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Nonlinear Systems and Control

Handout 3: Describing Functions

1 Harmonic balance

The describing function method (also called the method of harmonic balance) uses fre-

quency domain (Fourier series) techniques to investigate limit cycle behaviour in non-

linear systems. The method involves an approximation, but nevertheless often gives a

reliable prediction concerning limit cycle behaviour.

The usual context for the method is the following feedback system.

r(t)

−

e(t) u(t) y(t)
f(·) g(s)

NONLINEAR LINEAR

There is a linear system with transfer function g(s) and a memoryless nonlinearity f(·)
(e.g. saturation, hysteresis, backlash). For simplicity we will take the case of r = 0.

We are looking for possible limit cycle (i.e. periodic) behaviour in the feedback system.

Therefore let us take a trial solution:

e(t) = E sin(ωt).

If the output of the non-linearity is periodic with frequency ω there will be a Fourier series

representation:

u(t) = U0 +

∞
∑

k=1

(Uk sin(kωt) + Vk cos(kωt)).

The Fourier coefficients corresponding to the fundamental harmonic are given by

U1 =
ω

π

∫ 2π/ω

0

f(E sinωt) sinωt dt =
1

π

∫ 2π

0

f(E sin θ) sin θ dθ,

V1 =
1

π

∫ 2π

0

f(E sin θ) cos θ dθ.
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We now consider the approximation:

u(t) ≈ U1 sin(ωt) + V1 cos(ωt)

as the input to the linear system. In the steady state, the output of the linear system is:

y(t) = |g(jω)|[U1 sin(ωt+ φ) + V1 cos(ωt+ φ)]

= Im[|g(jω)|(U1 + jV1)e
jωt+φ]

= Im[g(jω)(U1 + jV1)e
jωt]

where φ = arg(g(jω)). (We remark that the neglect of the higher harmonics is most likely

to be a valid approximation when g(s) behaves like a low pass filter.) In order to satisfy

the feedback equations we need to have y(t) = −e(t). We thus obtain

0 ≡ y(t) + e(t)

⇒ 0 ≡ Im[(g(jω)(U1 + jV1) + E)ejωt] = 0

⇒ 0 = g(jω)(U1 + jV1) + E.

This is the condition for “harmonic balance”, i.e. for the fundamental harmonic to solve

the feedback equations. We now define the describing function

N(E) =
U1 + jV1

E
.

Then the condition for harmonic balance becomes

g(jω) =
−1

N(E)
.

This condition has an interesting graphical interpretation. Let the Nyquist diagram g(jω)

of the linear system be plotted in the complex plane. On the same diagram plot the locus

Re

Im

g(jω)

−1
N(E)

Arrows denote

direction of

increasing ω and E
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−1/N(E). Note that these loci can be plotted independently since they are respectively

functions of ω and E only. A limit cycle is predicted if there is an intersection of the two

loci. Moreover, the intersection point gives an estimate for the frequency ω and amplitude

E of the limit cycle.

A useful prediction of the stability of limit cycles can be made from the manner of in-

tersection of the two loci. Recall from the Nyquist stability criterion that, for an open

loop stable g(s) in the standard unity gain negative feedback configuration (non-linearity

absent of course), the closed loop feedback system is stable providing the critical point

(−1, 0) lies to the left of the Nyquist locus. The point −1/N(E) can be thought of as

the ‘critical point’ with respect to the Nyquist locus. Thus, if a small increase of the

amplitude E moves the value of −1/N(E) outside of the shaded region below, then a

stabilizing effect will be predicted, which will act to reduce the amplitude. Conversely, if

an increase of E moves −1/N(E) inside the shaded region, then a destabilizing effect will

be predicted.

ReRe

ImIm

g(jω)g(jω)

−1
N(E)

−1
N(E)

PREDICT STABLE LIMIT CYCLE PREDICT UNSTABLE LIMIT CYCLE

2 Calculation of describing functions

2.1 Relay nonlinearity

f(e) = sign(e). Since sign(sin(ωt)) is an odd function then V1 = 0. Also

U1 =
1

π

∫ 2π

0

sign(E sin θ) sin θ dθ,

=
1

π

∫ π

0

sin θ dθ − 1

π

∫ 2π

π

sin θ dθ

=
4

π
.
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Thus N(E) = 4
πE

.

2.2 Polynomial nonlinearity

f(e) = en. If n is odd it can be shown (from De Moivre’s Theorem and the binomial

expansion) that

sinn θ =
2

2n

n−1

2
∑

k=0

(−1)(
n−1

2
−k)

(

n

k

)

sin([n− 2k]θ)

This is a Fourier series with a finite number of terms; taking the last term, k = n−1
2
, gives

us the fundamental component if e = (E sin θ)n:

U1 sin θ = En 2

2n
(−1)0

(

n
n−1
2

)

sin θ, V1 = 0.

A familiar case of this is n = 3 (eg in the Maths Databook):

(E sin θ)3 = E3

(

3

4
sin θ − 1

4
sin(3θ)

)

for which U1 =
3E3

4
, V1 = 0, so N(E) = 3E2

4
.

If n is even a similar formula exists, but the fundamental component is always zero (for

example, sin2 θ = 1
2
− 1

2
cos(2θ)), so our low-pass assumption will eliminate everything.

There is also a non-zero constant component — which can be handled by an extension of

the harmonic balance idea.

2.3 Piecewise-linear non-linearity

m1δ

−m1δ

−δ

δ e

f(e)

m1

m2

4



f(e) =







m1e if |e| < δ

(m1 −m2)δ +m2e if e > δ

(m2 −m1)δ +m2e if e < −δ

Once again, since f(e) is an odd function V1 = 0. If E ≤ δ then

U1 =
1

2π

∫ π

0

m1E sin2 θ dθ = m1E.

