states $\hat{x} \in \mathbb{R}^n$,

$$f(\hat{x}) = 0$$

Hence system never leaves the state \hat{x} . Such a state is an **equilibrium** state.

For certain states $\hat{x} \in \mathbb{R}^n$,

$$f(\hat{x}) = 0$$

Hence system never leaves the state \hat{x} . Such a state is an **equilibrium** state.

For the pendulum:

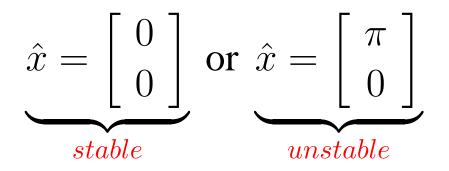
$$\hat{x} = \begin{bmatrix} 0\\0 \end{bmatrix}$$
 or $\hat{x} = \begin{bmatrix} \pi\\0 \end{bmatrix}$

For certain states $\hat{x} \in \mathbb{R}^n$,

$$f(\hat{x}) = 0$$

Hence system never leaves the state \hat{x} . Such a state is an **equilibrium** state.

For the pendulum:

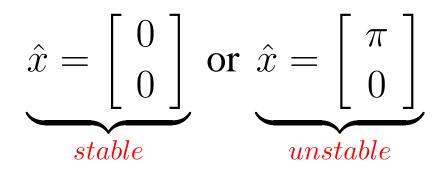


For certain states $\hat{x} \in \mathbb{R}^n$,

$$f(\hat{x}) = 0$$

Hence system never leaves the state \hat{x} . Such a state is an **equilibrium** state.

For the pendulum:



Nonlinear system can have several equilibria. Some stable, others unstable.

Linearisation

For θ close to 0: $\sin(\theta) \approx \theta$. Hence for θ close to 0:

$$m\ell\theta + d\ell\theta + mg\theta = 0$$

or in state space form

$$\dot{x} = \begin{bmatrix} x_2 \\ -\frac{g}{\ell}x_1 - \frac{d}{m}x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} & -\frac{d}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = g(x)$$

Note that g(x) = Ax ie linear state-space system. A has eigenvalues in LHP — stable linear system.

Linearisation

For θ close to 0: $\sin(\theta) \approx \theta$. Hence for θ close to 0:

$$m\ell\theta + d\ell\theta + mg\theta = 0$$

or in state space form

$$\dot{x} = \begin{bmatrix} x_2 \\ -\frac{g}{\ell}x_1 - \frac{d}{m}x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} & -\frac{d}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = g(x)$$

Note that g(x) = Ax ie linear state-space system. A has eigenvalues in LHP — stable linear system.

Exercise: Find linearisation near the other equilibrium. Examine its stability.

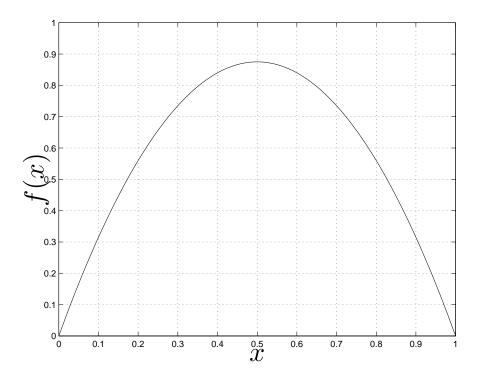
Example: Logistic map

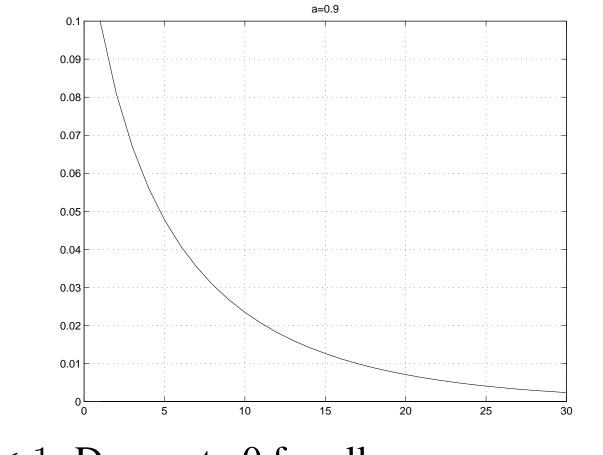
Continuous-state, discrete-time, nonlinear.

