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1 Controllability

1.1 Controllability Gramian, Controllability matrix

A system:

X =Ax +Bu

is said to be controllable if for all initial conditions x(0) = x,, terminal conditions x;, and

t1 > O there exists an input u(t), 0 < t < t; such that /p ?5.1
(t1) -
x = X. = =
= N }05"’ -k‘h"“""@éé’};'ﬂ é{l}
That is, given x,, x; and t; > 0, we wish to find u(¢),0 < t < t;, such that
b Fe@g‘-’g \>
x; = x(t) =etix, +I eAi=DBy (L) dt LECTORE MNOTES 1
O &

Note that this equation can be solved for all x, and x; if and only if it can be solved for all
x; with x, = 0. So we will now just cansider the zero initial condition response.



131
Define the controllability Gramian, W, (t;) < J eATBBT AT g,
0

Now assume that W,(t1) has an inverse and let u(t) = u,(t) = BTeA" =W, (¢,)"1x,;
when (_t) Ah, -t) _‘_ (b,-‘t) w..l
x(t1) = f eA=DpRT AT -0y ()1 dt"f dt We X,
0
= We(t))Welt1) 'x; = x, as desired.
cltr)Welh 1 1 Wc.(_f‘)

Hence if detW, (1) # 0 then we can reach any x(t;) from x(0) = 0 (and hence there exists
u(t) to go from any x(0) to any x(t;)).

dot (W [t)) #0 => ConNTROLLARLE
(,F TRUE FoR ALL t,)

(Recall from section 3.1 of Lecture Notes 3:
Wo(t1) = [y} eATCTCeATdT  — Observability Gramian)

If W.(t1) is a singular matrix there exists z # 0 such that

i P
zIW.(t1) =0 :wac (mg%— 0 :{;ﬁ"ems} 0 for all t

—‘squarE  gooT'

and hence - i '--f (BT AT z) (ET A tz) dt
Z'x(t) = J: zTeA =Dy (t) dt = 0 for all u(t). > O ’\‘z
= x(t;) L z and the sys?em is not controllable. I‘\ e {5_-__!_ et
Hence: System is controllable if and only if det W,(t1) # 0. /:'i - r\ ahil ?/
In section 3.1 of Lecture Notes 3 we showed / —_ ﬂ Eéf;’g?gzée

Null space of W, (t;) = Null space of Q.
Similarly we can show:

Null space of W, (t1) = Null space of PT
where the controllability matrix P is given by

P B A AR ... A" ]

Hence |The system is controllable if and only if rank P = n




Example: E4 Exam question 3, 1997

4

3  Figure 2 shows a design for a hydraulically actuated table for simulating
earthquakes. The table is denoted as ABC, with the point C constrained to move
horizontally. DA and EB denote hydraulic rams which are pin-jointed at each end
and can produce forces F; and F, respectively. The equations of motion (which
should not be verified) are:

Mz = Fycos ¢; + Fysin ¢,

and
2 1 2 2 - 1 A2 s
= (I+ ZMG cos 9)9 = Mcosﬂ(-z-aﬂ sxno—g) +
+ [sin (8 + ¢1) + sin ¢y cos 0] Fy +
+ (cos 8 cos ¢o) Fy
where .
Ralinhs = asinf ati gy = z

a+z— jacosf’ a+ tasind’

M and I are constants, a and z are the lengths shown in Fig. 2, and 6, ¢, ¢

are the angles shown in the figure.

(a) What conditions are satisfied at an equilibrium? Determine values Fi,
and F,, of the forces F; and F;, which will give an equilibrium position 8 =4,

and z =z, if §,=0 and z, =a.

(b) The linearised equations about the equilibrium (6, = 0,2, = a) are:

t=Az+ Bu
where
;AT ; 0 I 0
z= [0’z—a)9)z] y U= [Fl‘ﬂe7F2_F2e]Tg A= [ p 02 ]) B = [ Q]a
-3 1 0 \/_1
1272 2gr2 2Mgr? 9]
P= r o , 0= , To= +_i, and I is the
4 2a M M

2 x 2 identity matrix.

(cont.