If E > δ then

U1 =
4

π

∫ π/2

0

f(E sin θ) sin θ dθ,

=
4

π

∫ sin−1(δ/E)

0

m1E sin2 θ dθ +
4

π

∫ π/2

sin−1(δ/E)

((m1 −m2)δ +m2E sin θ) sin θ dθ

=
2m1E

π

[

θ − 1

2
sin(2θ)

]sin−1(δ/E)

0

+
4(m2 −m1)δ

π
[cos θ]

π/2

sin−1(δ/E)

+
2m2E

π

[

θ − 1

2
sin(2θ)

]π/2

sin−1(δ/E)

.

Now, since cos(sin−1 x) =
√
1− x2 and sin(2 sin−1 x) = 2x

√
1− x2 for 0 < x < π/2, we

get after a little algebra:

U1 =
2(m1 −m2)E

π

[

sin−1(
δ

E
) +

δ

E
(1− (

δ

E
)2)1/2

]

+m2E.

Hence we get:

N(E) =

{

m1, if E < δ
2(m1−m2)

π

[

sin−1( δ
E
) + δ

E
(1− ( δ

E
)2)1/2

]

+m2, if E > δ.

2.4 Relay with hysteresis

Consider the following two-valued function:

This is a non-linearity with ‘memory’. f(e) takes the value +R or −R according to

whether e was greater than δ or less than −δ on the last occasion when |e| > δ. We will

find the describing function for E > δ since it is not properly defined otherwise. We have

N(E) =
1

πE

∫ 3π/2

−π/2

f(E sin θ)(sin θ + j cos θ) dθ
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R

−R

−δ

δ e

f(e)

f+(e)

f
−
(e)

since we can integrate over any cycle of length 2π. Thus

N(E) =
1

πE

∫ π/2

−π/2

f+(E sin θ)(sin θ+j cos θ) dθ+
1

πE

∫ 3π/2

π/2

f
−
(E sin θ)(sin θ+j cos θ) dθ.

Let ν = E sin θ, dν = E cos θ dθ (and note that cos θ has positive sign in the first integral

and negative sign in the second), then

ReN(E) =
1

πE

∫ π/2

−π/2

f+(E sin θ) sin θ dθ +
1

πE

∫ 3π/2

π/2

f
−
(E sin θ) sin θ dθ

=
1

πE

∫ E

−E

f+(ν)
( ν

E

) dν

E
√

1− (ν/E)2
− 1

πE

∫

−E

E

f
−
(ν)
( ν

E

) dν

E
√

1− (ν/E)2

=
1

πE

∫ E

−E

[f+(ν) + f
−
(ν)]

( ν

E

) dν

E
√

1− (ν/E)2
.

The above formula is valid for any two-valued non-linearity. In fact, it is also valid for a

single-valued non-linearity f . If f = (f+ + f
−
)/2 is an odd function then

N(E) =
1

πE

∫ E

−E

2f(ν)
( ν

E

) dν

E
√

1− (ν/E)2
.

Thus, Re(N(E)) is the same as the describing function of the ‘average’ non-linearity

(f+ + f
−
)/2.
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For Im(N(E)) there is a striking formula:

ImN(E) =
1

πE

∫ E

−E

f+(ν)
dν

E
+

1

πE

∫

−E

E

f
−
(ν)

dν

E

=
1

πE2

∫ E

−E

[f+(ν)− f
−
(ν)]dν

= − ∆

πE2

where ∆ is the area enclosed by the ‘loop’ of the non-linear characteristic.

For the relay with hysteresis given above we obtain

ReN(E) =
4R

πE

∫ E

δ

ν dν

E2
√

1− (ν/E)2
=

4R

πE

√

1− (
δ

E
)2,

which gives

N(E) =
4R

πE

(

√

1− (
δ

E
)2 − jδ

E

)

.

3 Estimates of Describing Functions

Often some idea of the describing function can be obtained without calculating it in detail.

The describing function is sometimes called the equivalent linear gain, and this name gives

a pointer as to how it can be estimated. This is best illustrated by a couple of examples.

Example: Piecewise-linear nonlinearity. In section 2.3 we considered a nonlinearity with

an incremental gain of m1 for small signals, and m2 for large signals. For a small signal

the gain is exactly m1, because the nonlinearity does not come into play. For extremely

large signals the gain is essentially m2. Clearly the effective gain for any input signal lies

between these two. Thus the describing function (being real in this case) must always lie

between m1 and m2.

Example: Relay with dead-zone. Consider the following behaviour:

f(e) =







−1, if e ≤ −δ

0, if |e| < δ

+1, if e ≥ δ

For |e| < δ the describing function is clearly 0. As |e| increases slightly above δ the

output suddenly jumps to amplitude 1, so the effective gain increases quickly, and hence

the describing function increases quickly (to a value which has to be calculated — see

Examples Paper). As |e| increases further, the output amplitude does not increase, and

so the effective gain — and hence the describing function — decreases gradually to 0.

7



4 Rigour

The first part of the describing function method, namely the prediction of limit cycles,

can be made rigorous using appropriate bounds on g(jω) and possibly by bringing in

some higher harmonics. A rather mathematical discussion along these lines and sufficient

conditions for validity can be found in A.I. Mees, Dynamics of Feedback Systems, Wiley,

1981, Chapter 5. (This is beyond the scope of this module).

The prediction of stability/instability has so far proved difficult to treat rigorously and

provide useful sufficient conditions for validity. It therefore remains as a quick method

which gives a hint as to what might happen.

M.C. Smith

Revised by J.M. Maciejowski February 2011
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