$$x_{k+1} = ax_k(1 - x_k) = f(x_k)$$

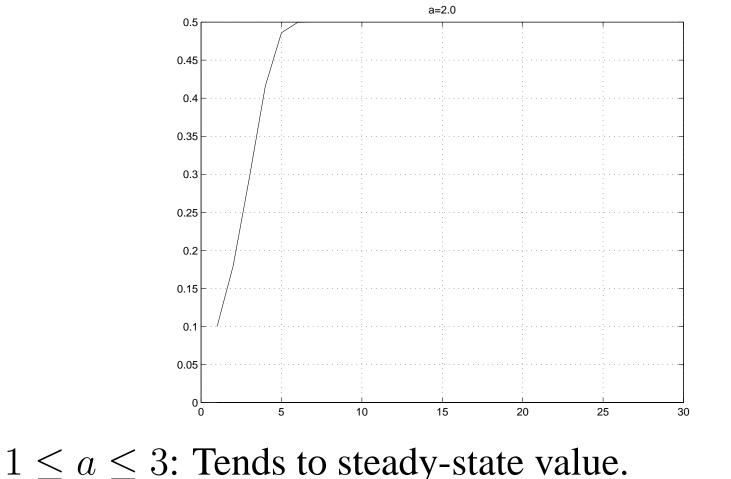
Continuous-state, discrete-time, nonlinear.

$$x_{k+1} = ax_k(1 - x_k) = f(x_k)$$

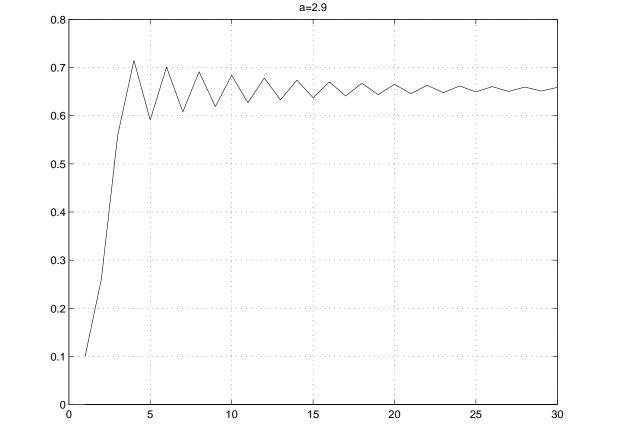




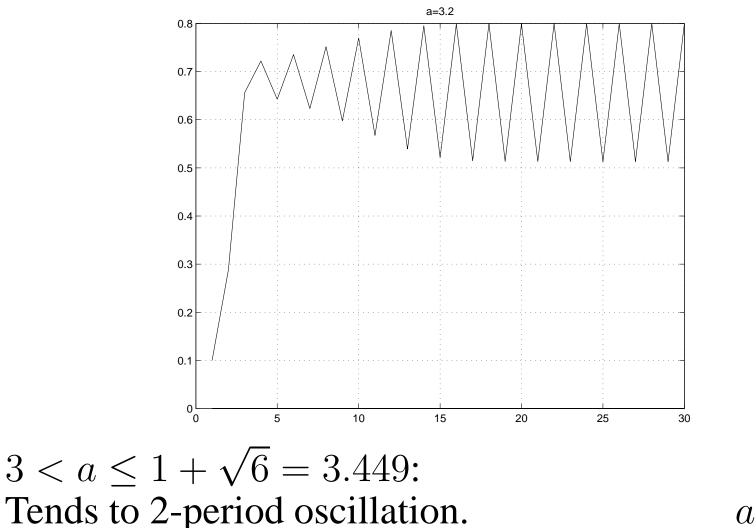
 $0 \le a < 1$: Decays to 0 for all x_0 . a = 0.9



