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)

+starting transient



Summary

If a pure sinusoid is input to an asymptotically stable LTI system, then

the output will also settle down, eventually, to a pure sinusoid. This

steady-state output will have the same frequency as the input but be

at a different amplitude and phase. The dependence of this amplitude

and phase on the frequency of the input is called the frequency

response of the system.

In this handout we shall:

Show how the frequency response can be derived from the transfer

function.

(by substituting jω for s)

Study how the frequency response can be represented graphically.

(using the Bode diagram)
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4.1 What is the Frequency Response?

Asymptotically
stable

LTI system

t

x(t)

1

2π

ω

t

y(t)

A

−φ
ω

x(t) = cos(ωt) y(t) = A cos
(

ωt +φ
)

+starting transient



If the input to an asymptotically stable LTI system is a pure sinusoid

then the steady state output will also be a pure sinusoid, of the same

frequency as the input but at a different amplitude and phase.

How do we find A, the gain , and φ, the phase shift ?



How does this relate to Part IA? Consider again a system with input

u and output y, If

d2y

dt2
+αdy

dt
+ βy = adu

dt
+ bu.

then we can use the usual trick, letting

u = ejωt

so that

ℜ(u(t)) = cos(ωt).

We will find the response to the input cos(ωt) by taking the real part

of y, the response to u = ejωt.
To find the solution y, we assume it takes the form

y(t) = Yejωt (4.1)

for some complex number Y = |Y |ej argY , so that

ℜ(y(t)) = ℜ(|Y |ej argY ejωt) = |Y | cos(ωt + argY).



Substituting (4.1) into the differential equation, and noting that

dy

dt
= [jω]Yejωt, d2y

dt2
= [jω]2Yejωt, etc

we obtain

Y[jω]2ejωt +αY[jω]ejωt + βYejωt = a[jω]ejωt + bejωt

or

Y = a[jω]+ b
[jω]2 +α[jω]+ β

Note that the transfer function from ū(s) to ȳ(s) is given by

G(s) = as + b
s2 +αs + β

So, it would appear that Y = G(jω), suggesting:

Answer: If system has the transfer function G(s), then

A = |G(jω)|, φ = argG(jω)



You’ve done this in Linear Circuits, Maths and Mechanical Vibrations

in Part IA, so I’m assuming that you are familiar with these

arguments! The notation above is as used in Maths and Mechanical

Vibrations. In Linear Circuits ỹ was used to represent a complex

phasor, rather than the Y above.

Example:The Capacitor is described by the differential equation

i = Cdv
dt

so ī(s) = Csv̄(s) in the absence of initial conditions giving the

transfer function
v̄(s)

ī(s)
= 1

sC
.

So, the frequency response of a capacitor (from current to voltage) is
1

jωC , which equals its impedance, ṽ/ĩ. The advantage of transfer

functions is that they define the response to all possible inputs,

whereas the impedence is only valid for sinusoidal (ac) signals.





4.1.1 Derivation of gain and phase shift

The previous argument is not the whole story though - we have

assumed that the input u = cos(ωt) has been present since the

beginning of time, and have only shown that y = A cos(ωt +φ) is a

possible response. What if the system is at rest until t = 0, and then a

sinusoid is applied? Take an asymptotically stable system with input

ū(s) output ȳ(s) and rational transfer function G(s) = n(s)
d(s) , so

ȳ(s) = G(s)ū(s).

Let u(t) = ejωt, so ū(s) = 1
s−jω then, since G(s) can’t have a pole at

s = jω,

ȳ(s) = G(s) 1

s − jω = λ1

s − p1
+ λ2

s − p2
+ · · · + λn

s − pn
+ G(jω)
s − jω

y(t) = λ1e
p1t + λ1e

p2t + · · · + λnepnt
︸ ︷︷ ︸

ytr(= CF)

+G(jω)ejωt
︸ ︷︷ ︸

yss(= PI)



(with the obvious modifications if any poles are repeated). Since all the

pk, the poles of G(s), have a negative real part, then ytr(t)→ 0 as

t →∞ – leaving the steady-state response yss. The steady-state

response to the input u(t) = cos(ωt) is given by the real part of this:

ℜ(yss(t)) = ℜ
(

ejωtG(jω)
)

= ℜ
(

|G(jω)|ej
(

ωt+argG(jω)
))

as z = |z|ej argz

= |G(jω)|
︸ ︷︷ ︸

A

cos
(

ωt + argG(jω)
︸ ︷︷ ︸

φ

)



Example:

Consider a system with transfer function

G(s) = 1

s2 + 0.1s + 2

and an input

x(t) = cos(0.5t)

(a sinusoid at 0.5rad/s, or 0.5/(2π) = 0.0796 Hz )

So, ω = 0.5 and

G(jω) = 1

(0.5j)2 + 0.1(0.5j)+ 2
= 1

−0.25+ 0.05j + 2

= 1

1.75+ 0.05j
= 1

1.7507e0.0286j
= 0.571e−0.0286j

= 0.571∠− 1.64◦

The following figures show the impulse response of this system, the

input x(t) = cos(0.5t), and the response to this input.



Note how the output initially

contains a component near

the resonant frequency of the

system ωn =
√

2 (0.225 Hz)

but that this quickly decays

leaving only a sinusoid at

the frequency of the input

ω = 0.5 (0.08 Hz) (and at

an amplitude of 0.571).

(The phase lag of 1.64◦ is too

small to be seen on this diagram)

0 50 100 150 200
−1

−0.5

0

0.5

1

0 50 100 150 200
−1

−0.5

0

0.5

1

0 50 100 150 200
−1

−0.5

0

0.5

1

G(s) = 1/(s2 + 0.1s + 2)

Input: x(t) = cos(0.5 t)

Response to the input x(t) = cos(0.5 t)

t (sec)

0.571

g(t)

y(t) = g(t)∗ x(t)



4.2 Plotting the frequency response

The frequency response G(jω) is a complex-valued function of

frequency ω. At each frequency ω, the complex number G(jω) can

be represented either in terms of its real and imaginary parts, or in

terms of its gain (magnitude) and phase (argument).

There are a number of common ways of representing this information

graphically:

The Bode Diagram: Two separate graphs, one of |G(jω)| vs ω (on

log-log axes), and one of ∠G(jω) (lin axis) vs ω (log axis).

The Nyquist Diagram: One single parametric plot, of ℜ
(

G(jω))

against ℑ
(

G(jω)) (on linear axes) as ω varies.

The Nichols Diagram: One single parametric plot, of |G(jω)| (log

axis) against ∠(G(jω)) (lin axis) as ω varies.



Example: G(s) = 1

s(s2+0.2s+2)
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Each has its use:

The Bode diagram is relatively straightforward to sketch to a high

degree of accuracy, is compact and gives an indication of the

frequency ranges in which different levels of performance are

achieved.

The Nyquist diagram provides a rigorous way of determining the

stability of a feedback system.

The Nichols diagram combines some of the advantages of both of

these (although is not quite as good in either specific application) and

is widely used in industry. We shall not study the Nichols diagram in

this course(!), but the ideas behind its construction will be readily

grasped once the two fundamental diagrams that we do study are

understood.





Consider G(jω) for ω = 2

G(jω)
∣
∣
∣
ω=2

= 1

2j((2j)2 + 0.2× (2j)+ 2)
= 1

2j(−2+ 0.4j)

Hence

|G(j2)| = 1

2
√

22 + 0.42
= 0.2451

and

argG(j2) = arg 1− arg 2j − arg(−2+ 0.4j)

= 0−π/2− 2.9442
︸ ︷︷ ︸

π − atan(.4/2)

= −4.5150



























because
ℜ

ℑ

X

























So,

G(j2) = 0.2451e−4.5150j = −0.0481+ 0.2404j

Also,

20log10|G(j2)| = −12.2dB, ∠G(jω) = −258.7◦

The corresponding point has been marked with a cross on each of the

previous plots.



