
Cambridge University Engineering Dept. Third year

Module 3F2: Systems and Control
EXAMPLES PAPER 1 - STATE-SPACE MODELS

1. A feedback arrangement for control of the angular position of an inertial load is
illustrated in Figure 1. (Note that this is not a block diagram in the control
sense). Assume that:

(i) The amplifier supplying the torque motor is voltage driven and produces an
output current linearly proportional to input voltage.

(ii) The torque motor produces an output torque linearly proportional to input
current.

(iii) The load, whose angular position is to be controlled, is a pure inertia and
that all forms of friction may be neglected.

(iv) The two angular position transducers are identical and produce output
voltages linearly proportional to input angular position.

(v) The tachogenerator produces an output voltage linearly proportional to
torque motor shaft speed.
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Figure 1:

The system has the following parameters.

Total inertia referred to output shaft, J = 1 kg m2

Amplifier conversion constant, ka = 0.125 A/V
Motor torque constant, km = 2 N m/A
Gearbox speed reduction ratio, n = 10/1 down
Position transducer constant, kθ = 10 V/radian
Tachogenerator constant, kt = 0.4 V/radian s−1

The amount of tachogenerator feedback may be varied by adjustment of the
velocity feedback constant kd.
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(a) Choosing θo and θ̇o as states, derive a state space model for this system.
(Note that the gear-box amplifies torque by the factor n, and that the motor
shaft rotates n times faster than the load.)

(b) Find the transfer function from θi to θo from your state-space model. Check
your answer by finding the transfer function using methods from the
second-year Linear Systems course.

(c) Calculate the poles of the closed-loop system as a function of kd (i) directly
from part (a), (ii) from part (b).

2. Control system compensators can be implemented using op-amp circuits. For each
of the circuits in Figure 2,

(a) Taking the capacitor voltages as internal states write down the state-space
equations, except explaining why this is not possible for (ii).

(b) Hence calculate the transfer functions, poles and zeros, and note the integral
action controller, PI and PD controller circuits.
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3. Consider the system

dx

dt
= −x2 + y2

dy

dt
= −x2 − y2 + u

(a) Find all equilbria of this system, when u = 1, and find linearisations valid
around each these equilibria.

(b) Sketch the state space trajectories in the vicinity of each of these equilibria.
What can you say about the behavior of the system in the rest of the state
space. Estimate the set of initial conditions for which the behaviour as
t→∞ remains bounded.

(c) Assume that the system is initialised in the region identified in part (b) and
left to settle. Now consider very slowly changing u in the range [0.5, 2]. How
would you expect x and y to change?

4. The following are matrices for state-space models in the form ẋ = Ax+Bu,
y = Cx+Du. (‘0p,m’ denotes the p×m zero matrix.) In each case determine (i)
how many inputs, states and outputs there are, (ii) the dimensions of the transfer
function matrix, and (iii) the transfer function matrix:

(a)

A =

 −1 0 0
0 −2 0
0 0 −3

 , B =

 3
2
1

 , C =
[

4 5 6
]
, D = 0

(b)

A =

[
−1 0
1 −2

]
, B =

[
2
3

]
, C =

[
1 2
0 1

]
, D =

[
1
1

]
(c)

A = −2, B =
[

1 2
]
, C =

 3
0
1

 , D = 03,2
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5. Consider the state-space equation,

ẋ(t) = Ax(t), x(0) = x0.

(a) Verify that, if x0 is an eigenvector of A, then x(t) = eλtx0 will satisfy this
state-space equation if λ is the corresponding eigenvalue.

(b) If

A =

[
0 1
−k −2

]
calculate the state transition matrix for k = −3, 0, 1 and 5, and verify that
part (a) holds for all eigenvectors of A. Are there any non-zero equilibrium
states?

(c) For the circuit of question 2(iv) determine intial states, x0, such that the
resulting responses with ve(t) = 0 will be x(t) = e−t/R2C2x0 and
x(t) = e−t/R1C1x0.

6. A system’s dynamical behaviour is defined by the state-space equation set

dx

dt
=

 0 1 3
−1 0 1

0 0 3

x+

 1
0
0

u, y =
[

1 0 0
]
x.

(a) Find a change of state variables described by

z = T−1x

where T is a complex nonsingular matrix such that the state equations for z
are in diagonal form, and find the appropriately transformed state equations.

(b) Determine the system’s state transition matrix.

(c) If x(0) =

 0
0
1

 and the input u(t) = 1 for t ≥ 0, find the resulting output

y(t) for t ≥ 0.

(d) Repeat parts (b) and (c) using Laplace transforms.
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7. Figure 3 represents a two-link manipulator in a vertical plane, to be controlled by
the two motors at the joints producing torques T1 and T2 as shown. Ignoring
frictional and damping terms this particular system satisfies the following
differential equations (where the dots over symbols denote differentiation with
respect to time):

T1 = −(14.25 + 4 cos θ2)θ̈1 − (1.5 + 2 cos θ2)θ̈2

+120 sin θ1 + 20 sin(θ1 + θ2) + 2θ̇2(2θ̇1 + θ̇2) sin θ2

T2 = −(1.5 + 2 cos θ2)θ̈1 − θ̈2 + 20 sin(θ1 + θ2)− 2θ̇21 sin θ2

[T1 and T2 in Nm, θ1 in radians and time in seconds].

