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If L(s) is stable , then:

!

"

L(jω)

−1

=⇒
L(s)

1+ L(s)
is

asymptotically
stable

!

"

L(jω)

−1

=⇒
L(s)

1+ L(s)
is

marginally
stable

!

"

L(jω)

−1

=⇒
L(s)

1+ L(s)
is

unstable

That is, the closed-loop system is stable if the Nyquist diagram of the

return ratio doesn’t enclose the point “−1”.

(either marginally or asymptotically)



Summary

The Nyquist diagram of a feedback system is a plot of the

frequency response of the return ratio, with the imaginary part

!
(
L(jω)

)
plotted against the real part "

(
L(jω)

)
on an Argand

diagram (that is, like the Bode diagram, it is a plot of an open-loop

frequency response).

The Nyquist stability criterion states that, if

the open-loop system is asymptotically stable (i.e. the return

ratio L(s) has all its poles in the LHP) and

the Nyquist diagram of L(jω) does not enclose the point “−1”,

then the closed-loop system will be asymptotically stable (i.e. the

closed-loop transfer function L(s)/
(
1+ L(s)

)
will have all its poles

in the LHP)



The real power of the Nyquist stability criterion is that it allows you

to determine of the stability of the closed-loop system from the

behaviour of the open-loop Nyquist diagram. This is important

from a design point of view, as it relatively easy to see how

changing K(s) affects L(s) = H(s)G(s)K(s), but difficult to see

how changing K(s) affects L(s)/(1+ L(s)) directly, for example.

In addition, the Nyquist diagram also allows more detailed

information about the behaviour of the closed-loop system to be

inferred. For example

Gain and phase margins measure how close the Nyquist locus

gets to −1 (and hence how close the closed loop system is to

instability).
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Time Delay with Lag and Integrator:

G(s) =
e−sT1

s(1+ sT2)

G(jω) =
e−jωT1

jω(1+ jωT2)

|G(jω)| = |e−jωT1|︸ ︷︷ ︸×
1

|jω|
×

1

|1+ jωT2|

∠G(jω) = ∠e−jωT1︸ ︷︷ ︸−∠(jω)︸ ︷︷ ︸−∠(1+ jωT2)

Clearly, as ω→ 0 then |G(jω)|→∞. But this is not enough

information to sketch the Nyquist diagram. Precisely how does

|G(jω)|→∞? To answer this, we use a Taylor series expansion

around ω = 0.
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6.1.1 Sketching Nyquist diagrams

Unlike the Bode diagram, there are no detailed rules for sketching

Nyquist diagrams. It suffices to determine the asymptotic behaviour as

ω→ 0 and ω→∞ (using the techniques we have seen in the

examples) and then calculate a few points in between. Note that if

G(0) is a finite and non-zero, then the Nyquist locus will always start

off by leaving the real axis at right angles to it. 1 If G(0) is infinite,

due to the presence of integrators, then we must explicity find the

first two terms of the Taylor series expansion of G(jω) about ω = 0,

as in the example with a time delay, a lag and an integrator.

1This is since G(jε) = G(0)+ jεG′(0)− ε2G′′(0)− · · · ≈ G(0)+ jεG′(0)



6.2 Feedback stability

G(s)K(s)Σ
+r̄ (s) ē(s) ȳ(s)

− ≡
L(s)Σ

+r̄ (s) ē(s) ȳ(s)

−

Closed-loop poles ≡ poles of
G(s)K(s)

1+G(s)K(s)

≡ roots of 1+G(s)K(s) = 0

It is difficult to see how K(s) should be chosen to ensure that all the

closed-loop poles are all in the LHP. But . . .



Nyquist’s Stability Theorem allows us to deduce closed-loop

properties:

from open-loop properties

The basic idea is as follows: Negative feedback is used to reduce the

size of the error e(t) in the above figures. If y(t) is too large (i.e

greater than r(t)) then e(t) is negative, which will tend to reduce y(t)

(provided the signs of K(s) and G(s) have been chosen appropriately).

