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Key Points

The Closed-Loop Transfer Functions are the actual transfer

functions which determine the behaviour of a feedback system.

They relate signals around the loop (such as the plant input and

output) to external signals injected into the loop (such as

reference signals, disturbances and noise signals).

It is possible to infer much about the behaviour of the feedback

system from consideration of the Return Ratio alone.

The aim of using feedback is for the plant output y(t) to follow

the reference signal r(t) in the presence of uncertainty. A

persistent difference between the reference signal and the plant

output is called a steady state error. Steady-state errors can be

evaluated using the final value theorem.

Many simple control problems can be solved using combinations

of proportional, derivative and integral action:

Proportional action is the basic type of feedback control, but it can

be difficult to achieve good damping and small errors

simultaneously.

Derivative action can often be used to improve damping of the

closed-loop system.

Integral action can often be used to reduce steady-state errors.
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5.1 Open-Loop Control

“Plant”
G(s)

Controller
K(s)

r̄ (s)

Demanded
Output

(Reference)

ȳ(s)

Controlled
Output

In principle, we could could choose a “desired” transfer function F(s)

and use K(s) = F(s)/G(s) to obtain

ȳ(s) = G(s) F(s)
G(s)

r̄ (s) = F(s)r̄ (s)

In practice, this will not work

– because it requires an exact model of the plant and that there be

no disturbances (i.e. no uncertainty).

Feedback is used to combat the effects of uncertainty

For example:

Unknown parameters

Unknown equations

Unknown disturbances
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5.2 Closed-Loop Control (Feedback Control)

For Example:

“Plant”
G(s)

Controller
K(s)Σ Σ

+

d̄i(s)

Input
disturbance

Σ
+

d̄o(s)

Output
disturbance

+
r̄ (s)

Demanded
Output

(Reference)

ē(s)

Error
Signal

+
ū(s)

Control
Signal

+
ȳ(s)

Controlled
Output

−

Figure 5.1

5.2.1 Derivation of the closed-loop transfer functions:

ȳ(s) = d̄o(s)+G(s)
[
d̄i(s)+K(s)ē(s)

]

ē(s) = r̄ (s)− ȳ(s)

=⇒ ȳ(s) = d̄o(s)+G(s)
[
d̄i(s)+K(s)

(
r̄ (s)− ȳ(s)

)]

=⇒
(
1+G(s)K(s)

)
ȳ(s) = d̄o(s)+G(s)d̄i(s)+G(s)K(s)r̄ (s)

=⇒ ȳ(s) =
1

1+G(s)K(s) d̄o(s)+
G(s)

1+G(s)K(s) d̄i(s)

+
G(s)K(s)

1+G(s)K(s) r̄ (s)
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Also:

ē(s) = r̄ (s)− ȳ(s)

= − 1

1+G(s)K(s)d̄o(s)−
G(s)

1+G(s)K(s)d̄i(s)

+
(

1− G(s)K(s)

1+G(s)K(s)

)

︸ ︷︷ ︸
1

1+G(s)K(s)

r̄ (s)

5.2.2 The Closed-Loop Characteristic Equation and the

Closed-Loop Poles

Note: All the Closed-Loop Transfer Functions of the previous

section have the same denominator:

1+G(s)K(s)

The Closed-Loop Poles (ie the poles of the closed-loop system, or

feedback system) are the zeros of this denominator.

For the feedback system of Figure 5.1, the Closed-Loop Poles are the

roots of

1+G(s)K(s) = 0

Closed-Loop Characteristic Equation
(for Fig 5.1)

The closed-loop poles determine:

The stability of the closed-loop system.

Characteristics of the closed-loop system’s

transient response.(e.g. speed of response,

presence of any resonances etc)
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5.2.3 What if there are more than two blocks?

For Example:

“Plant”
G(s)

Controller
K(s)

Sensor
H(s)

Σ Σ
+

d̄i(s)

Σ
+

d̄o(s)

+
r̄ (s)

Demanded
Output

(Reference)

ē(s)

+ +
ȳ(s)

Controlled
Output

−

Figure 5.2

We now have

ȳ(s) = G(s)K(s)

1+H(s)G(s)K(s) r̄ (s)

+ 1

1+H(s)G(s)K(s)d̄o(s)+
G(s)

1+H(s)G(s)K(s)d̄i(s)

This time 1+H(s)G(s)K(s) appears as the denominator of all

the closed-loop transfer functions.

