
Cambridge University Engineering Dept. Third year

Module 3F2: Systems and Control

EXAMPLES PAPER 1 - STATE-SPACE MODELS

Solutions
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Figure 1:

Note that this is a ‘connection diagram’ and is not a block diagram in the usual sense. In
particular the motor output shaft is connected to a gear box and tachometer, but the motor’s
output is really torque. An assumption in a block diagram is that the input/output relation of
each block is independent of the rest of the system. The underlying equation of motion is:

Jθ̈o = torque on output shaft = n × motor torque = nkmkau

and together with noting that the tacho measures nθ̇o, this gives the following block diagram:
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Figure 2:

(a) Defining the state variable as x =

[
θo

θ̇o

]

, the state equations are

ẋ1 = x2, ẋ2 = θ̈o =
1

J
nkmkau, u = kθθi − w, w = kdktnx2 + kθx1

Substituting the numerical values and putting in matrix form gives:

ẋ =

[
0 1
0 0

]

x +

[
0
2.5

]

u; u = 10θi − w,

w =
[

10 4kd

]
x, θo =

[
1 0

]
x

1
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The closed-loop equations are thus:

ẋ =

[
0 1

−25 −10kd

]

x +

[
0
25

]

θi

θ0 =
[

1 0
]
x

(b) The transfer function of the state-space model

ẋ = Ax + Bu, y = Cx + Du

is G(s) = C(sI − A)−1B + D (from the Lecture Notes). In this case we have

A =

[
0 1

−25 −10kd

]

, B =

[
0
25

]

, C =
[

1 0
]
, and D = 0. Now

(sI − A)−1 =

[
s −1
25 s + 10kd

]−1

=

[
s + 10kd 1
−25 s

]

s(s + 10kd) + 25

so

G(s) =
[

1 0
]

[
s + 10kd 1
−25 s

]

s(s + 10kd) + 25

[
0
25

]

=
[

1 0
]

[
25
25s

]

s(s + 10kd) + 25

=
25

s2 + 10kds + 25

Check from the block-diagram shown above.

(c) (i) The poles are (a subset of) the eigenvalues of the matrix A, ie they are the roots of
det(sI − A) = s(s + 10kd) + 25 = s2 + 10kds + 25. From the formula for the roots of a
quadratic polynomial, the roots are

−5kd ± 5
√

k2
d − 1 = −5kd ± j

√

1 − k2
d

(ii) The poles are the roots of the denominator in (b). Clearly this is the same polynomial as
det(sI − A).
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2. Control system compensators can be implemented using op-amp circuits. For each of the circuits in Figure

3,

(a) Taking the capacitor voltages as internal states write down the state-space equations.

(i) By considering the current flowing onto the capacitor we obtain,

Cv̇o = −ve/R,

and defining x(t) = vo(t) we get the state space equations:

ẋ(t) = 0.x(t) − 1

CR
ve(t)

y(t) = 1.x(t)
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Figure 3:

(ii) Remembering that no current flows into the input to the op amp, then the current, i,
flowing through R2 is given by,

i =
ve

R1
+ C

dve

dt
, and vo = −R2i

Hence

vo = −R2

R1
ve − R2C

dve

dt

but the standard state space form will not allow a differentiator. Hence this circuit does not
have a state space form. However if any series resistance is included with the capacitor it will
have a state space form.
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(iii) The voltage across R1 is equal to ve and hence the current flowing onto C is ve/R1,
giving

Cẋ = ve/R1

vo = (R1 + R2)
ve

R1
+ x

ẋ =
1

CR1
ve

vo = x +
(R1 + R2)

R1
ve

(iv) Calculating the currents flowing onto each capacitor gives:

C1ẋ1 =
ve − x1

R1

C2ẋ2 = − ve

R3
+

x1 − ve

R1
− x2

R2

io =
x2

Ro

and in vector form this gives:

d

dt

[
x1

x2

]

=

[
− 1

R1C1

0
1

R1C2

− 1
R2C2

] [
x1

x2

]

+

[ 1
R1C1

− 1
C2R3

− 1
C2R1

]

ve

io =
[
0 1

Ro

]
[
x1

x2

]

(b) Hence calculate the transfer functions, poles and zeros; and state the type of controller that each

implements.