T
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θ2

θ
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2

1

Figure 3: Robot arm

(a) Calculate the torques T1e, T2e required to maintain the system in equilibrium
at θ1 = π/6 and θ2 = π/3.

The linearised equations about this equilibrium point can be shown to be
given by:

ẋ ∼= Ax+Bu

where

A =


0 1 0 0
α2 0 0 0
0 0 0 1
−β 0 0 0

 , x =


θ1 − π/6

θ̇1
θ2 − π/3

θ̇2

 , B =


0 0
−0.1 0.25

0 0
0.25 −1.625

 u =

[
T1 − T1e
T2 − T2e

]

and α2 = 6
√

3 and β = 15
√

3 = 5α2/2.
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(b) What are the open-loop poles of this linearized system? Determine an initial
condition such that x(t)→ 0 as t→∞.

(c) Calculate eAt. (Note that

[
X 0
Y Z

]−1

=

[
X−1 0

−Z−1Y X−1 Z−1

]
when the

inverses exist, and L(sinh(αt)− αt) = α3/s2(s2 − α2).)

(d) If you can release the system from an initial condition and measure the states
how could you measure the (3, 2) element of the state transition matrix?

(e) Explain the physical reasons for the difference in response when the system is
released from a small displacement in θ1 and θ2 .

(f) Calculate the transfer function from u2 to x3 , (Hint: this only depends on
the (3, 2) and (3, 4) elements of (sI − A)−1 and the second column of B), and
hence deduce the response of x3 due to a step input on u2.
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Answers

1. (a)

ẋ =

[
0 1
−25 −10kd

]
x+

[
0
25

]
θi

θ0 = [1 0]x

(b) 25
s2+10kds+25

(c) Poles at −5
(
kd ± j

√
1− k2d

)
.

2. (a) (i) A = 0, B = −1/CR, C = 1, D = 0.
(ii) There is no standard state space form because of the derivative action.
(iii) A = 0, B = 1/CR1, C = 1, D = 1 +R2/R1.

(iv) A =

[
−1/C1R1 0
1/C2R1 −1/C2R2

]
, B =

[
1/C1R1

−1/R1C2 − 1/R3C2

]
,

C =
[

0 1/Ro

]
, D = 0.

(b)

G1(s) = −1/sCR

G2(s) = −R2/R1 − sCR2

G3(s) = 1 +R2/R1 + 1/sCR1

G4(s) =
−R2[1 + sC1(R1 +R3)]

R0R3(1 + sC1R1)(1 + sC2R2)

3. (a) x, y = 0.707,0.707; 0.707,-0.707; -0.707,0.707; -0.707,-0.707;

4. (a) (i) 1,3,1. (ii) 1× 1 (iii) 12
s+1

+ 10
s+2

+ 6
s+3

or 28s2+118s+114
(s+1)(s+2)(s+3)

(b) (i) 1,2,2. (ii) 2× 1 (iii)

 s2 + 11s+ 16
s2 + 6s+ 7


(s+1)(s+2)

(c) (i) 2,1,3. (ii) 3× 2 (iii)


3 6
0 0
1 2


s+2

5. (b)

k = −3 :
1

4

[
e−3t + 3et, −e−3t + et

−3e−3t + 3et, 3e−3t + et

]
,

k = 0 :

[
1 1

2
(1− e−2t)

0 e−2t

]
k = 1 : e−t

[
1 + t t
−t 1− t

]
k = 5 : e−t

[
cos 2t+ 1

2
sin 2t, 1

2
sin 2t

−5
2

sin 2t, cos 2t− 1
2

sin 2t

]
.
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With k = 0, xe =

[
α
0

]
is an equilibrium state for any α.

(c) x0 =

[
1/C2R2 − 1/C1R1

1/C2R1

]
, and x0 =

[
0
1

]
.

6. (b) exp(At) =

 cos t sin t (− cos t+ e3t)
− sin t cos t sin t

0 0 e3t


(c) y(t) = e3t − cos t+ sin t.

7. (a) T1e = 80Nm, T2e = 20Nm.

(b) Poles at 0, 0,±α. x0 =


−2
2α
5
−5α

.

(c) eAt =


coshαt α−1 sinhαt 0 0
α sinhαt coshαt 0 0
−βα−2(coshαt− 1) −βα−3(sinhαt− αt) 1 t
−βα−1 sinhαt −βα−2(coshαt− 1) 0 1


(f) G32(s) =

−1

s2
− 0.625

s2 − α2

x2(t) = −1

2
t2 − 5

48
√

3
[coshαt− 1]

Suitable questions from past 3F2 Tripos papers:
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