However, for any real system the phase lag from the input to the

output (−∠L(jω)) will tend to increase with frequency, eventually

reaching 180◦. When this happens, the negative feedback is turned

into positive feedback. If the gain |L(jω)| has not decreased to less

than 1 by this frequency then instability of the closed-loop system will

result.

Nyquist’s Stability Theorem allows us to deduce closed-loop

properties:

the location of the poles of
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greater than r(t)) then e(t) is negative, which will tend to reduce y(t)
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However, for any real system the phase lag from the input to the

output (−∠L(jω)) will tend to increase with frequency, eventually

reaching 180◦. When this happens, the negative feedback is turned

into positive feedback. If the gain |L(jω)| has not decreased to less
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result.
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the location of the poles of
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frequency response of the return ratio
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The basic idea is as follows: Negative feedback is used to reduce the

size of the error e(t) in the above figures. If y(t) is too large (i.e

greater than r(t)) then e(t) is negative, which will tend to reduce y(t)

(provided the signs of K(s) and G(s) have been chosen appropriately).

However, for any real system the phase lag from the input to the

output (−∠L(jω)) will tend to increase with frequency, eventually

reaching 180◦. When this happens, the negative feedback is turned

into positive feedback. If the gain |L(jω)| has not decreased to less

than 1 by this frequency then instability of the closed-loop system will

result.



Σ L(s)
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yr eIf L(s) is stable , then:

!

"

L(jω)

−1

=⇒
L(s)

1+ L(s)
is

asymptotically
stable

!

"

L(jω)

−1

=⇒
L(s)

1+ L(s)
is

marginally
stable

!

"

L(jω)

−1

=⇒
L(s)

1+ L(s)
is

unstable

That is, the closed-loop system is stable if the Nyquist diagram of the

return ratio doesn’t enclose the point “−1”.

(either marginally or asymptotically)
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i.e. L(j�1) = �1 for some �1

cos(�1t)

6.2.1 Significance of the point “−1”

If the Nyquist locus passes through the point “−1”,

then the closed-loop frequency response L(jω)/
(
1+ L(jω)

)
becomes

infinite at that frequency, ie

L(jω1)/
(
1+ L(jω1)

)
→∞ This is not a good thing!

In this case, if e(t) = then in steady-state we have

y(t) = |L(jω1)| cos
(
ω1t +∠L(jω1)

)

However e(t) = r(t)−y(t), which means that

r(t) = e(t)+y(t) = cos(ω1t)− cos(ω1t)

That is, there is a sustained oscillation of the feedback system even

when there is no external input!

= cos(⇥1t + �)= � cos(�1t)

= 0



6.2.2 Example:

Let
G(s) =

1

s3 + s2 + 2s + 1
, K(s) = k,

=⇒ L(s) =
k

s3 + s2 + 2s + 1
.

The closed-loop poles are the roots of

1+
k

s3 + s2 + 2s + 1
= 0 ⇐⇒ ︸ ︷︷ ︸

and the frequency response of the loop is:

L(jω) =

At ω =
√

2, L(jw) is purely real. That is

L(
√

2 j) =
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j(−2
√

2+ 2
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s = −0.0000+ 1.4142j,

−0.0000− 1.4142j,
−1.0000

=⇒

X

X

X

Closed-loop poles

and so 1 + L(s) = 0 at s = j
�

2)
(because L(j

⇥
2) = �1,

�� closed-loop system is marginally stable
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6.3 Nyquist Stability Theorem (informal

version)

We can now give an informal statement of Nyquist’s stability theorem:

“If a feedback system has an asymptotically stable return ratio L(s),

then the feedback system is also asymptotically stable if the Nyquist

diagram of L(jω) leaves the point −1+ j0 on its left”.

This is unambiguous in most cases, and usually still works if L(s) has

poles at the origin or is unstable.

For completeness, a full statement of this theorem will be given later.