Using the formula G(s) = C(sI − A)−1B + D (in (i), (iii) and (iv)) gives:

(i) G(s) = − 1
CRs with a pole at s = 0. Integral action controller.

(ii) G(s) = −R2

R1

− R2Cs, with a zero at s = − 1
R1C . Proportional plus derivative action

controller.

(iii) G(s) = R1+R2

R1

+ 1
CR1s = (R1+R2)Cs+1

CR1s , with a pole at s = 0 and a zero at s = − 1
(R1+R2)C .

(iv)

G(s) =
[
0 1

Ro

]
[
s + 1

R1C1

0

− 1
R1C2

s + 1
R2C2

]−1
[

1
R1C1

− 1
C2

(
1

R3

+ 1
R1

)

]

=
1

(

s + 1
R1C1

) (

s + 1
R2C2

)
1

Ro

[
1

R1C2
.

1

R1C1
−

(

s +
1

R1C1

)
1

C2

(
1

R3
+

1

R1

)]

=
−R2[1 + sC1(R1 + R3)]

R0R3(1 + sC1R1)(1 + sC2R2)

with poles at s = − 1
R1C1

, − 1
R2C2

, and a zero at s = − 1
C1(R1+R3)

.

3. For the linearisation worked example given in lectures in section 3.3.1 verify the (1,2) element of the

matrix P .

It is clear from the form of the linearised equation that the (1,2) element of the matrix P

needs to be ∂θ̈
∂z

∣
∣
∣
e
. This is obtained from the second equation (giving θ̈) and differentiating

with respect to z whilst holding other variables at the equilibrium values
θe = 0, θ̇e = 0, F1e = −Mg, F2e =

√
2Mg. The equilibrium values of φ1 and φ2 are given by

φ1e = 0 and φ2e = π/4 but they are functions of z so we also need to calculate ∂φi

∂z which are
given by differentiating the tanφi equations giving:

sec2(φ1)
∂φ1

∂z
= − a sin θ

(
a + z − 1

2a cos θ
)2 ⇒ ∂φ1

∂z

∣
∣
∣
∣
e

= 0

sec2(φ2)
∂φ2

∂z
=

1
(
a + 1

2a sin θ
) ⇒ ∂φ2

∂z

∣
∣
∣
∣
e

=
1

a
cos2(φ2e) =

1

2a
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Now differentiating the θ̈ equation wrt z gives:

2

a

(

I +
1

4
Ma2

)
∂θ̈

∂z

∣
∣
∣
∣
∣
e

= 0 + [cos(θe + φ1e) + cosφ1e cos θe]
∂φ1

∂z

∣
∣
∣
∣
e

F1e + cos θe(− sin φ2e)
∂φ2

∂z

∣
∣
∣
∣
e

F2e

⇒ ∂θ̈

∂z

∣
∣
∣
∣
∣
e

=
a

2

(

I +
1

4
Ma2

)−1 (

[2] × 0 + 1

(
−1√

2

) (
1

2a

)√
2Mg

)

= −1

4
Mg

(

I +
1

4
Ma2

)−1

= − 1

2a

(
2I

Mag
+

a

2g

)−1

as required.

4. The following are matrices for state-space models in the form ẋ = Ax + Bu, y = Cx + Du.
(‘0p,m’ denotes the p × m zero matrix.) In each case determine (i) how many inputs,
states and outputs there are, (ii) the dimensions of the transfer function matrix, and
(iii) the transfer function matrix:

(a)

A =

2

4

−1 0 0
0 −2 0
0 0 −3

3

5 , B =

2

4

3
2
1

3

5 , C =
ˆ

4 5 6
˜

, D = 0

(b)

A =

»

−1 0
1 −2

–

, B =

»

2
3

–

, C =

»

1 2
0 1

–

, D =

»

1
1

–

(c)

A = −2, B =
ˆ

1 2
˜

, C =

2

4

3
0
1

3

5 , D = 03,2

In all of these the following apply:
(i) Number of inputs = no. of columns of B (or D).
Number of states = no. of rows (or columns) of A.
Number of outputs = no. of rows of C (or D).