Let,

L(s) = H(s)G(s)K(s)
i.e. the product of all the terms around loop, not including the −1 at

the summing junction. L(s) is called the Return Ratio of the loop (and

is also known as the Loop Transfer Function).

The Closed-Loop Characteristic Equation is then

1+ L(s) = 0

and the Closed-Loop Poles are the roots of this equation.
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5.2.4 A note on the Return Ratio

G(s)K(s)

H(s)

Σ
−

b̄(s)

Σ
+

0

Σ
+

0

+
0 ē(s)

+ +
ȳ(s)

ā(s)

Figure 5.3

With the switch in the position shown (i.e. open), the loop is open. We

then have

ā(s) = H(s)G(s)K(s)×−b̄(s) = −H(s)G(s)K(s)b̄(s)

Formally, the Return Ratio of a loop is defined as −1 times the product

of all the terms around the loop. In this case

L(s) = −1×−H(s)G(s)K(s) = H(s)G(s)K(s)

Feedback control systems are often tested in this configuration as a

final check before “closing the loop” (i.e. flicking the switch to the

closed position).

Note: In general, the block denoted here as H(s) could include filters

and other elements of the controller in addition to the sensor

dynamics. Furthermore, the block labelled K(s) could include actuator

dynamics in addition to the remainder of the designed dynamics of the

controller.
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5.2.5 Sensitivity and Complementary Sensitivity

The Sensitivity and Complementary Sensitivity are two particularly

important closed-loop transfer functions. The following figure depicts

just one configuration in which they appear.

G(s)K(s)Σ Σ
+

d̄o(s)

+r̄ (s) ē(s) ū(s) + ȳ(s)

−

Figure 5.4
(
L(s) = G(s)K(s)

)

ȳ(s) = G(s)K(s)

1+G(s)K(s) r̄ (s)+
1

1+G(s)K(s)d̄o(s)

= L(s)

1+ L(s)︸ ︷︷ ︸
Complementary

Sensitivity
T(s)

r̄ (s)+ 1

1+ L(s)︸ ︷︷ ︸
Sensitivity
S(s)

d̄o(s)

Note:

S(s)+ T(s) =
1

1+ L(s) +
L(s)

1+ L(s) = 1
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5.3 Summary of notation

The system being controlled is often called the “plant”.

The control law is often called the “controller” ; sometimes it is

called the “compensator” or “phase compensator”.

The “demand” signal is often called the “reference” signal or

“command”, or (in the process industries) the “set-point”.

The “Return Ratio”, the “Loop transfer function” always refer to the

transfer function of the opened loop, that is the product of all the

transfer functions appearing in a standard negative feedback loop

(our L(s)). Figure 5.1 has L(s) = G(s)K(s), Figure 5.2 has

L(s) = H(s)G(s)K(s).

The “Sensitivity function” is the transfer function S(s) = 1

1+ L(s) .
It characterizes the sensitivity of a control system to disturbances

appearing at the output of the plant.

The transfer function T(s) = L(s)

1+ L(s) is called the

“Complementary Sensitivity”. The name comes from the fact that

S(s)+ T(s) = 1. When this appears as the transfer function from

the demand to the controlled output, as in Fig 5.4 it is often called

simply the “Closed-loop transfer function” (though this is

ambiguous, as there are many closed-loop transfer functions).
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5.4 The Final Value Theorem (revisited)

Consider an asymptotically stable system with impulse response g(t)

and transfer function G(s), i.e.

g(t)︸ ︷︷ ︸
Impulse response

⇌ G(s)︸ ︷︷ ︸
Transfer Function

(assumed asymptotically stable)

Let y(t) =
∫ t

0
g(τ)dτ denote the step response of this system and

note that ȳ(s) = G(s)
s

.

We now calculate the final value of this step response:

lim
t→∞

y(t) =
∫∞

0
g(τ)dτ

=
∫∞

0
exp(−0τ)︸ ︷︷ ︸

1

g(τ)dτ = L
(
g(t)

)∣∣
s=0 = G(0)

Hence,

Final Value of Step Response

“Steady-State Gain” or “DC gain”

≡ Transfer Function
evaluated at s = 0

Note that the same result can be obtained by using the Final Value

Theorem:

lim
t→∞

y(t) = lim
s→0

sȳ(s)

(
for any y for which
both limits exist.

)

= lim
s→0

s · G(s)
s

= G(0)
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5.4.1 The “steady state” response – summary

The term “steady-state response” means two different things,

depending on the input.

Given an asymptotically stable system with transfer function G(s):

The steady-state response of the system to a constant input U is a

constant, G(0)U .

The steady-state response of the system to a sinusoidal input

cos(ωt) is the sinusoid |G(jω)| cos
(
ωt + argG(jω)

)
.

These two statements are not entirely unrelated, of course: The

steady-state gain of a system, G(0) is the same as the frequency

response evaluated at ω = 0 (i.e. the DC gain).
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5.5 Some simple controller structures

5.5.1 Introduction – steady-state errors

G(s)K(s)Σ
+r̄ ē ū ȳ

−

Return Ratio: L(s) = G(s)K(s).

CLTFs: ȳ(s) = L(s)

1+ L(s) r̄ (s) and ē(s) = 1

1+ L(s) r̄ (s)

Steady-state error:(for a step demand) If r(t) = H(t), then

ȳ(s) = L(s)
1+L(s) ×

1
s and so

lim
t→∞

y(t) = s × L(s)

1+ L(s) ×
1

s

∣∣∣∣
s = 0

=
L(0)

1+ L(0)

and

lim
t→∞

e(t) = s × 1

1+ L(s) ×
1

s

∣∣∣∣
s = 0

=
1

1+ L(0)︸ ︷︷ ︸

Steady-state error

(using the final-value theorem.)

Note: These particular formulae only hold for this simple configuration

– where there is a unit step demand signal and no constant

disturbances (although the final value theorem can always be used).
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5.5.2 Proportional Control

K(s) = kp

G(s)kpΣ
+r̄ ē ū ȳ

−

Typical result of increasing the gain kp, (for control systems where

G(s) is itself stable):

Increased accuracy of control. “good”

Increased control action.

Reduced damping.

Possible loss of closed-loop stability for large kp.

} “bad”

Example:

G(s) = 1

(s + 1)2

(A critically damped 2nd order system)

ȳ(s) =
kpG(s)

1+ kpG(s)
r̄ (s) =

kp
1

(s + 1)2

1+ kp
1

(s + 1)2

r̄ (s)

=
kp

s2 + 2s + 1+ kp
r̄ (s)

So, ω2
n = 1+ kp, 2ζωn = 2

=⇒ ωn =
√

1+ kp, ζ =
1√

1+ kp

Closed-loop poles at s = −1± j
√
kp

XX

movement of
closed-loop poles
for increasing kp

”root locus diagram”
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Steady-state errors using the final value theorem:

ȳ(s) =
kp

s2 + 2s + 1+ kp
r̄ (s)

and

ē(s) = 1

1+ kpG(s)
= (s + 1)2

s2 + 2s + 1+ kp
r̄ (s).

So, if r(t) = H(t),

lim
t→∞

y(t) =
kp

s2 + 2s + 1+ kp

∣∣∣∣∣s = 0
=

kp

1+ kp

final value of
step response

and

lim
t→∞

e(t) = (s + 1)2

s2 + 2s + 1+ kp

∣∣∣∣∣
s = 0

=
1

1+ kp︸ ︷︷ ︸

Steady-state error
(Note: L(s) = kp

1

(s + 1)2
=⇒ L(0) = kp × 1 = kp)

Hence, in this example, increasing kp gives smaller steady-state

errors, but a larger and more oscillatory transient response .

• However, by using more complex controllers it is usually possible to

remove steady state errors and increase damping at the same time:

To increase damping –

can often use derivative action (or velocity feedback).

To remove steady-state errors – can often use integral action.
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For reference, the step response: (i.e. response to r̄ (s) = 1

s
) is given by

ȳ(s) = −

kp

1+ kp
(2+ s)

s2 + 2s + 1+ kp
+

kp

1+ kp
s

so

y(t) = −
kp

1+ kp
exp(−t)


cos(

√
kpt)+

1√
kp

sin(
√
kpt)


+

kp

1+ kp

= −
√

kp
1+kp exp(−t)

(
cos(

√
kpt −φ)

)

︸ ︷︷ ︸
Transient Response

+
kp

1+ kp︸ ︷︷ ︸
Steady-state response

where φ = arctan
1√
kp

But you don’t need to calculate this to draw the conclusions we have

made.
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5.5.3 Proportional + Derivative (PD) Control

K(s) = kp + kd s

G(s)kp

kd s

Σ Σ
+r̄ ū ȳ

− +

+

Typical result of increasing the gain kd, (when G(s) is itself stable):

Increased Damping.

Greater sensitivity to noise.

(It is usually better to measure the rate of change of the error directly

if possible – i.e. use velocity feedback)

Example: G(s) = 1

(s + 1)2
, K(s) = kp + kd s

ȳ(s) = K(s)G(s)

1+K(s)G(s) r̄ (s) =
(kp + kd s)

1

(s+1)2

1+ (kp + kd s)
1

(s+1)2

r̄ (s)

=
kp + kds

s2 + (2+ kd)s + 1+ kp
r̄ (s)

So, ω2
n = 1+ kp, 2cωn = 2+ kd =⇒

ωn =
√

1+ kp , c = 2+ kd
2
√

1+ kp
Xkp = 4, kd = 0

X

movement of
closed-loop poles
for increasing kd
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5.5.4 Proportional + Integral (PI) Control

In the absence of disturbances, and for our simple configuration,

ē(s) = 1

1+G(s)K(s) r̄ (s)

Hence,

steady-state error,
(for step demand) =

1

1+G(s)K(s)

∣∣∣∣
s=0

=
1

1+G(0)K(0)

To remove the steady-state error, we need to make K(0) = ∞
(assuming G(0) ≠ 0).

e.g

K(s) = kp +
ki
s

G(s)kpΣ Σ

ki/s

+r̄ ū ȳ

− +

+

Example:

G(s) = 1

(s + 1)2
, K(s) = kp + ki/s
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ȳ(s) = K(s)G(s)

1+K(s)G(s) r̄ (s) =
(kp + ki/s)

1

(s+1)2

1+ (kp + ki/s)
1

(s+1)2

r̄ (s)

=
kp s + ki

s(s + 1)2 + kp s + ki
r̄ (s)

ē(s) = 1

1+K(s)G(s) r̄ (s) =
1

1+ (kp + ki/s)
1

(s+1)2

r̄ (s)

= s(s + 1)2

s(s + 1)2 + kp s + ki
r̄ (s)

Hence, for r(t) = H(t),

lim
t→∞

y(t) =
kp s + ki

s(s + 1)2 + kp s + ki

∣∣∣∣∣
s=0

= 1

and

lim
t→∞

e(t) = s(s + 1)2

s(s + 1)2 + kp s + ki

∣∣∣∣∣
s=0

= 0

=⇒ no steady-state error
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PI control – General Case

In fact, integral action (if stabilizing) always results in zero

steady-state error, in the presence of constant disturbances and

demands, as we shall now show.

Assume that the following system settles down to an equilibrium with

lim
t→∞

e(t) = A ≠ 0, then:

“G(s)”kp

“ki/s”

Σ

+

+

“H(s)”

Σ Σ
+

di(t)

Σ
+

do(t)

+r(t)

e(t)

A

+u(t) +

−

=⇒ Contradiction

(as system is not in equilibrium)

Hence, with PI control the only equilibrium possible has

lim
t→∞

e(t) = 0.

That is, limt→∞ e(t) = 0 provided the closed-loop

system is asymptotically stable.
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5.5.5 Proportional + Integral + Derivative (PID) Control

K(s) = kp +
ki
s
+ kd s

G(s)kp

ki/s

kd s

Σ Σ
+r̄ ū ȳ

− +

+
+

Characteristic equation:

1+G(s)(kp + kd s + ki/s) = 0

• can potentially combine the advantages of both derivative and

integral action:

but can be difficult to “tune”.

There are many empirical rules for tuning PID controllers

(Ziegler-Nichols for example) but to get any further we really need

some more theory . . .
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