
Engineering Tripos Part IIB Module 4F2

Nonlinear Systems and Control

Handout 1: Dynamical Systems

Website: Handouts, copies of slides, and Examples papers for this course are available on
my web page: http://www-control.eng.cam.ac.uk/Homepage/officialweb.php?id=1

1 Notation & Background

• Rn denotes the n-dimensional Euclidean space. This is a vector space (also known
as a linear space).

• If n = 1, we will drop the subscript and write just R (the set of real numbers or
“the real line”).

• If a and b are real numbers with a ≤ b, [a, b] will denote the closed interval from
a to b, i.e. the set of all real numbers x such that a ≤ x ≤ b. [a, b) will denote the
right-open interval from a to b (i.e. a ≤ x < b), etc.

• I will make no distinction between vectors and real numbers in the notation (no
arrows over the letters, bold font, etc.). Both vectors and real numbers will be
denoted by lower case letters.

• ‖x‖ =
√
x21 + x22 + . . .+ x2n denotes the standard (Euclidean) norm in Rn.

• Z denotes the set of integers, . . . ,−2,−1, 0, 1, 2,

• x ∈ A is a shorthand for “x belongs to a set A”, e.g. x ∈ Rn means that x is an
n-dimensional vector.

• f(·) : A → B is a shorthand for a function mapping every element x ∈ A to an
element f(x) ∈ B. For example the function sin(·) : R → R maps a real number x
to its sine, sin(x).

• ∀ is a shorthand for “for all”, as in “∀x ∈ R, x2 ≥ 0”.

• ∃ is a shorthand for “there exists”, as in “∃x ∈ R such that sin(x) = 0”.

I will assume that people are familiar with the concepts of vector space, state space etc.
from 3F2. Lecture notes will be self contained but, by necessity, terse. I recommend that
students regularly consult the references — see end of Handout.

1

2 Dynamical System Classification

Roughly speaking, a dynamical system describes the evolution of a state over time.
To make this notion more precise we need to specify what we mean by the terms “evolu-
tion”, “state” and “time”.

Certain dynamical systems can also be influenced by external inputs, which may represent
either uncontrollable disturbances (e.g. wind affecting the motion of an aircraft) or control
signals (e.g. the commands of the pilot to the aircraft control surfaces and engines). Some
dynamical systems may also have outputs, which may represent either quantities that can
be measured, or quantities that need to be regulated.

Based on the type of their state, dynamical systems can be classified into:

1. Continuous, if the state takes values in Euclidean space Rn for some n ≥ 1. We
will use x ∈ Rn to denote the state of a continuous dynamical system. Most of the
dynamical systems you are familiar with (e.g. from 3F2) are continuous dynamical
systems.

2. Discrete, if the state takes values in a countable or finite set {q1, q2, . . .}. We will
use q to denote the state of a discrete system. For example, a light switch is a
dynamical system whose state takes on two values, q ∈ {ON,OFF}. A computer
is also a dynamical system whose state takes on a finite (albeit very large) number
of values.

3. Hybrid, if part of the state takes values in Rn while another part takes values in a
finite set. For example, the closed loop system we obtain when we use a computer to
control an inverted pendulum is hybrid: part of the state (the state of the pendulum)
is continuous, while another part (the state of the computer) is discrete.

Based on the set of times over which the state evolves, dynamical systems can be classified
as:

1. Continuous time, if the set of times is a subset of the real line. We will use t ∈ R
to denote continuous time. Typically, the evolution of the state of a continuous time
system is described by an ordinary differential equation (ODE). Think of the
linear, continuous time system in state space form

ẋ = Ax

treated extensively in module 3F2 last year.

2. Discrete time, if the set of times is a subset of the integers. We will use k ∈ Z to
denote discrete time. Typically, the evolution of the state of a discrete time system
is described by a difference equation. Think of the linear discrete time system in
state space form

xk+1 = Axk

or of discrete-time filters etc in module 3F1.

3. Hybrid time, when the evolution is over continuous time but there are also discrete
“instants” where something “special” happens.

2

Continuous state systems can be further classified according to the equations used to
describe the evolution of their state

1. Linear, if the evolution is governed by a linear differential equation (continuous
time) or difference equation (discrete time).

2. Nonlinear, if the evolution is governed by a nonlinear differential equation (con-
tinuous time) or difference equation (discrete time).