[4)
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Verify that the term —g, which appears in P, is correct. (Do not verify any

4
other terms. Assume that the nonlinear equations are correct.)
(c) Is the linearised system of part (b) controllable from u? Is it controllable [6]
from u; (the first element of 2) alone? FOC\JS OM
w ( THESE Wegf

(d) Comment on the difference in the achievable behaviour of this system when
. is available.

only wu; is available for control, and when the complete vector u
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Fig. 2 /.!

(TURN OVER M’,

Note that if the system is controllable this just implies that the state can pass through any
value; it does not imply that there is an input to keep the state at this value (which

depends on the equilibrium conditions):
Controllability from both inputs: x = Ax + Bu,
Controllable? rank[B, AB, A2B,A3B] =47
(C) Controllability from u; alone: x = Ax + bju;,
{_Controllable?  rank[by, Aby, A%by,A3h;] =47

Achievable steady-state (equilibrium) behaviour:

n=4)
(B =[b1, b2])

EL 5\ With both inputs;
24 x = Ax + Bu, x, = 0 at equilibrium, so: 0 = Ax, + Bu, possible for some 1,?

[ With input ©; only: 0 = Ax, + byu. possible for some 11.?



1.2 Minimum Energy Input

Theorem 1.1 The inputu(t) = u,(t) = BTeAT =W (t))"1x,, takes the state from
x(0) =0 to x(t1) = x; and in addition is the input with minimum energy that achieves this.

Proof:
3%

Let u(t) = 1, (t) +uy () then x(t1) = x; + L eAh =By, (t) dt and hence x(t)) = x;
implies,

3%

| eraBu 1) ae -0

0

Energy in w(t) for 0 < t < t; is defined as:

J‘otlg(t)Tﬂ(t) at = J‘ (‘—{o_‘, ‘il}T(goﬁ' 5\\ dt

154
JO (140 (5 T2y (8) + 245 ()24 (£) + 24 () T2y (8) + 24y (D) T2y (1)) e

31
j lw(t) 124t
0

I

Now

t i (5
Lluom%(t) dt = jolg{WAtl)-leA“l-”Bul(t) dt =0 = folul(tﬂzo(t) dt

and

t1 ty
‘[0 ﬂo(t)Tﬂa(t) dt = E{Wc(tl)_l JO eA(tl—t)BBTeAT(tl—t) dat Wc(tl)—l£1 - ?f.]TWc(tl)—lél
Hence

ty 5%
[, woTu) dt = xIwe(e) s + [ 07w 1)

Since both terms are > 0 the minimum energy is achieved when u, (t) = 0 and hence
u(t) = u,(t) when

t
min fo w(®Tu(t) dt = xTWe(t1) ;.

Note that if W, (t1) is nearly singular then a very large energy input is required to reach
certain states.

MNOTE  ANALOGY  WITH L ARGE  X(0) §wiNg
{'t} T / Y . R
SMALL ] g! ) (éi“ dt - 3’\;‘& {__tg } 15 iJEAQ;}g SIMNGULAR
S
[ ECTJEE. AOTES

K



Example
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MoSTLY SKIPPED N LECTORES,
SUITABLE FfoR  DiscussioN 1IN
sopeevisioN  (IF TIME AlLows),

In the pendulum laboratory experiment we have the following linearized equations:

1.3 Example: Pendulum Control

x 0 1 0 0 0
Codlx 0 0 wi-w3 0 1
at | Le 00 0 1 0
Lo 00 -wj O 1

A B

where x is the position of the carriage, @ is the angle of the pendulum, u is proportional
to the force on the carriage, L is the length of the pendulum, w; is the natural frequency
of the pendulum with the carriage fixed and wy is the natural frequency of the pendulum
with the carriage free to move.

It is not too difficult to verify that,

t— (ﬂﬁa_:géﬁl (wot — sin(wpt))
(wi~w?)
1+ =21 (cos({wot) —~ 1
F(t) % ofip - —5(2;1—‘( (wot) ~1)
w—osin(wot)

cos(wot)

It becomes rather tedious to then calculate,
4]
We(ty) & J FIOEMT dt
0

and even more challenging to calculate W, (t;)~11l

However given values for the parameters this can be solved numerically or even using
symbolic algebra packages (although you are likely to get several pages of output!).

A sample numerical calculation is given in Figs. 1 and 3 for t; = 0.75 s and t; = 0.5 s, and
final state is at rest 0.4 m along the carriage. For an ‘animation’ see Figs. 2 and 4.

A Taylor series expansion of W,(t1)~! can be obtained using symbolic algebra and gives
1

0
the minimum energy to reach x; = 0 is approximately 10((3)%00 t77 for small t; —
1

0
showing that the required input increases dramatically as t; becomes small.
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Figure 1: Pendulum trajectories
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Figure 2: Animation of pendulum

(time between frames is 0.01 seconds)
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Figure 4: Animation of pendulum



DoESN'T  wokk  ANY MoRE 10
BUT spows THE IDEA. Ask A KEEN

e STUDENT To FIX IT?
The MATLAB code to draw these figures is:

% this file calculates the minimum ‘energy’ input to move the pendulum from
% zero state to state x1 at time tl.

% Instructions for use:

% set tl and x1, e.g. t1=0.8 .7 .6 .55, x1=[.4;0;0;0]

% then calculates the min energy trajectory.

% then run crane_ol.mdl to simulate the linear model with this open loop u.
% For demo purposes the animation at the end is best. Paste this into

% the matlab window.

Toad pend % loads the state space matrices
% calculate the optimal input u.
del=t1/1000; t_u=0:del:tl;
exp_del=expm(a*del);
exp_at=eye(4);
Wc=b*b’ *del;
for t_i=t_u,
exp_at=exp_at*exp_del;
We=Wc+exp_at*b*b’ *exp_at’*del;
end

x=Wc\x1;
u=zeros(length(t_u),1);
for i=length(t_u):-1:1,

u(i)=b’*x;
x=exp_del’ *x;
end
return

% this signal is then input to the simulation in crane_ol.md]

% can then plot results with

plot(t_sim,x(:,1), 'b-",t_sim,x(:,2), g’ ,t_sim,x(:,3), ' r-.",t_sim,x(:,4), 'c--",t_u,u/10, m--
legend('x ',’x dot’,’L theta',’L theta dot','u/10’,3);

xlabel(’time’);grid on; title(’Pendulum control trajectories’)

% now Tet’s animate the results

L=0.125;

plot([-.1;.5],[0;0]), axis([-.1 .5 -.2 .05]); axis equal; hold on

for i=1:Tength(t_sim),
plot([x(i,1); x(,1)-L*sin(x{(i,3)/L)]1,[0;-L*cos(x(i,3)/L)],’c’, EraseMode’, "none’)
drawnow; tic; while toc<.15, end

end

hold off
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1.4 Reachable States and Minimal Realizations

We have seen in the previous section that if W,.(t1) is nearly singular then some directions
in the state space are very difficult to reach, and if W, (t;) is singular then some states
cannot be reached and that x(t1) is necessarily perpendicular to the null space of W;(t).
It can in fact be shown (details are omitted) that the states that can be reached at time t;

from x(0) = 0 are precisely of the form: = COLUMN SPAN
={_)¢ P x = W<(t,)_|{ FoR Somé& Z}
Ay,
Reachable states = Range space of W (t1)
= Range space of P = [ B AB A?B ... Anlp ]

(since null spaces of PT and W,(t;) are the same,

and using Fact 2.2 from Lecture Notes 3.)

EXAMPLE (n=3) - o

colUumMa  SPARS Z
o | =
'F-: 2 N OQ — 0{ o -i-.ﬁ |
g ; o RANGE SPAcE o .

Definition 1.2 A set of state equations given by (A, B, C, D) is called a minimal realization
of its transfer function, G(s) = D + C(sI — A)~'B, if there does not exist a state space
realization of G(s) with a lower state dimension.

In section 3.2 of Lecture Notes 3 we saw that if a system was not observable then there
was a change of state coordinates that gave an observable realisation of the transfer
function with 7 states where » = rank(Q).

If this system with v states is not controllable its state dimension could be further
reduced in a similar manner and we are left with a state-space realisation of the transfer
function that is both controllable and observable. It turns out that (proof omitted).

Theorem 1.3 A realization is minimal if and only if it is both controllable and observable.

———

: (21
CECALL: a< R (N S Jo o
A fi 'J')'I.Z, | ? » Lg [‘ C [ d J
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In single-input/single-output systems this means that if a system is either not controllable
or not observable then there are pole/zero cancellations in the transfer function.