(ii) Dimensions of G(s): no. of rows of C (or D) × no. of columns of B (or D).

Hence (i) and (ii) follow immediately for (a), (b) and (c).

(iii) Use G(s) = C(sI − A)−1B + D in each case:

(a)

G(s) =
[

4 5 6
]





1
s+1 0 0

0 1
s+2 0

0 0 1
s+3









3
2
1



 + 0

=
[

4 5 6
]





3
s+1
2

s+2
1

s+3



 + 0

=
12

s + 1
+

10

s + 2
+

6

s + 3
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(b)

G(s) =

[
1 2
0 1

] [
s + 1 0
−1 s + 2

]−1 [
2
3

]

+

[
1
1

]

=

[
1 2
0 1

] [
s + 2 0

1 s + 1

][
2
3

]

(s + 1)(s + 2)
+

[
1
1

]

=

[
1 2
0 1

] [
2(s + 2)
3s + 5

]

(s + 1)(s + 2)
+

[
1
1

]

=

[
8s + 14
3s + 5

]

(s + 1)(s + 2)
+

[
1
1

]

=

[
s2 + 11s + 16
s2 + 6s + 7

]

(s + 1)(s + 2)

(c)

G(s) =





3
0
1




[

1 2
]

s + 2
+ 03,2 =





3 6
0 0
1 2





s + 2

5. Consider the state-space equation,

ẋ(t) = Ax(t), x(0) = x
0
.

(a) Show that if x
0

is an eigenvector of A then x(t) = eλtx
0

if λ is the corresponding

eigenvalue.

xo is an eigenvector of A so Axo = λxo. With x(t) = eλtxo, ẋ = λeλtxo, and
Ax(t) = eλtAxo = eλtλxo = ẋ. Also the initial condition, x(0) = e0xo = xo, is satisfied.

(b) If

A =

»

0 1
−k −2

–

calculate the state transition matrix for k = −3, 0, 1 and 5, and verify that part (a)

holds for all eigenvectors of A. Are there any non-zero equilibrium states?

(sI − A)−1 =

[
s −1
k s + 2

]−1

= 1
s2+2s+k

[
s + 2 1
−k s

]

Eigenvalues of A: λ1 = −1−
√

1 − k, λ2 = −1 +
√

1− k

Eigenvectors of A: w1 =

[
1
λ1

]

, w2 =

[
1
λ2

]

eAt = L−1
[
(sI − A)−1

]

k = −3 : eAt = L−1

[
s + 2 1

3 s

]

(s + 3)(s − 1)
= L−1

[
−1 1
3 −3

]

(−4)(s + 3)
+ L−1

[
3 1
3 1

]

(4)(s − 1)

=
e−3t

4

[
1
−3

]
[

1 −1
]
+

et

4

[
1
1

]
[

3 1
]

eAtw1 = eAt

[
1
−3

] √
= e−3t

[
1
−3

]

; eAtw2 = eAt

[
1
1

] √
= et

[
1
1

]
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k = 0 : eAt = L−1

[
s + 2 1

0 s

]

s(s + 2)
= L−1

[
1 1

2
0 0

]

(s)
+ L−1

[
0 −1

2
0 1

]

(s + 2)

=

[
1
0

]
[

1 1
2

]
+ e−2t

[
− 1

2
1

]
[

0 1
]

eAtw1 = eAt

[
1
0

] √
= e0t

[
1
0

]

; eAtw2 = eAt

[
− 1

2
1

] √
= e−2t

[
− 1

2
1

]

k = 1 : eAt = L−1

[
s + 2 1
−1 s

]

(s + 1)2
= L−1

[
1 0
0 1

]

(s + 1)
+ L−1

[
1 1
−1 −1

]

(s + 1)2

= e−t

[
1 + t t
−t 1 − t

]