Definition: We say that the feedback system (or closed-loop system)

is asymptotically stable if the closed-loop transfer function
L(s)

1+ L(s)

is asymptotically stable, that is if all the poles of
L(s)

1+ L(s)
(i.e. the

roots of 1+ L(s) = 0) lie in the LHP.



6.4 Gain and Phase Margins

L(jω) encirling or going through the −1 point is clearly bad, leading

to the closed-loop not being asymptotically stable. However, L(jω)

coming close to −1 without encircling it is also undesirable, for two

reasons:

It implies that a closed-loop pole will be close to the imaginary axis

and that the closed-loop system will be oscillatory.

If G(s) is the transfer function of an inaccurate model, then the

“true” Nyquist diagram might actually encircle −1.

Gain and phase margins are widely used measures of how close the

return ration L(jω) gets to −1.

The gain margin measures how much the gain of the return ratio can

be increased before the closed-loop system becomes unstable.

The phase margin measures how much phase lag can be added to the

return ratio before the closed-loop system becomes unstable.



!

"

−1

Gain Margin = Phase Margin =

In this example we have θ = 35◦ and −α = −0.75. Hence

Phase Margin = 35◦ and Gain Margin = 1/0.75 = 4/3.

�� �

�
1
�

L(j�)



6.4.1 Gain and phase margins from the Bode plot

∠L(jω)

|L(jω)| (dB)

−10dB

0dB

0◦

−180◦

Gain Margin

Phase Margin

log10ω

Gain Margin = 20log104/3 = 2.5dB. Phase Margin = 35◦ (as before)

!

"

−1 −α θ

L(jω)

Gain Margin =
1

α
Phase Margin = θ

In this example we have θ = 35◦ and −α = −0.75. Hence

Phase Margin = 35◦ and Gain Margin = 1/0.75 = 4/3.



Hint: Given a Nyquist diagram of L(s) = kG(s) for k = 1, it is easy

to find gain and phase margins for k ≠ 1 (just look at the “−1/k”

point instead of “-1”).

"

#

−1

“−1/k” −0.75

θ (=phase margin when k = 0.8)

L(jω)

If k = 0.8, as here, then Gain Margin=−1.25
−0.75 = 5/3 (= 4.4dB), and

Phase Margin=80◦.



6.5 Performance of feedback systems

Good
feedback
properties

⇐⇒ “Small”
sensitivity

∣
∣
∣
∣
∣

1

1+ L(jω)

∣
∣
∣
∣
∣

For 1) rejection of disturbances.

L(s)
−

d̄(s)

ȳ(s)

Transfer function
with f/b =

1

1 + L(s)
× Transfer function

without f/b

Transfer function
with f/b = 1

1+ L(s) �
Transfer function

without f/b



Plus, 2) reducing the effects of uncertainty.

– if L(s) depends on an uncertain parameter λ (eg

L(s) =
1

s2 + 2λs + 1
) then

d

dλ

L

1+ L
L

1+ L
︸ ︷︷ ︸

relative change
in closed-loop

=
(1+ L)× dL

dλ − (L)×
dL
dλ

(1+ L)2
/ L

1+ L

=
1

1+ L
︸ ︷︷ ︸

S

d

dλ
L

L
︸ ︷︷ ︸

relative change
in open-loop

Good design aims for sensitivity reduction over an appropriate

range of frequencies

Typically, by requiring that

∣
∣
∣
∣
∣

1

1+ L(jω)

∣
∣
∣
∣
∣
# 1 for ω <ω1 where

ω1 here denotes the desired control bandwidth.



Fundamental limits on performance

As described in Paper 5 (Linear Circuits) operational amplifiers are

typically compensated so that their frequency response is similar to

that of a pure integrator. Ideally they would have a transfer function

G(s) = A/s or G(jω) = A/jω.

With a feedback gain of B, this would mean that the feedback system

has a phase margin of 90◦, for any A and B (see page 4).

A/sΣ
+

B

−

#
(
G(jω)

)

$
(
G(jω)

)

�



In this case, the sensitivity function would be given by

1

1+AB/s
=

s

AB
×

1

(1+ s/AB)
.

AB

|S(jω)|

0dB

dB
log10ω



However, any real op-amp (and, indeed, any real system) will inevitably

have an attenuation rate of greater 20 dB/decade (and a phase lag of

greater than 90◦) at high frequencies. In this case, the Bode sensitivity

integral applies: This theorem will not be examined.

Theorem: If both L(s) and 1/(1+ L(s)) are asymptotically stable, and

L(jω) rolls off at a rate greater than 20 dB/decade, then

∫∞

0
20log10

∣∣∣∣∣
1

1+ L(jω)

∣∣∣∣∣ dω = 0

|S(jω)|

0dB

dB

ω



this is sometimes called the “waterbed” effect.

(from Gunter Stein’s Bode Lecture, CDC 1989)



6.5.1 The relationship between open and closed-loop

frequency responses

Ultimately what we are always interested in are properties of the

closed-loop system, such as its frequency response and pole locations.

The following plots are representative of a typical feedback system,

and correspond to a feedback system with a Return Ratio of

L(s) =
2

s(1+ s)

As is typical, the feedback reduces the effect of disturbances at low

frequencies, up to ω1, as evident from the plot of Sensitivity S(jω).

ω1 is defined here as the lowest frequency at which |S(jω)| = 1. The

closed-loop system will respond to reference inputs at frequencies up

to around ω2, as evident from the plot of the Complementary

Sensitivity T(jω). ω2 is defined here as the highest frequency at

which |T(jω)| = 1. Between these frequencies both disturbances and

reference signals are amplified (because of the “waterbed” effect).



The actual value of the frequencies ω1 and ω2, and the size of these

peaks, can be determined directly from the open-loop frequency

response.

A: |S(jω)| = 1
|1+L(jω)| = 1 when |1+ L(jω)| = 1, which is when the

distance from the point −1 to the Nyquist locus equals 1 (this is the

point ω =ω1 overleaf).

B: |T(jω)| = |L(jω)|
|1+L(jω)| = 1 when |L(jω)| = |1+ L(jω)|, which is

when the distance from the point −1 to the Nyquist locus equals

the distance from the origin to the Nyquist locus (this is the point

ω =ω2 overleaf).

C: |S(jω)| = 1
|1+L(jω)| is maximized when |1+ L(jω)| is minimized,

that is when the distance from the point −1 to the Nyquist locus is

at a minimum.

D: The easiest way to find the maximum value of |T(jω)| = |L(jω)|
|1+L(jω)|

is probably to try a few points around where |1+ L(jω)| is

minimized.



Nyquist diagram of the return ratio L(s) = 2
s(1+s)

!
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1

−1

ω =ω2

ω =ω1

L(jω)
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"L(j�1)""1 + L(j�1)"



ω L(jω) 1
1+L(jω)

L(jω)
1+L(jω)

1 −1− j j 1− j
1.732 −.5− .289j 1.5+ .866j −.5− .866j

Closed-loop frequency responses: S(jω) = 1
1+L(jω) , T(jω) =

L(jω)
1+L(jω)

ω1 ω2

|T(jω)| |S(jω)|

0dB

dB

ω
L(s)Σ Σ

+
d̄o(s)

+r̄ (s) ē(s) + ȳ(s)

−

Note: this is not a Bode diagram, because it is for a closed-loop

system, and Bode diagrams are always drawn for open-loop systems

(the plant, controller, return ratio etc).



Small gain and/or phase margins correspond to there being

frequencies at which L(jω) comes close to the −1. We now see that

this also corresponds to making |1+ L(jω)| small and hence there

being resonant peaks in the closed-loop transfer functions.

So,

Small gain and/or phase margins

are

bad for robustness, and

bad for performance.
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ḡ(jω) Σ

+xrefex

−

California PATH project

Each car tracks distance to car in
front.

V5 V4 V3 V2 V1

Example: Vehicle Platooning
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ūi(s) = Ci(s)ēi(s) = Ci(s)(r̄i(s)− ȳi(s))
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10
−3

10
−2

10
−1

10
0

−60

−50

−40

−30

−20

−10

0

10

20

rad/min

ga
in(
dB
)

Tei+2→ei
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6.6 The Nyquist stability theorem (for

asymptotically stable L(s))

On page 12 we gave an informal statement of the Nyquist stability

criterion. The formal statement of the Nyquist stability theorem

requires counting encirclements of the point −1:

As before, we take L(s) to be the return ratio so that the closed-loop

characteristic equation is 1+ L(s) = 0.

We make the following simplifying assumption:

L(s) is asymptotically stable

This also guarantees that L(jω) is finite for all ω ( i.e. it has no

jω-axis poles), and that L(∞) is finite (since L(s) must be proper – see

Handout 4).

Under this condition the “full” Nyquist diagram of L(jω), for

−∞ <ω < +∞, is a closed curve (since L(j∞) = L(−j∞) = L(∞)).



Note that, since (−jω) = (jω)∗, it follows that L(−jω) = L(jω)∗. So

the section of the Nyquist locus for ω < 0 is the reflection in the real

axis of the section for ω > 0.

With this assumption we have:

The Nyquist Stability Theorem (for stable L(s))

Consider a feedback system with an asymptotically stable

return ratio L(s). In this case, the feedback system is

asymptotically stable (i.e. L(s)
1+L(s) is asymptotically stable) if

and only if the point −1+ j0 is not encircled by the “full”

Nyquist diagram of L(jω), for −∞ <ω < +∞.



6.6.1 Notes on the Nyquist Stability Theorem:

1. Encirclements must be ‘added algebraically’. If there is 1 clockwise

and 1 anticlockwise encirclement then they ‘add up’ to 0

encirclements.

2. L(s) often has one or more poles at 0 (due to integrators in the

plant or the controller). The theorem still works, but one has to

worry about what happens to the graph of L(jω) at ω = 0 – as the

locus is no longer a closed curve. It can be shown that, if L(s) has

n poles at the origin, then the Nyquist locus should be completed

by adding a large n× 180◦ arc, in a clockwise direction.

3. If L(s) is unstable, and has np unstable poles, then the theorem

must be modified as follows: “The feedback system is stable if and

only if the ‘full’ Nyquist diagram encircles the point −1+ j0 np
times in an anticlockwise direction.”



4. (This a repeat of the informal statement of the Nyquist stability

criterion from page 12.)

A potentially ambiguous statement of the theorem, but one which

almost always works, is: “The feedback system is stable if the

Nyquist diagram of L(jω) ‘leaves the point −1+ j0 on its left’ ”.

This still works (usually) if there are poles at the origin or even if

L(s) is unstable.

This informal version of the theorem is adequate for the

examples which follow, for any others that you will encounter

on this course and indeed for any you are likely to encounter

in practice.
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Examples: Formal application of Nyquist stability theorem.

!

"

−1

no encirlements of −1

=⇒
L(s)

1+ L(s)
is

asymptotically
stable

!

"

−1

2 clockwise encirclements of −1

=⇒
L(s)

1+ L(s)
is

unstable



!

"

−1

1 clockwise + 1 anticlockwise
encirclement of −1

i.e. 0 net encirclements (note 1)

=⇒
L(s)

1+ L(s)
is

asymptotically stable

!

"

−1

no encirlements of −1 (note 2)

=⇒
L(s)

1+ L(s)
is

asymptotically
stable



Examples: Informal application of the Nyquist stability theorem

(based on note 4).

!

"

−1

-1 to left of locus

=⇒
L(s)

1+ L(s)
is

asymptotically stable

!

"

−1

-1 to right of locus

=⇒
L(s)

1+ L(s)
is

unstable



!

"

−1

-1 to left of locus

=⇒
L(s)

1+ L(s)
is

asymptotically stable

!

"

−1

-1 to left of locus

=⇒
L(s)

1+ L(s)
is

asymptotically stable

Hence: the informal application of the Nyquist stability criterion works

for all these cases.