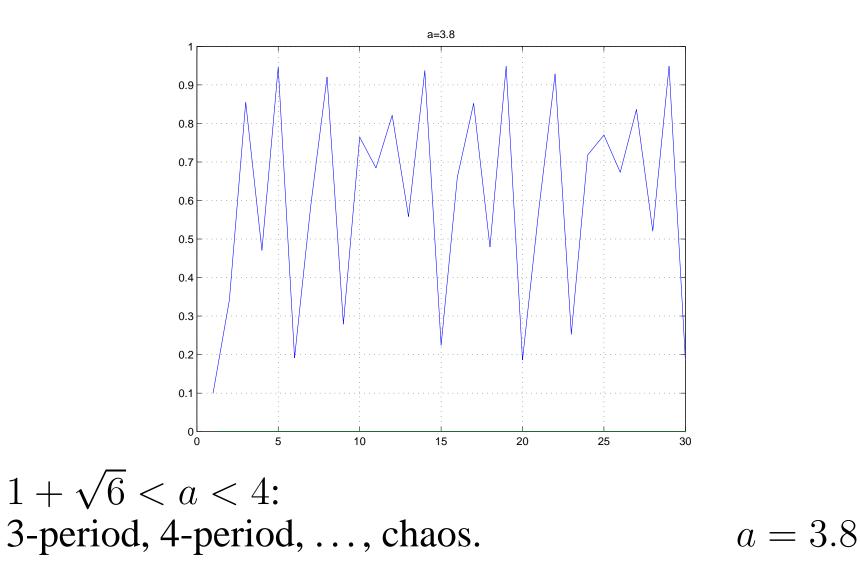
a = 2.0



 $1 \le a \le 3$: Tends to steady-state value. a = 2.9



a = 3.2



Example: Manufacturing cell

A discrete-state system.

Possible states: Idle (I), Working (W), Down (D).

Possible events: p part arrives

- c complete processing
- f failure
- r repair

Abstract description of machine

 $q \in Q = \{I, W, D\}, \qquad \sigma \in \Sigma = \{p, c, f, r\}$

State transition relation:

 $\delta: Q \times \Sigma \to Q$

 $\delta(I,p) = W, \, \delta(W,c) = I, \, \delta(W,f) = D, \, \delta(D,r) = I.$

Abstract description of machine

 $q \in Q = \{I, W, D\}, \qquad \sigma \in \Sigma = \{p, c, f, r\}$

State transition relation:

 $\delta:Q\times\Sigma\to Q$

 $\delta(I, p) = W, \, \delta(W, c) = I, \, \delta(W, f) = D, \, \delta(D, r) = I.$ Otherwise δ is undefined — eg $\delta(D, p)$.

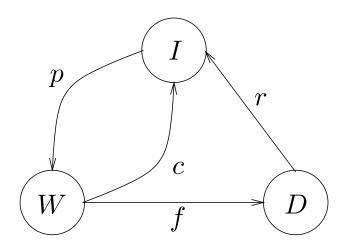
Abstract description of machine

 $q \in Q = \{I, W, D\}, \qquad \sigma \in \Sigma = \{p, c, f, r\}$

State transition relation:

 $\delta:Q\times\Sigma\to Q$

 $\delta(I, p) = W, \, \delta(W, c) = I, \, \delta(W, f) = D, \, \delta(D, r) = I.$ Otherwise δ is undefined — eg $\delta(D, p)$.



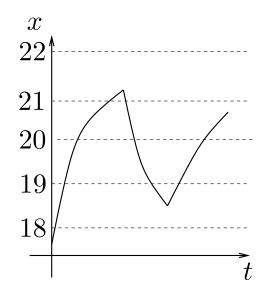
Example: Thermostat

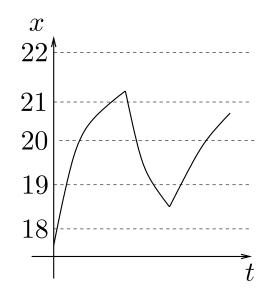
A hybrid system.

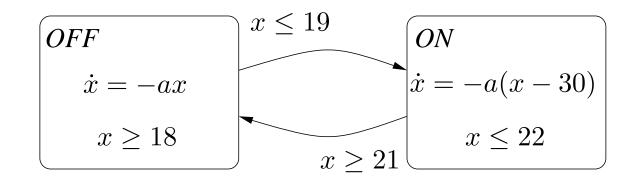
 $x \in \mathbb{R}$: Room temperature, $q \in \{ON, OFF\}$: Heater state.