The repeated eigenvalue, λ1 = λ2 = −1, with just one eigenvector, w1 =

[
1
−1

]

.

eAtw1 = eAt

[
1
−1

] √
= e−t

[
1
−1

]

.

k = 5 : eAt = L−1

[
s + 2 1
−5 s

]

(s + 1)2 + 22
= e−t

[
cos 2t + 1

2 sin 2t 1
2 sin 2t

− 5
2 sin 2t cos 2t − 1

2 sin 2t

]

λ1 = −1 + j2, λ2 = −1− j2

eAt

[
1

−1 + j2

]

= e−t

[
cos 2t + j sin 2t

(−1 + j2)(cos 2t + j sin 2t)

] √
= e−tej2t

[
1

−1 + j2

]

The equilibrium states, xe, satisfy Axe = 0 which implies that xe = 0 unless det(A) = 0.

Now det(A) = k and hence when k = 0, xe =

[
α
0

]

is an equilibrium state for any α.

(c) For the circuit of 2(iv) determine intial states, x
0
, such that the resulting responses with ve(t) = 0 will

be x(t) = e−t/R2C2x
0

and x(t) = e−t/R1C1x
0
.

A =

[
− 1

R1C1

0
1

R1C2

− 1
R2C2

]

and we want the response of ẋ = Ax. This will be x(t) = eλtxo if

Axo = λxo, i.e. xo is an eigenvector of A with corresponding eigenvalue λ.

λ1 = − 1

R1C1
, w1 =

[ 1
R2C2

− 1
R1C1

1
C2R1

]

λ2 = − 1

R2C2
, w2 =

[
0
1

]

6. A system’s dynamical behaviour is defined by the state-space equation set

dx

dt
=

2

4

0 1 3
−1 0 1

0 0 3

3

5

| {z }

A

x +

2

4

1
0
0

3

5

| {z }

B

u, y =
ˆ

1 0 0
˜

| {z }

C

x.

(a) Find a change of state variables described by

z = T−1x

where T is a complex nonsingular matrix such that the state equations for z are in diagonal form, and

find the appropriately transformed state equations.

To diagonalize A we need T to be a matrix of eigenvectors, so firstly find the eigenvalues and
eigenvectors:
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det(λI − A) = det





λ −1 −3
1 λ −1
0 0 λ − 3



 = (λ2 + 1)(λ − 3)

λ1 = +j : 0 = (λ1I − A)w1 =





j −1 −3
1 j −1
0 0 j − 3









1
j
0





︸︷︷︸

w
1

λ2 = −j : w2 =





1
−j
0





λ3 = 3 : 0 =





3 −1 −3
1 3 −1
0 0 0









1
0
1





︸︷︷︸

w
3

T =





1 1 1
j −j 0
0 0 1



 ; T−1 =
1

2





1 −j −1
1 j −1
0 0 2





T−1AT = Λ =





j 0 0
0 −j 0
0 0 3



 , T−1B =
1

2





1
1
0



 = B

CT =
[
1 1 1

]
= C

For z = T−1x we have the state equations:

ż = Λz + Bu, y = Cz

Note that this ‘diagonal’ state space realisation is not unique since we could introduce
additional diagonal scaling of the states.

(b) Determine the system’s state transition matrix.

eAt = TeΛtT−1 (from lecture notes)

=





1 1 1
j −j 0
0 0 1









ejt 0 0
0 e−jt 0
0 0 e3t




1

2





1 −j −1
1 j −1
0 0 2





=





ejt e−jt e3t

jejt −je−jt 0
0 0 e3t




1

2





1 −j −1
1 j −1
0 0 2





=





cos t sin t − cos t + e3t

− sin t cos t sin t
0 0 e3t





(c) If x(0) =

2

4

0
0
1

3

5 and the input u(t) = 1 for t ≥ 0, find the resulting output y(t) for t ≥ 0.

Substituting the expression for eAt into the general expression for y(t) gives:

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ) dτ

= − cos t + e3t +

∫ t

0

cos(t − τ) dτ

= − cos t + e3t + [− sin(t − τ)]
t
0

= e3t − cos t + sin t.
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(d) Repeat parts (b) and (c) using Laplace transforms.