4.3 Sketching Bode Diagrams

The bode diagram of G(s) consists of two curves

1. Gain Plot: Gain |G(jω)| (log) vs freq ω (log)

2. Phase Plot: Phase ∠G(jω) (lin) vs ω (log)

It is straightforward to sketch, and gives a lot of insight.

Basic idea: Consider a transfer function written as a ratio of factorized

polynomials e.g.

G(s) = a1(s)a2(s)

b1(s)b2(s)
.

Clearly

log10|G(jω)| = log10|a1(jω)| + log10|a2(jω)|
− log10|b1(jω)| − log10|b2(jω)|,

so we can compute the gain curve by simply adding and subtracting gains

corresponding to terms in the numerator and denominator. Similarly

∠G(jω) = ∠a1(jω)+∠a2(jω)−∠b1(jω)−∠b2(jω)

and so the phase curve can be determined in an analogous fashion.



Since a polynomial can always be written as a product of terms of the type

K, sT , 1+ sT , 1+ 2ζTs + s2T 2 (for |ζ| < 1, i.e. complex roots)

it is suffices to be able to sketch Bode diagrams for these terms. The Bode

plot of a complex system is then obtained by adding the gains and phases

of the individual terms.

Note: Always rewrite the transfer function in terms of these building blocks

before starting to sketch a Bode diagram – you will find it much easier. For

example, if the transfer function has a term (s + a) first rewrite this as

a× (1+ s/a) and then collect together all the constants that have been

pulled out. The transfer functions in Question 6 on Examples Paper 2 are

already given in the right form, but you will need to rewrite the transfer

function in Question 7.

Example: We would rewrite G(s) = 1000(s + 1)

s(s2 + 5s + 100)
as

G(s) =
(

10

s

)

× (1+ s)
(1+ 0.05s + s2/100)

and begin by considering each term individually.



4.3.1 Powers of s: (sT)k

The simplest term in a transfer function is a power of s, which it is

convenient to write in the form

a(s) = (sT)k

where k > 0 if the term appears in the numerator and k < 0 if the term

is in the denominator. The magnitude and phase of the term are given

by

log10|a(jω)| = log10(ωT)
k = klog10(ωT), ∠G(jω) = 90k◦

The gain curve is thus a straight line with slope k decades/decade, or

20k dB/decade, intersecting the 0dB line at ωT = 1. The phase curve

is a constant at 90◦ × k. For T = 1, the case when k = 1 corresponds

to a differentiator, and has a slope 20dB/decade and phase 90◦. The

case when k = −1 corresponds to an integrator and has a slope

−20dB/decade and phase −90◦.
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4.3.2 First Order Terms: (1+ sT)

Bode plot of G(s) = (1+ sT) (for T > 0)

. . . replace s by jω to get G(jω) = (1+ jωT)

=⇒ |G(jω)| = |1+ jωT |
︸ ︷︷ ︸
√

1+ω2T2

∠G(jω)| = ∠(1+ jωT)
︸ ︷︷ ︸

atan(ωT)

1

jωT
1+ jωT

Asymptotes:

ω→ 0: (i.e. ω≪ 1/T )

20log10|G(jω)| → 20log101 = 0

∠G(jω)→∠1 = 0



ω→∞: (i.e. ω≫ 1/T )

20log10|G(jω)| → 20log10|jωT |

= 20log10ω− 20log101/T

(which is a straight line with slope=20dB/decade and x-axis (i.e. 0db)

intercept at ω = 1/T )

∠G(jω)→∠jωT = 90◦

At ω = 1/T , we get

20log10|G(jω)| = 20log10|1+ j|
= 20log10

√
2 (3dB)

∠G(jω) =∠(1+ j) = 45◦



Bode diagram of G(s) = (1+ sT):

replacements
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4.3.3 Second order terms: (1+ 2ζsT + s2T 2)

Bode plot of G(s) = 1

1+ 2ζsT + s2T2
(for T > 0,0 ≤ ζ ≤ 1)