Heater off: q = OFF, $\dot{x} = -ax$ Heater on: q = ON, $\dot{x} = -a(x - 30)$

Use hysteresis to prevent 'chattering': if x<19, q := ON, elseif x>21, q := OFF, end







Lent 2011

State-space form

States: $x_i \in \mathbb{R}, i = 1, 2, ..., n$ Inputs: $u_j \in \mathbb{R}, j = 1, 2, ..., m$ Outputs: $y_k \in \mathbb{R}, k = 1, 2, ..., p$

$$\dot{x} = f(x, u, t), \qquad y = h(u, x, t),$$

Special case: $\dot{x} = f(x)$

vector functions
autonomous

What do
$$\dot{x} = f(x, u, t)$$
 and $y = h(u, x, t)$ mean?

$$\dot{x}_1 = f_1(x_1, \dots, x_n, u_1, \dots, u_m, t)$$
$$\vdots$$
$$\dot{x}_n = f_n(x_1, \dots, x_n, u_1, \dots, u_m, t)$$

$$y_1 = h_1(x_1, \dots, x_n, u_1, \dots, u_m, t)$$
$$\vdots$$
$$y_p = h_p(x_1, \dots, x_n, u_1, \dots, u_m, t)$$

Existence, Uniqueness

 $\dot{x} = -sign(x), \ x(0) = 0$ — No solutions

Existence, Uniqueness

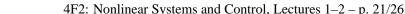
$$\begin{split} \dot{x} &= -sign(x), \ x(0) = 0 - \text{No solutions} \\ \dot{x} &= 3x^{2/3}, \ x(0) = 0 - \text{Multiple solutions} \\ \text{For any } a &\geq 0, \quad x(t) = \begin{cases} (t-a)^3 & t \geq a \\ 0 & t \leq a \end{cases} \end{split}$$

Existence, Uniqueness

 $\dot{x} = -sign(x), \ x(0) = 0 - \text{No solutions}$ $\dot{x} = 3x^{2/3}, \ x(0) = 0 - \text{Multiple solutions}$ $\int (t - a)^3 \quad t \ge 0$

For any
$$a \ge 0$$
, $x(t) = \begin{cases} (t-a)^3 & t \ge a \\ 0 & t \le a \end{cases}$

 $\dot{x} = 1 + x^2$, x(0) = 0 — Finite escape time One solution: $x(t) = \tan(t)$



Lipschitz continuity

Definition 1 A function $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous if $\exists \lambda > 0$ such that $\forall x, \hat{x} \in \mathbb{R}^n$

 $||f(x) - f(\hat{x})|| < \lambda ||x - \hat{x}||$

Lipschitz continuity

Definition 2 A function $f : \mathbb{R}^n \to \mathbb{R}^n$ is **Lipschitz** continuous if $\exists \lambda > 0$ such that $\forall x, \hat{x} \in \mathbb{R}^n$

 $||f(x) - f(\hat{x})|| < \lambda ||x - \hat{x}||$

Theorem 2 (Existence & Uniqueness of Solutions) If f is Lipschitz continuous, then

$$\dot{x} = f(x), \quad x(0) = x_0$$

has a unique solution $x(\cdot) : [0,T] \to \mathbb{R}^n$ for all $T \ge 0$ and all $x_0 \in \mathbb{R}^n$.

Simulation

Theorem 3 (Continuity with Initial State) Assume f is Lipschitz continuous with Lipschitz constant λ . Let $x(\cdot) : [0,T] \to \mathbb{R}^n$ and $\hat{x}(\cdot) : [0,T] \to \mathbb{R}^n$ be solutions to $\dot{x} = f(x)$ with $x(0) = x_0$ and $\hat{x}(0) = \hat{x}_0$, respectively. Then for all $t \in [0,T]$

$$||x(t) - \hat{x}(t)|| \le ||x_0 - \hat{x}_0||e^{\lambda t}$$

"Solutions that start close, remain close." This justifies **simulation**.

Pendulum simulation (*Matlab***)**

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{\ell}\sin(x_1) - \frac{d}{m}x_2 \end{bmatrix} = f(x)$$

function [xdot] = pendulum(t,x)
l = 1; m=1; d=1; g=9.8;
xdot(1) = x(2);
xdot(2) = -sin(x(1))*g/l-x(2)*d/m;

>> x=[0.75 0]; >> [T,X]=ode45('pendulum', [0 10], x'); >> plot(T,X); >> grid;

ode45 is 4'th order Runge-Kutta integration function.

Exercise: Try this at home! (or in the DPO)

Simulation tools

Simulink provides GUI front-end to *Matlab*. Other similar products available.

Pendulum:

