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1 Revision of Feedback Control

1.1 Why use Feedback?

- To reduce effects of uncertainty:
- Disturbances Wind/waves, Friction, Impurities, ...

- Model errors Approximations, Tolerances, Ageing, ...

. To stabilise unstable system:
- Inverted pendulum, Bicycle
- High-performance fighter aircraft (Fly-by-wire)
- Helicopter, Submarine (depth)
- Exothermic chemical reactor, Nuclear reactor

Problems with feedback:
- May destabilise system

- Sensors introduce noise

1.2 The Standard Feedback Loop
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1.3 Sensitivity and Complementary Sensitivity

Let L(s) be the (open) loop transfer function: L(s) = G(s)K(s) “Return-ratio

Sensitivity: S(s) = 17757
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Small |S| = feedback is beneficial.
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Complementary Sensitivity: T(s),= 1£f{ls ;
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T = 1 = good "tracking" but no noise filtering.

Fact:  [S(s)+T(s) =1|

Hence trade-off:

- Small [S(jw)| at low frequencies

+ Small |T(jw)!| at high frequencies.

(Multivariable: S(s) = [I + L(s)]™1)

(Multivariable: T(s) = L(s)[I + L(s)]7?

(1 = sensor noise)

(Multivariable: S(s) + T(s) =1)
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Figure 1: Sensitivity (S§) and Complementary Sensitivity (T)



1.4 Steady-state Error

Constant reference: 7 (t) = &, 7(s5) = % Assume closed-loop is asymptotically stable.
lim; . e(t) = S(0)ox = 57y (Final Vatue Theorem or S(jw) with w = 0)
limy o e(t) = 0if |G(O)K(0)| = 0 < G(s)K(s) has pole at s = 0 — integral action
Constant disturbance: d(t) = B, d(s) = % G (o)
£ _ _(S. Zero steady-state error < K(s) has pole at 5 = 0. (o S(D) RN PT Y
: y ) has poleat s =0 G 0) [ +GIOK(O)
Ramp reference: r(t) = at, 7(s) = 3.
lim; oo e(t) = lims_g s&(s) = lim;.o $S(s). (Final Value Theorem)
Hence:

. Finite steady-state error « G(s)K(s) has a pole at s = 0.
. Zero steady-state error < G(s)K(s) has two poles at s = 0.

Enall steady-state error requires high gain at "DC".

1.5 The Nyquist Stability Theorem

Motivation:
. The frequency response can be determined experimentally.
. Or from transfer function or state-space model.

. Want a test for closed-loop stability that uses open-loop information.

Theorem:
. Plot L(jw) = G(jw)K(jw) on the Argand diagram, for —o < w < +o
— the Nyquist plot.

. The closed loop is stable if and only if the Nyquist plot encircles the point —1 + jO pu
times counterclockwise, where py, is the number of unstable poles of G(s) and K(s).



2 The Root-Locus Method
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2.1 An Example \1—7‘
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2.2 The Angle Condition
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where any complex zeros or poles occur in conjugate pairs arid m < n.

We assume for the moment that ¢ > 0.

Suppose that sy is on the root-locus:

1+ kL(sg) =0 = L(sg) = — real and negative (2.1)
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Hence angle condition for sy to be on the root-locus:
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2.3 Finding Gain from the Root-Locus Plot

Once a root-locus plot has been obtained, it can be calibrated with k values. From (2.1) we

have, at a point s on the root-locus:
[+k L(se)=0O
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k = ——
|L(s0)|
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2.4 Constructing the Root-Locus Plot

Nowadays we can use software to draw root-locus diagrams (eg rlocus in Matlab).

But it is useful to have some understanding of how the form of the locus is determined. A
set of about 15 ‘construction rules’ has been developed. The 5 most important ones are
given here. They are all consequences of (2.3) and properties of polynomials.

Rule 1. The root-locus diagram is symmetric with respect to the real axis and consists of n
branches.

Rule 2. For k = 0 the n branches start at the open loop poles p;. As k — «, m branches tend
to the zeros z; and n ~ m branches tend to infinity.

Rule 3. Points on the real axis which lie to the left of an odd number of poles and zeros are on
the root-locus.

Rule 4. The breakaway points are those points on the root-locus for which d%—L(s) = 0 (same as
dk/ds = 0).

Rule 5. As k — o, the n — m branches which tend to infinity do so along straight line
asymptotes at angles (2€ + 1)7r/(n —m) to the +ve real axis ({ = 0,...,n —m — 1), and
emanate from the point (‘centre of gravity’ — pole +ve mass, zero -ve mass):

z;n=1 Pi— Z;L Zi

n-m
Pr : : n
roof of Rule 2: ; [« k L(s) = 1+ }(d(‘) =0

A(sg) + kn(sg) =0 from (2.1)

So if k = 0 then d(sg) = 0 = Branches start at poles.

Suppose k — oo. If |sg| stays bounded then |d(sp)}| << |kn(sp)l,
S0 kn(sg) — O = Finite branches end at zeros. There can be at most m of them.
The remaining n — m branches go to .

Application to previous example:
n=3,m-=1, son—m=2. Two asymptotes at angles 1r/2 and 37r/2.
Asymptotes emanate from (Rule 5):

(0-3-3)-(=5) _ 1
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Consider a point sp, a pole p;, and a zero z;, all on the real axis.

A ) 0if so > p;
S —pi) =
s mif 5o < p; {_1\1— \ m
The same holds for Z(sy — z;). Rule 3 follows from (2.3). g ) ZE \ ;EP
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Example of use of Rule 3: —L= L—‘
Suppose that G(s) has one pole and one zero in the right half-plane, eg p; = +5, z; = +2.
Rule 3 shows that K(s) must have a pole between +2 and +5
— the controller must be unstable!
(Figuring out the details is often easier from Bode plots etc.) T
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Application of Rule 4 to example of Fig.2.1:
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da ( s+5 _) vt
=0 ds \s3 + 652 + 10s
= 1(s3 + 652 +10s) — (s + 5)(3s2 + 125 + 10) -0
(s3 + 652 +10s)2
253 -21s2-60s =50 0
(s3 + 652 +10s)2
- —2(s + 1.5505) (s + 2.5) (s + 6.4495) 0

(53 + 652 +10s)2

From Fig.2.1 it is seen that the root at —6.4495 is not on the root-locus.
The other two roots give the breakaway points (ie repeated roots).



2.5 Root-locus for negative k (or negative c)

1+kG(so) =0 = Glso) = —% 50
= £G(sp) =20
+ Rules 1,2,4 remain unchanged.
- Rule 3: Replace ‘odd’ by ‘even’.

- Angles of asymptotes become 2{71t/(n — m).
(Points from which asymptotes emanate remain unchanged.)
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2.6 Studying Parameter Variations

Root-locus diagrams can be used to study the variation of closed-loop poles as other
parameters vary — not just the loop-gain k.

All that is needed is to put the closed-loop characteristic equation into the form
1+AH(s)=0 (2.4)

where A is the parameter that is varying, and H(s) is a transfer function.
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Example: Robot placing objects of varying mass

The 1-D equation of motion of a robot moving a mass m with viscous friction ¢ and elastic
tether is mX = u — cx — ox where x is the mass position and u is the applied force. The
use of a PI controller is proposed, with a transfer function k(s + z)/s.

With m = 0.1 kg, ¢ = 0.6 N/(m/sec), & = 1 N/m and z = 5 we have

L 10 $+5
= K -
01s2+06s+1 s2+6s+10 2 (5) =k

G(s) =

Letting L(s) = G(s)K(s)/k the closed-loop characteristic equation is 1 + kL(s) = 0.

Using Fig.2.1, 10k = 1.395 places two closed-loop poles at —1.55 (one of the breakaway
points) and the third pole at —2.9.

What if the mass varies?

The closed-loop characteristic equation is

S () 0 {+LL(:)=O

s(ms2+0.6s+1)

which has the same roots as
3
(ms® +0.652+s5)+k(s+5)=0 PIVIDE BY ms

or HE) /
/—W‘-\
1+%0.632+[1+k]s+5k=0 [+ A H6) =0

<3
which is in the form of (2.4) with A = 1/m. The root-locus plot for this, with k = 1.395/10,
is shown in Fig.2.6. The roots with m = 0.1 are marked.

Variations of closed-loop poles as 1/m varies can be clearly seen.
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Root locus. Eliocis of varying mass

Figure 2: Root-locus diagram for variation of mass in robot problem.

3 The Routh-Hurwitz Criterion

The closed-loop characteristic equation nq (J) K ( ¢ ) _ nk ('f)
1+ G(s)K(s)=0 —_ C@: d._ ) ’ O{k (s)
, . G

has the same roots as

dc(s)dg(s) + ng(s)ng(s) =0  polynomial

The Routh-Hurwitz criterion tests whether a polynomial has any roots with nonnegative
real parts. So it tests for asymptotic stability.

Sometimes useful for finding value of k at which root-locus crosses imaginary axis.
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Consider the polynomial (assume ag > 0):
aos" + ars" L+ axst - an1s+ay (3.5)

Easy to check that all roots have negative real parts only if a; > 0 for each i.

A Routh array can be constructed for arbitrary n
— see Franklin, Powell and Emami-Naeini, 3rd edition, sec.4.4.3 (for example) for details.

For n = 2, 3, 4 simplifies as follows: These are in Electrical Data Book
All the roots of (3.5) have negative real parts if and only if:

n=2 : a;>0, No other conditions

n=3 : a;i>0, aiaz > apas

n=4 : a;>0, airaxa;> apal +asa?