. . . replace s by jω to get G(jω) = 1

1+ 2ζjωT −ω2T2

=⇒ 20log10|G(jω)| = −20log10

∣
∣
∣1−ω2T2 + 2ζjωT

∣
∣
∣

∠G(jω) = −∠
(

1−ω2T2 + 2ζjωT
)

Asymptotes:

ω→ 0: (i.e. ω≪ 1/T )

20log10|G(jω)| → −20log101 = 0

∠G(jω)→ −∠1 = 0



ω→∞: (i.e. ω≫ 1/T )

20log10|G(jω)| → −20log10| −ω2T2|
=−40log10ωT

= 40log101/T − 40log10ω

(which is a straight line with slope=−40dB/decade and x-axis (i.e.

0db) intercept at ω = 1/T )

∠G(jω)→ −∠−ω2T2 =−180◦

At ω = 1/T , we get

20log10|G(jω)| = −20log10|2ζj|

= 20log10
1

2ζ

∠G(jω) = −∠(2ζj) =−90◦
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4.3.4 Examples

Example 1: G(s) = 5

1+ 10s
(K = 5, 1/T = 0.1)

20log10|G(jω)| = 20log105− 20log10|1+ jω/0.1|
∠G(jω)| = ∠5−∠(1+ jω/0.1)

We now produce a sketch of the Bode diagram in two stages (this is for

clarity – all these constructions would normally appear on one pair of

graphs ). First we plot the asymptotes and approximations to the true

curves for the individual terms, using the 3dB error at the cornerand

10/T , 1/10T approximations. (The exact values are used for the plots

here.)
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In the next pair of diagrams, the contributions from the individual

terms (now shown as dashed lines) have been added to give the Bode

diagram of G(s) (this has been done for both the asymptotes and the

true gain and phase).
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The next example has both a pole and a zero – it is an example of a

“phase-lead compensator”.

Example 2: G(s) = 0.05
1+ 10s

1+ s

So, G(jω) = 0.05
1+ 10jω

1+ jω ,

20log10|G(jω)| = 20log100.05

+ 20log10|1+ 10jω| − 20log10|1+ jω|

Note: 0.05 = −26dB

and

∠G(jω) = ∠0.05
︸ ︷︷ ︸

0

+∠(1+ 10jω)−∠(1+ jω)





First we draw the individual terms:
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and then we sum them (Note how the phase terms sum to produce a

maximum phase advance of only about 55◦.)
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Example 3: G(s) = 0.05
1+ 2s

s
= 0.05

s
× (1+ 2s)
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RHP poles and zeros

∠(1− jωT) = − ∠(1+ jωT)

20log10

∣
∣(1− jωT)

∣
∣ = + 20log10

∣
∣(1+ jωT)

∣
∣

That is, if we have a term (1− sT) instead of (1+ sT) then the gain

plot is unchanged but the term’s contribution to the phase plot is

reversed in sign (so the contribution of a RHP zero to the overall phase

diagram is the same as that of a LHP pole at the same location).



Comments on Bode sketching

A alternative technique for Bode diagrams would be to ignore the

asymptotes, and just calculate and plot the true gain and phase over a

grid of frequencies. This is not recommended for a number of

reasons. Firstly, a lot more points are required to get the same

accuracy (particularly when the diagram is to be used for control

system analysis and design, as only a small region is required

accurately in this case). Secondly, the structure of the diagram is then

lost. A practising control engineer will often prefer a good sketch, with

the asymptotes shown, to an accurate computer generated diagram –

since this gives a better idea of how things can be changed to improve

the behaviour of the controlled system.

When a question asks you to “draw” a Bode diagram (as in the

questions on Examples Paper 2) it’s really asking you to produce a

drawing showing the straight line asymptotes and approximations and

a rough approximation to the true gain and phase by rounding the

corners appropriately.



4.4 Key Points

The frequency response is obtained from the transfer function by

replacing s with jω.

At each frequency ω, G(jω) is a complex number whose

magnitude gives the gain of the system at that frequency and

whose argument gives the phase shift of the system at that

frequency.

The gain and the phase shift are conveniently shown on the Bode

diagram.
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