(sI − A)−1 =





s −1 −3
1 s −1
0 0 s − 3





−1

=






s
s2+1

1
s2+1

3s+1
(s−3)(s2+1)

−1
s2+1

s
s2+1

(s−3)
(s−3)(s2+1)

0 0 1
s−3






and
3s + 1

(s − 3)(s2 + 1)
=

1

s − 3
− s

s2 + 1

and this gives eAt as above.

In (c),

Y (s) = C(sI − A)−1x(0) + C(sI − A)−1B × 1

s
=

(
1

s − 3
− s

s2 + 1

)

+
s

s2 + 1
× 1

s

⇒ y(t) as above.

7. Figure 4 represents a two-link manipulator in a vertical plane, to be controlled by the two motors at the
joints producing torques T1 and T2 as shown. Ignoring frictional and damping terms this particular system
satisfies the following differential equations (where the dots over symbols denote differentiation with respect
to time):

T1 = −(14.25 + 4 cos θ2)θ̈1 − (1.5 + 2 cos θ2)θ̈2

+120 sin θ1 + 20 sin(θ1 + θ2) + 2θ̇2(2θ̇1 + θ̇2) sin θ2 (0.1)

T2 = −(1.5 + 2 cos θ2)θ̈1 − θ̈2 + 20 sin(θ1 + θ2) − 2θ̇2

1
sin θ2 (0.2)

[T1 and T2 in Nm, θ1 in radians and time in seconds].

(a) Calculate the torques T1e, T2e required to maintain the system in equilibrium at θ1 = π/6 and θ2 = π/3.

In equilibrium θ̇1 = θ̇2 = 0, θ̈1 = θ̈2 = 0, θ1 = π/6 and θ2 = π/3. Hence

T1e = 120 sin(π/6) + 20 sin(π/2) = 80 Nm

T2e = 20 sin(π/2) = 20 Nm

x =







θ1 − π/6

θ̇1

θ2 − π/3

θ̇2







, u =

[
T1 − T1e

T2 − T2e

]

Although the linearization about this equilibrium is given in the question, let’s derive it for
completeness. Equations (0.1) and (0.2) together with ẋ1 = x2 and ẋ3 = x4 give four
equations in the four unknowns ẋ1, ẋ2, ẋ3, ẋ4 that we want to linearise. Using the notation of
section 3.2 in the notes we have

F (ẋ, x, u) =







ẋ1 − x2

ẋ3 − x4

F3

F4







= 0

where

F3 = u1 + T1e + (14.25 + 4 cos(x3 + π/3)) ẋ2 + (1.5 + 2 cos(x3 + π/3)) ẋ4

−120 sin(x1 + π/6) − 20 sin(x1 + x3 + π/2) − 2x4(2x2 + x4) sin(x3 + π/3)

F4 = u2 + T2e + (1.5 + 2 cos(x3 + π/3)) ẋ2 + ẋ4

−20 sin(x1 + x3 + π/2) + 2x2
2 sin(x3 + π/3)
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Linearizing this equation gives:

L =
∂F

∂ẋ

∣
∣
∣
∣
(0,0,0)

=







1 0 0 0
0 0 1 0
0 14.25 + 4 cos(π/3) 0 1.5 + 2 cos(π/3)
0 1.5 + 2 cos(π/3) 0 1







=







1 0 0 0
0 0 1 0
0 16.25 0 2.5
0 2.5 0 1







M =
∂F

∂x

∣
∣
∣
∣
(0,0,0)

=









0 −1 0 0
0 0 0 −1

−120 cos(π/6)
−20 cos(π/2)

0 −20 cos(π/2) 0

−20 cos(π/2) 0 −20 cos(π/2) 0









=







0 −1 0 0
0 0 0 −1

−60
√

3 0 0 0
0 0 0 0







N =
∂F

∂u

∣
∣
∣
∣
(0,0,0)

=







0 0
0 0
1 0
0 1







which gives,

ẋ ∼= −L−1Mx − L−1Nu = Ax + Bu

where

A =







0 1 0 0
α2 0 0 0
0 0 0 1
−β 0 0 0







, B =







0 0
−0.1 0.25

0 0
0.25 −1.625







and α2 = 6
√

3 and β = 15
√

3 = 5α2/2.

(b) What are the open-loop poles of this linearized system? Determine an initial condition such that

x(t) → 0 as t → ∞.

Open loop poles = eigenvalues of A which satisfy,

0 = det(λI − A) = det







λ −1 0 0
−α2 λ 0 0

0 0 λ −1
β 0 0 λ







= (λ2 − α2)(λ2)

Hence poles are at ±α, 0, 0. Now only one of these is stable, namely −α, so that if x(t) → 0
as t → ∞ we must have x0 the corresponding eigenvector of A (recall Q.4) i.e.







0 1 0 0
α2 0 0 0
0 0 0 1
−β 0 0 0













2
−2α
−5
5α







︸ ︷︷ ︸

xo

= −α







2
−2α
−5
5α







⇒ x(t) = e−αtxo → 0 as t → ∞

(c) Calculate eAt. (Note that L(sinh(αt) − αt) = α3/s2(s2 − α2).) Since A and hence (sI − A) are lower
block triangular it is easily verified that:

(sI − A)−1 =

[
(sI − A11)

−1 0
(sI − A22)

−1A21(sI − A11)
−1 (sI − A22)

−1

]

(sI − A11)
−1

=
1

s2 − α2

[
s 1
α2 s

]

; (sI − A22)
−1

[
1
s

1
s2

0 1
s

]

(sI − A22)
−1

[
0 0
−β 0

]

(sI − A11)
−1 = −β

[
1
s2

1
s

]
[
s 1

] 1

s2 − α2
=

−β

s2 − α2

[
1
s

1
s2

1 1
s

]
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The following inverse Laplace transforms can be obtained from the first by integration since
each is the previous one multiplied by α/s.

L−1 s

s2 − α2
= cosh(αt); L−1 α

s2 − α2
= sinh(αt)

L−1 α2

s(s2 − α2)
= cosh(αt) − 1; L−1 α3

s2(s2 − α2)
= sinh(αt) − αt

and substituting these into the expression for (sI − A)−1 gives:

eAt =







coshαt α−1 sinh αt 0 0
α sinh αt coshαt 0 0
−βα−2(coshαt − 1) −βα−3(sinh αt − αt) 1 t
−βα−1 sinh αt −βα−2(coshαt − 1) 0 1







,
β

α2
=

5

2

(d) If you can release the system from an initial condition and measure the states how could you measure

the (3, 2) element of the state transition matrix?

Let the initial conditions be T1 = T1e and T2 = T2e, θ1(0) = π/6, θ2(0) = π/3, and with the
second link at zero relative angular velocity, θ̇2 = 0, but θ̇1 = x2o the initial (small) angular
velocity of the first link. (experimentally this would be quite tricky to set up!). When the
system is released from this initial condition the response should be,

x(t) = eAt







0
x2o

0
0







=







φ12(t)
φ22(t)
φ32(t)
φ42(t)







x2o

Hence the element φ32(t) could be measured by observing the response of the third state,
θ2(t) − π/3, for this initial condition response.

(e) Explain the physical reasons for the difference in response when the system is released from a small

displacement in θ1 and θ2 . The response due to changes in x1(0) is unstable since if θ1

becomes smaller the torque, T1e, will overcome gravity and make θ1 continue to decrease,
lifting the arm. If θ1 becomes larger the gravity torque will increase and the arm will
accelerate downwards. On the other hand since the second arm is horizontal its torque due
to gravity will not change for small changes in θ2.

(f) Calculate the transfer function from u2 to x3 , (Hint: this only depends on the (3, 2) and (3, 4) elements

of (sI − A)−1 and the second column of B), and hence deduce the response of x3 due to a step input on

u2.

