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‘Nonlinear’ overview — 7L
Nonlinear dynamical systems 2 lectures

Continuous, discrete, hybrid

Examples

State-space description

Solutions, simulations

Attractors, Stability, Lyapunov methods 1.5 lectures

Describing functions 1.5 lectures

Circle criterion for stability 2 lectures

2 Examples papers, 1 Examples class

Lent 2011 4F2: Nonlinear Systems and Control, Lectures 1–2 – p. 2/26



Dynamical system classification
Dynamical system:Evolution of state over time.

Types of state:

Continuous Statex lives in Euclidean spaceRn — familiar, eg

from 3F2. Writex ∈ R
n.

Discrete Stateq takes values in finite or countable set

{q1, q2, . . .}. Example: Light switch,q ∈ {ON,OFF}.

Hybrid Part of state lives inRn, other part has values in finite

set.Example: Computer control of inverted pendulum.
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Types of time:

Continuous ẋ = Ax (linear) orẋ = f(x) (nonlinear).

Discrete xk+1 = Axk (linear) orxk+1 = f(xk) (nonlinear).

Hybrid System evolves over continuous time, but special things

happen at particular instants.

We will deal mostly with:

Continuous-state, continuous-time, nonlinear
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Example: Pendulum
Continuous-state, continuous-time, nonlinear

ℓθ

mg

mℓθ̈ + dℓθ̇ +mg sin(θ) = 0

Exercise: Derive this. Why is itnonlinear?
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Solve the ODE:
Find

θ(·) : R → R

such that

θ(0) = θ0

θ̇(0) = θ̇0

mℓθ̈(t) + dℓθ̇(t) +mg sin(θ(t)) = 0, ∀t ∈ R

Usually difficult to find solution analytically.
Find approximate solution bysimulation.
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Simulated solution
Parameters:ℓ = 1, m = 1, d = 1, g = 9.8.
Initial conditions:θ(0) = 0.75, θ̇(0) = 0.
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State-space form:

ẋ = f(x), x ∈ R
n, n ≥ 1

For the pendulum,x ∈ R
2:

x =

[
x1
x2

]

=

[
θ

θ̇

]

which gives:

ẋ =

[
ẋ1
ẋ2

]

=

[
x2

−g
ℓ sin(x1)− d

mx2

]

= f(x)

x is state. This system hasdimension2.
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Vector field

ẋ = f(x), f(·) : R2 → R
2 is vector field

f(·) assignsvelocity vector to each state vector.
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Solve the ODE (another view):
Findx(·) : R → R

2 such that

x(0) =

[
x1(0)

x2(0)

]

=

[
θ0

θ̇0

]

ẋ(t) = f(x(t)), ∀t ∈ R.
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Equilibrium states
For certain stateŝx ∈ R

n,

f(x̂) = 0

Hence system never leaves the statex̂.
Such a state is anequilibrium state.
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Equilibrium states
For certain stateŝx ∈ R

n,

f(x̂) = 0

Hence system never leaves the statex̂.
Such a state is anequilibrium state.

For the pendulum:

x̂ =

[
0

0

]

or x̂ =

[
π

0

]
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Equilibrium states
For certain stateŝx ∈ R

n,

f(x̂) = 0

Hence system never leaves the statex̂.
Such a state is anequilibrium state.

For the pendulum:

x̂ =

[
0

0

]

︸ ︷︷ ︸

stable

or x̂ =

[
π

0

]

︸ ︷︷ ︸

unstable
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Equilibrium states
For certain stateŝx ∈ R

n,

f(x̂) = 0

Hence system never leaves the statex̂.
Such a state is anequilibrium state.

For the pendulum:

x̂ =

[
0

0

]

︸ ︷︷ ︸

stable

or x̂ =

[
π

0

]

︸ ︷︷ ︸

unstable

Nonlinear system can have several equilibria.
Some stable, others unstable.
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Linearisation
Forθ close to 0:sin(θ) ≈ θ. Hence forθ close to 0:

mℓθ̈ + dℓθ̇ +mgθ = 0

or in state space form

ẋ =

[
x2

−g
ℓx1 − d

mx2

]

=

[
0 1

−g
ℓ − d

m

] [
x1
x2

]

= g(x)

Note thatg(x) = Ax ie linearstate-space system.
A has eigenvalues in LHP — stable linear system.
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Linearisation
Forθ close to 0:sin(θ) ≈ θ. Hence forθ close to 0:

mℓθ̈ + dℓθ̇ +mgθ = 0

or in state space form

ẋ =

[
x2

−g
ℓx1 − d

mx2

]

=

[
0 1

−g
ℓ − d

m

] [
x1
x2

]

= g(x)

Note thatg(x) = Ax ie linearstate-space system.
A has eigenvalues in LHP — stable linear system.

Exercise: Find linearisation near the other
equilibrium. Examine its stability.

Lent 2011 4F2: Nonlinear Systems and Control, Lectures 1–2 – p. 12/26



Example: Logistic map
Continuous-state, discrete-time, nonlinear.

xk+1 = axk(1− xk) = f(xk)
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Example: Logistic map
Continuous-state, discrete-time, nonlinear.

xk+1 = axk(1− xk) = f(xk)
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Equilibrium, Oscillation, Chaos

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
a=0.9

0 ≤ a < 1: Decays to 0 for allx0. a = 0.9
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Equilibrium, Oscillation, Chaos
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Equilibrium, Oscillation, Chaos
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1 ≤ a ≤ 3: Tends to steady-state value. a = 2.9
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Equilibrium, Oscillation, Chaos
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3 < a ≤ 1 +
√
6 = 3.449:

Tends to 2-period oscillation. a = 3.2
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Equilibrium, Oscillation, Chaos
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3-period, 4-period, . . . , chaos. a = 3.8
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Example: Manufacturing cell

A discrete-state system.

Possible states: Idle (I), Working (W), Down (D).

Possible events:p part arrives
c complete processing
f failure
r repair
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Abstract description of machine

q ∈ Q = {I,W,D}, σ ∈ Σ = {p, c, f, r}
State transition relation:

δ : Q× Σ → Q

δ(I, p) = W , δ(W, c) = I, δ(W, f) = D, δ(D, r) = I.

Lent 2011 4F2: Nonlinear Systems and Control, Lectures 1–2 – p. 16/26



Abstract description of machine

q ∈ Q = {I,W,D}, σ ∈ Σ = {p, c, f, r}
State transition relation:

δ : Q× Σ → Q

δ(I, p) = W , δ(W, c) = I, δ(W, f) = D, δ(D, r) = I.

Otherwiseδ is undefined — egδ(D, p).

Lent 2011 4F2: Nonlinear Systems and Control, Lectures 1–2 – p. 16/26



Abstract description of machine

q ∈ Q = {I,W,D}, σ ∈ Σ = {p, c, f, r}
State transition relation:

δ : Q× Σ → Q

δ(I, p) = W , δ(W, c) = I, δ(W, f) = D, δ(D, r) = I.

Otherwiseδ is undefined — egδ(D, p).
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Example: Thermostat
A hybrid system.

x ∈ R: Room temperature,
q ∈ {ON,OFF}: Heater state.

Heater off: q = OFF , ẋ = −ax

Heater on: q = ON , ẋ = −a(x− 30)

Use hysteresis to prevent ‘chattering’:
if x<19, q := ON,
elseif x>21, q := OFF,
end
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State-space form
States:xi ∈ R, i = 1, 2, . . . , n
Inputs: uj ∈ R,j = 1, 2, . . . ,m
Outputs: yk ∈ R, k = 1, 2, . . . , p

ẋ = f(x, u, t), y = h(u, x, t), vector functions

Special case:̇x = f(x) autonomous
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What doẋ = f(x, u, t) andy = h(u, x, t) mean?

ẋ1 = f1(x1, . . . , xn, u1, . . . , um, t)
...

ẋn = fn(x1, . . . , xn, u1, . . . , um, t)

y1 = h1(x1, . . . , xn, u1, . . . , um, t)
...

yp = hp(x1, . . . , xn, u1, . . . , um, t)
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Existence, Uniqueness
ẋ = −sign(x), x(0) = 0 — No solutions

Lent 2011 4F2: Nonlinear Systems and Control, Lectures 1–2 – p. 21/26



Existence, Uniqueness
ẋ = −sign(x), x(0) = 0 — No solutions

ẋ = 3x2/3, x(0) = 0 — Multiple solutions

For anya ≥ 0, x(t) =

{
(t− a)3 t ≥ a

0 t ≤ a
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Existence, Uniqueness
ẋ = −sign(x), x(0) = 0 — No solutions

ẋ = 3x2/3, x(0) = 0 — Multiple solutions

For anya ≥ 0, x(t) =

{
(t− a)3 t ≥ a

0 t ≤ a

ẋ = 1 + x2, x(0) = 0 — Finite escape time
One solution:x(t) = tan(t)
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Lipschitz continuity
Definition 1 A function f : Rn → R

n is Lipschitz
continuousif ∃λ > 0 such that ∀x, x̂ ∈ R

n

‖f(x)− f(x̂)‖ < λ‖x− x̂‖
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Lipschitz continuity
Definition 2 A function f : Rn → R

n is Lipschitz
continuousif ∃λ > 0 such that ∀x, x̂ ∈ R

n

‖f(x)− f(x̂)‖ < λ‖x− x̂‖

Theorem 2 (Existence & Uniqueness of Solutions)
If f is Lipschitz continuous, then

ẋ = f(x), x(0) = x0

has a unique solution x(·) : [0, T ] → R
n for all T ≥ 0

and all x0 ∈ R
n.
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Simulation
Theorem 3 (Continuity with Initial State) Assume
f is Lipschitz continuous with Lipschitz constant λ.
Let x(·) : [0, T ] → R

n and x̂(·) : [0, T ] → R
n be

solutions to ẋ = f(x) with x(0) = x0 and x̂(0) = x̂0,
respectively. Then for all t ∈ [0, T ]

‖x(t)− x̂(t)‖ ≤ ‖x0 − x̂0‖eλt

“Solutions that start close, remain close.”
This justifiessimulation.
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Pendulum simulation (Matlab)

ẋ =

[
ẋ1
ẋ2

]

=

[
x2

−g
ℓ sin(x1)− d

mx2

]

= f(x)

function [xdot] = pendulum(t,x)
l = 1; m=1; d=1; g=9.8;
xdot(1) = x(2);
xdot(2) = -sin(x(1))*g/l-x(2)*d/m;
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>> x=[0.75 0];
>> [T,X]=ode45(’pendulum’, [0 10], x’);
>> plot(T,X);
>> grid;

ode45is 4’th order Runge-Kutta integration function.

Exercise: Try this at home! (or in the DPO)
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Simulation tools
Simulink provides GUI front-end toMatlab.
Other similar products available.

Pendulum:

  1
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d/m
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sin(u)

Fcn
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