In this course we will primarily discuss the following classes of systems:

1. Nonlinear (continuous state), continuous time systems.

2. Nonlinear, discrete time systems.

3. Discrete state, discrete time systems (examples only).

4. Hybrid state, hybrid time systems (examples only).

Classes of systems that will not be treated at all:

• Infinite dimensional continuous state systems described, for example, by partial
differential equations (PDE).

• Discrete state systems with an infinite number of states, e.g. Petri nets, push down
automata, Turing machines.

• Stochastic systems, i.e. systems with probabilistic dynamics.

3 Examples

3.1 The Pendulum: A Nonlinear, Continuous Time System

Consider a pendulum hanging from a weight-less solid rod and moving under gravity
(Figure 1). Let θ denote the angle the pendulum makes with the downward vertical, l the
length of the pendulum, m its mass, and d the dissipation constant. The evolution of θ
is governed by

mlθ̈ + dlθ̇ +mg sin(θ) = 0

This is a nonlinear, second order, ordinary differential equation (ODE).

Exercise 1 Derive this equation from Newton’s laws. Why is this ODE called nonlinear?

To determine how the pendulum is going to move, i.e. determine θ as a function of time,
we would like to find a solution to this ODE . Assuming that at time t = 0 the pendulum
starts at some initial position θ0 and with some initial velocity θ̇0, “solving the ODE”
means finding a function of time

θ(·) : R→ R

3

M

T

L

Figure 1: The pendulum

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

x2

x1

Figure 2: Trajectory of the pendulum.

such that

θ(0) = θ0

θ̇(0) = θ̇0

mlθ̈(t) + dlθ̇(t) +mg sin(θ(t)) = 0, ∀t ∈ R

Such a function is known as a trajectory (or solution) of the system. At this stage it
is unclear if one, none or multiple trajectories exist for this initial condition. Existence
and uniqueness of trajectories are both desirable properties for ODEs that are used to
model physical systems.

For nonlinear systems, even if a unique trajectory exists for the given initial condition,
it is usually difficult to construct it explicitly. Frequently solutions of an ODE can only
be approximated by simulation. Figure 2 shows a simulated trajectory of the pendulum
for l = 1, m = 1, d = 1, g = 9.8, θ(0) = 0.75 and θ̇(0) = 0.

To simplify the notation we typically write dynamical system ODEs in state space form

ẋ = f(x)

where x is now a vector in Rn for some appropriate n ≥ 1. The easiest way to do this for
the pendulum is to set

x =

[
x1
x2

]
=

[
θ

θ̇

]
4

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

th

d
o
t

Figure 3: The pendulum vector field.

which gives rise to the state space equations

ẋ =

[
ẋ1
ẋ2

]
=

[
x2

−g
l

sin(x1)− d
m
x2

]
= f(x)

The vector
x ∈ R2

is called the state of the system. The size of the state vector (in this case n = 2) is called
the dimension of the system. Notice that the dimension is the same as the order of the
original ODE. The function

f(·) : R2 → R2

which describes the dynamics is called a vector field, because it assigns a “velocity”
vector to each state vector. Figure 3 shows the vector field of the pendulum.

Exercise 2 Other choices are possible for the state vector. For example, for the pendu-
lum one can use x1 = θ3 + θ̇ and x2 = θ̇. Verify that this gives the vector field

ẋ =

[
ẋ1
ẋ2

]
=

[
3(x1 − x2)2/3x2 − g

`
[sin(x1 − x2)1/3]− d

m
x2

−g
`
[sin(x1 − x2)1/3]− d

m
x2

]
Not a good choice!

Solving the ODE for θ is equivalent to finding a function

x(·) : R→ R2

such that

x(0) =

[
x1(0)
x2(0)

]
=

[
θ0
θ̇0

]
ẋ(t) = f(x(t)), ∀t ∈ R.

For two dimensional systems like the pendulum it is very convenient to visualise the
solutions by phase plane plots. These are plots of x1(t) vs x2(t) parametrised by time
(Figure 4).

5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

th

d
o

t

Figure 4: Phase plane plot of the trajectory of Figure 2.

Notice that for certain states x̂ ∈ R2,

f(x̂) = 0

In particular, this is the case if

x̂ =

[
0
0

]
or x̂ =

[
π
0

]
The fact that f(x̂) = 0 implies that if the system ever finds itself in state x̂ it will never
leave.

A state x̂ with this property is called an equilibrium of the system. Physical intuition
suggests that solutions of the system that start close to the equilibrium

x̂ =

[
0
0

]
remain close to it. Such an equilibrium is known as a stable equilibrium. In fact, if
the dissipation constant d is greater than zero, then the solutions eventually converge to
the equilibrium. A stable equilibrium with this property is known as an asymptotically
stable equilibrium. On the other hand, solutions of the system starting close to (but
not exactly on) the equilibrium

x̂ =

[
π
0

]
quickly move away from it. Such an equilibrium is known as an unstable equilibrium.

Roughly speaking, the pendulum is a nonlinear system because the vector field f is a
nonlinear function. Recall that for small angles θ

sin(θ) ≈ θ

Therefore, for small angles the ODE is approximately equal to

mlθ̈ + dlθ̇ +mgθ = 0

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f

Figure 5: The logistic map.

or in state space form

ẋ =

[
x2

−g
l
x1 − d

m
x2

]
=

[
0 1
−g

l
− d
m

] [
x1
x2

]
= g(x)

Notice that the new vector field is of the form g(x) = Ax, i.e. it is a linear function of x.
This process of transforming a nonlinear systems into a linear one is called linearisation
(also discussed in 3F2). Notice that linearisation relies heavily on the assumption that θ
is small, and is therefore only valid locally.

Exercise 3 Determine the linearisation about the equilibrium

x̂ =

[
π
0

]

3.2 The Logistic Map: A Nonlinear Discrete Time System

The logistic map
xk+1 = axk(1− xk) = f(xk) (1)

is a nonlinear, discrete time dynamical system that has been proposed as a model for
the fluctuations in the population of fruit flies in a closed container with constant food
supply (R. May, Stability and Complexity of Model Ecosystems, Princeton University
Press, Princeton, NJ, 1973). We assume that the population is measured at discrete
times (e.g. generations) and that it is large enough to be assumed to be a continuous
variable. In the terminology of the previous section, this is a one dimensional system with
state xk ∈ R, whose evolution is governed by the difference equation (1) given above.

The shape of the function f (Figure 5) reflects the fact that when the population is small it
tends to increase due to abundance of food and living space, whereas when the population
is large it tends to decrease, due to competition for food and the increased likelihood of
epidemics. Assume that a ≤ 4 and that the initial population is such that 0 ≤ x0 ≤ 1.

Exercise 4 Show that under these assumptions 0 ≤ xk ≤ 1 for all k ∈ Z with k ≥ 0.

7

The behaviour of xk as a function of k depends on the value of a.

1. If 0 ≤ a < 1, xk decays to 0 for all initial conditions x0 ∈ [0, 1]. This corresponds
to a situation where there is inadequate food supply to support the population.

2. If 1 ≤ a ≤ 3, xk tends to a steady state value. In this case the population eventually
stabilises.

3. If 3 < a ≤ 1 +
√

6 = 3.449, xk tends to a 2-periodic state. This corresponds to the
population alternating between two values from one generation to the next.

As a increases further more and more complicated patterns are obtained: 4-periodic
points, 3-periodic points, and even chaotic situations, where the trajectory of xk is aperi-
odic (i.e. never meets itself).

3.3 A Manufacturing Machine: A Discrete System

Consider a machine in a manufacturing plant that processes parts of type p one at a time.
The machine can be in one of three states: Idle (I), Working (W) or Down (D). The
machine can transition between the states depending on certain events. For example, if
the machine is idle and a part p arrives it will start working. While the machine is working
it may break down. While the machine is down it may be repaired, etc.

Abstractly, such a machine can be modelled as a dynamical system with a discrete state,
q, taking three values

q ∈ Q = {I,W,D}

The state “jumps” from one value to another whenever one of the events, σ occurs, where

σ ∈ Σ = {p, c, f, r}

(p for “part arrives”, c for “complete processing”, f for “failure” and r for “repair”). The
state after the event occurs is given by a transition relation

δ : Q× Σ→ Q

Since both Q and Σ are finite sets, one can specify δ by enumeration.

δ(I, p) = W

δ(W, c) = I

δ(W, f) = D

δ(D, r) = I

δ is undefined for the rest of the combinations of q and σ. This reflects the fact that
certain events may be impossible in certain states. For example, it is impossible for the
machine to start processing a part while it is down, hence δ(D, p) is undefined.

Exercise 5 If the discrete state can take n values and there are m possible events, what
is the maximum number of lines one may have to write down to specify δ?

8

W D

I

p

c

f

r

Figure 6: The directed graph of the manufacturing machine automaton.

Such a dynamical system is called an automaton, or a finite state machine. Automata
are special cases of discrete event systems. Discrete event systems are dynamical
systems whose state also jumps depending on a finite set of events but can take on an
infinite number of values. The dynamics of a finite state machine can be represented
compactly by a directed graph (Figure 6). This is a graph whose nodes represent the
possible values of the state (in this case I,W,D). The arcs of the graph represent possible
transitions between the state values and are labelled by the events.

Assume that the machine starts in the idle state q0 = I. What are the sequences of events
the machine can experience? Clearly some sequences are possible while others are not.
For example, the sequence pcp is possible: the machine successfully processes one part
and subsequently starts processing a second one. The sequence ppc, on the other hand is
not possible: the machine can not start processing a second part before the previous one
is complete. More generally, any sequence that consists of an arbitrary number of pc’s
(possibly followed by a single p) is an acceptable sequence. In the discrete event literature
this set of sequences is compactly denoted as

(pc)∗(1 + p)

where ∗ denotes an arbitrary number (possibly zero) of pc’s, 1 denotes the empty sequence
(no event takes place), and + denotes “or”.

Likewise, pfr is a possible sequence of events (the machine starts processing a part, breaks
down and then gets repaired) while pfp is not (the machine can not start processing a
part while it is down). More generally, any sequence that consists of an arbitrary number
of pfr’s (possibly followed by a p or a pf) is an acceptable sequence.

Exercise 6 Write this set of sequences in the discrete event notation given above.

The set of all sequences that the automaton can experience is called the language of the
automaton. The above discussion suggests that the language of the machine automaton
is

(pc+ pfr)∗(1 + p+ pf)

It is important to understand the properties of these languages, for example to determine
how to schedule the work in a manufacturing plant.

9

t

T

22

21

20

19

18

Figure 7: A trajectory of the thermostat system.

3.4 The Thermostat: A Hybrid System

Consider a room being heated by a radiator controlled by a thermostat. Assume that
when the radiator is off the temperature, x ∈ R, of the room decreases exponentially
towards 0 degrees according to the differential equation

ẋ = −ax (2)

for some a > 0.

Exercise 7 Verify that the trajectories of (2) decrease to 0 exponentially.

When the thermostat turns the heater on the temperature increases exponentially towards
30 degrees, according to the differential equation

ẋ = −a(x− 30). (3)

Exercise 8 Verify that the trajectories of (3) increase towards 30 exponentially.

Assume that the thermostat is trying to keep the temperature at around 20 degrees. To
avoid “chattering” (i.e. switching the radiator on and off all the time) the thermostat
does not attempt to turn the heater on until the temperature falls below 19 degrees. Due
to some thermal inertia of the room, the temperature may fall further, to 18 degrees,
before the room starts getting heated. Likewise, the thermostat does not attempt to
turn the heater off until the temperature rises above 21 degrees. Again the temperature
may rise further, to 22 degrees, before the room starts to cool down. A trajectory of the
thermostat system is shown in Figure 7. Notice that in this case multiple trajectories
may be obtained for the same initial conditions, as for certain values of the temperature
there is a choice between switching the radiator on/off or not. Systems for which such a
choice exists are known as non-deterministic.

This system has both a continuous and a discrete state. The continuous state is the
temperature in the room x ∈ R. The discrete state, q ∈ {ON,OFF} reflects whether the
radiator is on or off. The evolution of x is governed by a differential equation (as was the
case with the pendulum), while the evolution of q is through jumps (as was the case with
the manufacturing machine). The evolution of the two types of state is coupled. When

10

ONOFF

D1 D2

F1 F2

G1

G2

Figure 8: Directed graph notation for the thermostat system.

q = ON, x rises according to differential equation (3), while when q = OFF, x decays
according to differential equation (2). Likewise, q can not jump from ON to OFF unless
x ≥ 21. q must jump from ON to OFF if x ≥ 22, etc.

It is very convenient to compactly describe such hybrid systems by mixing the differ-
ential equation with the directed graph notation (Figure 8).

4 Continuous State & Time Systems: State Space

Form

All continuous nonlinear systems considered in this class can be reduced to the standard
state space form. It is usual to denote

• the states of the system by xi ∈ R, i = 1, . . . , n,

• the inputs by uj ∈ R, j = 1, . . . ,m, and

• the outputs by yk ∈ R, k = 1, . . . , p.

The number of states, n, is called the dimension (or order) of the system. The evolution
of the states, inputs and outputs is governed by a set of functions

fi : Rn × Rm × R→ R, for i = 1, . . . , n

hj : Rn × Rm × R→ R, for j = 1, . . . , p

Roughly speaking, at a given time t ∈ R and for given values of all the states and inputs
these functions determine in what direction the state will move, and what the output is
going to be.

ẋ1 = f1(x1, . . . , xn, u1, . . . , um, t)

...

ẋn = fn(x1, . . . , xn, u1, . . . , um, t)

y1 = h1(x1, . . . , xn, u1, . . . , um, t)

...

yp = hp(x1, . . . , xn, u1, . . . , um, t)

Exercise 9 What is the dimension of the pendulum example? What are the functions
fi?

11

It is usually convenient to simplify the equations somewhat by introducing vector notation.
Let

x =

 x1
...
xn

 ∈ Rn, u =

 u1
...
um

 ∈ Rm, y =

 y1
...
yp

 ∈ Rp,

and define

f : Rn × Rm × R→ Rn

h : Rn × Rm × R→ Rp

by

f(x, u, t) =

 f1(x1, . . . , xn, u1, . . . , um, t)
...

fn(x1, . . . , xn, u1, . . . , um, t)

 , h(x, u, t) =

 h1(x1, . . . , xn, u1, . . . , um, t)
...

hp(x1, . . . , xn, u1, . . . , um, t)

 .
Then the system equations simplify to

ẋ = f(x, u, t)
y = h(x, u, t)

}
(4)

Equations (4) are known as the state space form of the system. The vector space Rn

in which the state of the system takes values is known as the state space of the system.
If the system is of dimension 2, the state space is also referred to as the phase plane.
The function f that determines the direction in which the state will move is known as
the vector field.

Notice that the differential equation for x is first order, i.e. involves ẋ but no higher
derivatives of x. Sometimes the system dynamics are given to us in the form of higher
order differential equations, i.e. equations involving a variable θ ∈ R and its derivatives
with respect to time up to drθ

dtr
for some integer r ≥ 1. Such systems can be easily

transformed to state space form by setting x1 = θ, x2 = θ̇, . . . , xr = dr−1θ
dtr−1 .

Exercise 10 Consider the system

drθ

dtr
+ g(θ,

dθ

dt
, . . . ,

dr−1θ

dtr−1
) = 0

Write this system in state space form.

It may of course happen in certain examples that there are no inputs or outputs, or that
there is no explicit dependence of the dynamics on time. In fact, for the next few lectures
we will restrict our attention to autonomous systems, that is systems of the form

ẋ = f(x)

without inputs or outputs and with no explicit dependence on time.

Exercise 11 Is the pendulum an autonomous system?

Exercise 12 Consider a non-autonomous system of the form ẋ = f(x, t), of dimension
n. Show that it can be transformed to an autonomous system of dimension n+ 1. (Hint:
append t to the state).

12

5 Existence and Uniqueness of Solutions

Consider an autonomous dynamical system in state space form

ẋ = f(x)

and assume that at time t = 0 the state is equal to x0, i.e.

x(0) = x0

We would like to “solve” the dynamics of the system to determine how the state will
evolve in the future (i.e. for t ≥ 0). More precisely, given some T > 0 we would like to
determine a function

x(·) : [0, T]→ Rn

such that

x(0) = x0

ẋ(t) = f(x(t)),∀t ∈ [0, T].

Such a function x(·) is called a trajectory (or solution) of the system. Notice that
given a candidate trajectory x(·) : [0, T] → Rn one needs to verify both the differential
condition and the initial condition to ensure that x(·) is indeed a solution of the differential
equation.

Exercise 13 Assume that, instead of x(0) = x0, it is required that x(t0) = x0 for some
t0 6= 0. Show how one can construct solutions to the system

x(t0) = x0, ẋ = f(x)

from solutions to

x(0) = x0, ẋ = f(x)

by appropriately redefining t. Could you do this with a non-autonomous system?

Without any additional information, it is unclear whether one can find a function x(·)
solving the differential equation. A number of things can go wrong.

Example (No solutions) Consider the one dimensional system

ẋ = −sign(x), x(0) = 0

A solution to this differential equation does not exist for any T ≥ 0.

Exercise 14 Assume that x(0) = 1. Show that solutions to the system exist for all T ≤ 1
but not for T > 1.

Incidentally, something similar would happen with the radiator system if the thermostat
insisted on switching the radiator on and off exactly at 20 degrees.

13

Example (Multiple Solutions) Consider the one dimensional system

ẋ = 3x2/3, x(0) = 0

All functions of the form

x(t) =

{
(t− a)3 t ≥ a
0 t ≤ a

for any a ≥ 0 are solutions of this differential equation.

Exercise 15 Verify this.

Notice that in this case the solution is not unique. In fact there are infinitely many
solutions, one for each a ≥ 0.

Example (Finite Escape Time) Consider the one dimensional system

ẋ = 1 + x2, x(0) = 0

The function
x(t) = tan(t)

is a solution of this differential equation.

Exercise 16 Verify this. What happens at t = π/2?

Notice that the solution is defined for T < π/2 but not for T ≥ π/2.

To eliminate such pathological cases we need to impose some assumptions on f .

Definition 1 A function f : Rn → Rn is called Lipschitz continuous if there exists
λ > 0 such that for all x, x̂ ∈ Rn

‖f(x)− f(x̂)‖ < λ‖x− x̂‖

λ is known as the Lipschitz constant. A Lipschitz continuous function is continuous, but
not necessarily differentiable. All differentiable functions with bounded derivatives are
Lipschitz continuous.

Exercise 17 Show that for x ∈ R the function f(x) = |x| that returns the absolute
value of x is Lipschitz continuous. What is the Lipschitz constant? Is f continuous? Is it
differentiable?

Theorem 1 (Existence & Uniqueness of Solutions) If f is Lipschitz continuous, then
the differential equation

ẋ = f(x)

x(0) = x0

has a unique solution x(·) : [0, T]→ Rn for all T ≥ 0 and all x0 ∈ Rn.

14

Exercise 18 Three examples of dynamical systems that do not have unique solutions
were given above. Why do these systems fail to meet the conditions of the theorem?
(The details are not easy to get right.)

This theorem allows us to check whether the differential equation models we develop make
sense. It also allows us to spot potential problems with proposed solutions. For example,
uniqueness implies that solutions can not cross.

Exercise 19 Show that uniqueness implies that trajectories can not cross. (Hint: what
would happen at the crossing point?).

6 Continuity with Respect to Initial Condition and

Simulation

Theorem 2 (Continuity with Initial State) Assume f is Lipschitz continuous with
Lipschitz constant λ. Let x(·) : [0, T]→ Rn and x̂(·) : [0, T]→ Rn be solutions to ẋ = f(x)
with x(0) = x0 and x̂(0) = x̂0 respectively. Then for all t ∈ [0, T]

‖x(t)− x̂(t)‖ ≤ ‖x0 − x̂0‖eλt

In other words, solutions that start close to one another remain close to one another.

This theorem provides another indication that dynamical systems with Lipschitz contin-
uous vector fields are well behaved. For example, it provides theoretical justification for
simulation algorithms. Most nonlinear differential equations are impossible to solve by
hand. One can however approximate the solution on a computer, using numerical algo-
rithms for computing integrals (Euler, Runge-Kutta, etc.). This is a process known as
simulation.

Powerful computer packages, such as Matlab, make the simulation of most systems rela-
tively straight forward. For example, the code used to generate the pendulum trajectories
is based on a Matlab function:

function [xdot] = pendulum(t,x)

l = 1;

m=1;

d=1;

g=9.8;

xdot(1) = x(2);

xdot(2) = -sin(x(1))*g/l-x(2)*d/m;

The simulation code is then simply

>> x=[0.75 0];

>> [T,X]=ode45(’pendulum’, [0 10], x’);

>> plot(T,X);

>> grid;

15

The continuity property ensures that the numerical approximation to the solution com-
puted by the simulation algorithms and the actual solution remain close.

References for Nonlinear part of the course:

Khalil, H.K, Nonlinear Systems, 3rd ed, Pearson Education, 2002, QN49.

Sastry, S.S, Nonlinear Systems: Analysis, Stability and Control, Springer-verlag, 1999,
QN47.

J.M. Maciejowski February 2012
Based on notes written by J. Lygeros

16