Example:

A= ]. B= ?:|, C=[1,1], D=0

[ V]
Q= £ | = [ ‘ = rank(Q) = 1 = NOT observable
i

I 1 [ 0 ]
Qxp =07 | 1 - S0 x = x is not observable.
-2 =2 L X2 0 . 4 J

Controllability:

o |
P =B, AB] = [ i __3] = rank(P) = 2 = controllable

Example continued

Transfer function:

-1
G(s)=C(3I—A}“’B+D=[1,1][; "1] [0}

s+ 3

oy L7

s(s+3) +2

Cood] [;J

(5+1D(s+2)

1

i

. o S
T s+ s +2) s+2

pole-zero cancellation
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2 State Feedback

The response of a system is largely determined by the location of its closed loop poles.

Jllls

Can state feedback assign the closed loop poles? -
mxp nx v - pxn  (Assom€ D=0)
M 2~ B — fot "<
_ il + =1 Yy

+ A -
Kx | <2 __ASsuME !

= K CAN MEASURE
—— STATE VEcTOR

System: x = Ax + Bu, with state feedback: u = —Kx + Mr, giving closed loop:

% = (A-BK)x + BMr.

Theorem 2.1 The closed loop poles will be the eigenvalues of (A — BK) which can be placed
arbitrarily by choice of K if and only if (A, B) is controllable.

(The derivation of this is entirely analogous to the result in section 4.2 of Lecture Notes 3,
that the eigenvalues of (A — LC) can be arbitrarily assigned by choice of L —
if (A, C) is observable).

Where to place the poles?
- stable
- fast enough

- but not too fast since this might
- saturate actuators

- give poor stability margins.
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(A+BK)~' EXISTS  |F  ASYMPToTICALLY
STABLE. (No  EICENVALUES AT O

2.1 Steady-State Gain . NOT  SINGULAR))
Servo-system. Suppose we want y(t) — . NxM mxp
Two approaches to obtain the correct DC gain: . J
(a) Choice of M ;C:O = x:_(A"EK) EM i
{z = (A-BK)x +BMr RANK (BM) < V"““(”'P)
y = Cx

In steady-state: X =0 =y = C(-A + BK)"BMvr. t NEED RANK = P

Choose M such that C(—A + BK)"1BM = I and y(t) — r after a step change with speed
given by eigenvalues of (A — BK). [Such an M usually exists if dim(u) = dim(y) but not
otherwise].

This requires exact knowledge of the system matrices. The steady-state error being zero is
not robust to small changes in the system. Also need to know an equilibrium condition.

(b) Integral Action

Integral action can be incorporated by augmenting the state by the integral of the error, i.e.

e=r-y=r-Cx g(-{;) = Jt[f(t)_g(t)i}d‘c
[o]

T L

x
with state feedback: u=-Kix—-Kre. = — C K\ K':.][g]

Choose K1, K> to assign the closed-loop poles (possible if augmented system controllable)
and then e(t) — 0 = y(t) — r after a step change.

Robust to small changes in A, B, C, K.

Does not require knowledge of the equilibrium condition.

[®

)

L o~ = If. ? Py S  P—
~20) fdt 1 K o T )

|

1 LY i ' ==
{ f :'1 } Eé:

=S
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2.2 State Feedback Design Example

T PLanT . T T
N k r \ | 3

s 1 s
|

\
' {

Plant G(s) = ﬁ X -3%

\
i
t

Design Spec
Response in y to a step command on * to have zero offset and small overshoot.

Integral Action Controller

To attain zero offset need to insert an integrator in the open loop. Assume only the output
is used for feedback.
CHoOSE "!55 FoR  SiMPLICITY. PalL ( kl \.l‘__a.) LooLDd
s

BE MoRE USOAL,

Open loop transfer function = Rﬁ@?- with closed loop poles roots of
$34+3s2425+k=0

2 T T T T T T T T T

15¢

05+

-0.5F

2 L 1 i L i L

-3 -25 -2 -15 =1 ~0.5 o 0.5 1 1.5 2
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A passable design would be k = 0.528 which gives closed-loop poles at
—2.2,-0.4 £ j0.283. The closed loop response will be:

25 T T
22 ime e input
——  output
2k e T e S e e e e ———— =
15
‘ -
0.5
0
1] 15
State Feedback Design
First formulate the state space equations 3 X, T U 7‘(|+ 2 x,= X 2
X-e
3
- ‘ k
. _S_ .
-t—

We will again need to add an integrator to ensure a zero offset. The state feedback
formulation will now be

L L

’ o «E
| t | { g
I( ,'Irl' ) S ._ %’_’)e = {. L“. “.,j

rA g3 / —
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The extra state variable x3 has been added to integrate the output error -

X3=-X1+7

this gives an augmented set of state equations

i -2 1 0[] x 0 [o
d—'r£= 0 -1 0 x2 |+ 1 [u+]| 0 |7
-1 0 O X3 0

and the proposed feedback scheme is given by u = -k’ x = — [ ky ks ki ]5. so the
closed loop state equations hecome

-2 1 0 0
x=(A-BkDx+| 0 |r=| ki -1-ks ks |x+| 0 |7
1 -1 0 0 1
The closed loop characteristic equation becomes
A+2 -1 0
detfAl = (A-Bk™)] = det| ki A+1+ky +k3 |=@A+2)A+1+ka)A+KkiA—ks
1 0 A

A+ (3B+ka)A% + (2 + ky + 2k2)A — k3

Suppose we desired all the closed loop poles to be at -5, then the required characteristic
equation would be:

(A+5)% =A% +15A% + 75A + 125
Equating coefficients now gives

3+ky = 15=ky=12, 24k  +2ks=75= ky =49, k3 =-125




Tts)
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The transfer function from » to y can now be computed as:-

-1

¥(s) 0 s+2 -1 0 0 )
¢ (A pLTYI- _ 3 _ 125
T REs) C[sI - (A-Bk")] 0 [100]| 49 s+13 -125 0 |= G153
1 0 s 1
Also the transfer function from » to u can be computed as:- CANCELS ( N THIS
- PLANT PoLss [ CASE.
U(s) K X(s) e e O 15GaD6eD  Lpnie
28 _£4) = - = ot C GENERAU-‘I_)
REs) Rs) [49 12 —125]| 49 s+13 -125 0 G+5)7
1 0 s 1
The step responses are thus:-
s T T L} L} T T T T L]
=
7':’1 }_4 i P inlt‘e%ral action control |
\ -
1 ol
g | < WTH [=0.528 i
I
o4 (s€L  PAGE 15-16)
A
af ! R
1
]
1
ak
\ {(\’L{
\
2r X i M el S "‘__ ";,‘L et s o e e et e
PRy
y )‘__,- /"'. -t i
7 Re "——-'-—_!‘:_F._.—
e %

Very similar to using a 3-term controller which could also give arbitrarily fast response,
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3 Observers with State Feedback

X = Ax+Bu
SYSTEM
Yy = Cx
¥ = AX+Bu+L(y-9)=(A-LO)Z+Bu+L
OBSERVER {5 L+Bu+Lly -3 = )2 +Bu+Ly
Yy = Cx
CONTROLLER {u = -K&+Mr
Error: ¢ = x-%
e = (A-LQ)e
u = —-Kx-¢+Mr
% = (A-BK)x+BKe+BMr

Ji- [
ol

X ¥
/'"‘ ~*» NB: Eigenvalues of [ 5 B J = {Eigenvalues of X} u {Eigenvalues of 7}
|
|
|

| ne—]
Is- R

IR
I

So closed-loop poles are at the eigenvalues of (A — BK) and those of (A — LC).

s i o
e is not affected by 7 so that e(t) — 0. ngﬁb Be,qu(. BSERVER

Separation of estimation and control.
Can this always be done?

If (A, B) is controllable and (A, C) is observable, then no problems —

we can place all eigenvalues anywhere we want,

If all uncontrollable and unobservable modes (states) are stable, may still be OK.
If any uncontrollable or unobservable modes are unstable, then NOT OK,

since they will remain in the closed-loop system,

[ "

f ot



Block diagram:

(59

—_ : PLANT
| M + :

s A :'

; x i

E K OBSERVER :

OBSERVER-BASED CONTROLLER

If = 0 then this structure is the same as for a dynamic precompensator.

For r # 0 the structures are different.