The transfer function from u2 to x3 is,

G32 =
[
0 0 1 0

]
(sI − A)−1B

[
0
1

]

= 3rd row of (sI − A)−1 × second column of B

=
[

−β
s(s2−α2)

−β
s2(s2−α2)

1
s

1
s2

]







0
0.25
0

−1.625







= −1.625

s2
− 0.25β

s2(s2 − α2)
= −1.625

s2
− 0.25β

α2

{

− 1

s2
+

1

(s2 − α2)

}

= − 1

s2
− 0.625

s2 − α2

⇒ Impulse response: g32(t) = −t − 0.625
α sinh(αt),

⇒ response of x3(t) to a step on u2 = − 1
2 t2 − 0.625

α2 (cosh(αt) − 1).

(g) Suppose that this system is connected to a digital computer. The ADC measures x1 and x3 and the

DAC controls u1 and u2, all synchronised with sampling period T . Assuming that u1(kT ) = 0 for all k,

calculate the state-space difference equation relating the number sequences u2(kT ) output by the

computer and the sequence x(kT ).
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Note: In principle students should be able to do this part as an application of

the convolution integral. If they find it too difficult, this topic will be covered

briefly later in lectures.

Sampled data systems with sampling period, T , will be considered later in the notes.
Following the notation in that section we have,

x((k + 1)T ) = Φx(kT ) +

∫ T

0

eAtdtB

[
0
1

]

︸ ︷︷ ︸

Γ

u2(kT )

where

Φ = eAT as in (c) above

Γ =

∫ T

0







α−10.25 sinh(αt)
0.25 cosh(αt)

−0.25βα−3(sinh(αt) − αt) − 1.625t
−0.25βα−2(cosh(αt) − 1) − 1.625







dt

=
1

8







2C
2S

−5C − 4T 2

−5S − 8T







,
C = (cosh αT − 1)/α2

S = sinh(αT )/α

T

T

θ2

θ1

2

1

Figure 4: Robot arm

8. (a) A feedback system is given by

Y (s) = G(s) (R(s) − Y (s))

where G(s) = C (sI − A)−1 B. By considering the corresponding state-equations deduce that
Y (s) = HCL(s)R(s) where

HCL(s) = (I + G(s))−1 G(s) = C (sI − A + BC)−1 B

The block diagram will be:
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h G(s)-
−

-
6

-
R U Y

and the state space equations for G(s) are given by:

ẋ = Ax + Bu, y = Cx

u = r − y = r − Cx

⇒ ẋ = Ax + Br − B(Cx)

= (A − BC)x + Br

y = Cx

⇒ Y (s) = HCL(s)R(s) with HCL(s) = C (sI − A + BC)
−1

B.

Optional extra: Verify this identity using the matrix inversion lemma.

HCL = (I + G)−1G =
(
I + C(sI − A)−1B

)−1
C(sI − A)−1B

=
[
I − C(sI − A + BC)−1B

]
C(sI − A)−1B by Matrix Inversion Lemma

= C
[
I − (sI − A + BC)−1BC

]
(sI − A)−1B

= C(sI − A + BC)−1 [(sI − A + BC) − BC] (sI − A)−1B

= C(sI − A + BC)−1B as required.

(b) In the equations

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

when D is p × p and invertible, substitute u(t) = D−1

“

y(t) − Cx(t)
”

and hence show that the transfer function

of the inverse systems is given by,

“

D + C (sI − A)−1 B
”
−1

= D−1 − D−1C
“

sI − A + BD−1C
”
−1

BD−1

In this case the state equations will be:

ẋ = Ax + Bu; y = Cx + Du ⇒ u = D−1y − D−1Cx

⇒ ẋ = Ax + BD−1y − BD−1Cx = (A − BD−1C)x + BD−1y

u = −D−1Cx + D−1y

⇒ U(s) =
[

D−1 − D−1C
(
sI − A + BD−1C

)−1
BD−1

]

Y (s)

=
[
D + C(sI − A)−1B

]−1
Y (s)

Optional extra: In this case verification is immediate from the Matrix Inversion Lemma.

J.M. Maciejowski February 2006


