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Summary

Stability, or the lack of it, is the most fundamental of system

properties. When designing a feedback system the most basic of

requirements is that the feedback system be stable.

There are different ways of defining stability. In this handout we shall:

Define the following notions:

Asymptotic stability

Marginal stability

Instability

Relate stability of a system to the poles of its transfer function

In addition, we shall:

Relate the transient response of a system to the poles of its

transfer function
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3.1 Asymptotic Stability

Definition:

An LTI system is asymptotically stable if its impulse response g(t)

satisfies the condition
∫∞

0
|g(t)|dt < ∞

Examples:

1. LCR circuit: g(t) = e−t sin(3t + 2)

t

e−t

|g(t)|

∫∞

0
|g(t)|dt ≤

∫∞

0
e−t dt = 1<∞

2. Delay line with lossy reflections:

g(t) =
∞∑

k=0

1

2k
δ(t − kT)

t
∫∞

0
|g(t)|dt =

∫∞

0

∞∑

k=0

1

2k
δ(t − kT)dt=

∞∑

k=0

1

2k
= 2<∞
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3.2 Poles and the Impulse Response

Although stability is most easily defined in terms of the impulse

response, it is most easily determined (at least for systems with

rational transfer functions (the ones that come from ODE’s) in terms of

pole locations. To understand this, we first need to look at the

relationship between the poles of a system and solutions to its

differential equation – in particular its impulse response.

Example: Consider the system with input u and output y related by the ODE

d2y

dt2
+αdy

dt
+ βy = adu

dt
+ bu.

The Auxillary Equation for this ODE is

λ2 +αλ+ β = 0

with Complementary Factor
yCF = Aeλ1t + Beλ2t

This decays to 0 as t →∞ only when λ1 < 0 and λ2 < 0 (or, if the roots are

complex, when their real parts are negative).

In terms of transfer functions we have

ȳ(s) = as + b
s2 +αs + βū(s)

The poles of the system’s transfer function are given by the roots of the

denominator - that is the solutions to

s2 +αs + β = 0

So, for a system described by an ODE, its poles are precisely the solutions to its

Auxiliary Equation.
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Consider now a general LTI system described by an ODE, and

consequently having a rational transfer function G(s). That is, it can

be written as the ratio of two polynomials

G(s) = n(s)
d(s)

(where the coefficients of d(s) comes from the LHS of the underlying

ODE and the coefficients of n(s) come from the RHS).

We can factorize the denominator to give

G(s) = n(s)

(s − p1)(s − p2) · · · (s − pn)

We will also assume that G(s) is proper, that is

deg[n(s)] ≤ deg[d(s)].

e.g. G(s) = s
(a differentiator)
is not proper

(This condition will always be satisfied for physically realizable systems. Moreover,

any system whose transfer function violates this condition is not asymptotically

stable.)

In this case we can perform a partial fraction expansion to give

G(s) = α1

s − p1
+ α2

s − p2
+ · · · + αn

s − pn
+ C

where αi = lims→pi(s −pi)G(s) is called the residue at s = pi. (we are

assuming no repeated poles here, for simplicity of notation). Finally,

by taking inverse Laplace transforms, this means we can write the

impulse response in the form

g(t) = α1e
p1t +α2e

p2t + · · · +αnepnt + Cδ(t)

Consider one of these terms, ept say. How it contributes to g(t)

depends on whether p is real or complex:
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• If p is real: then ept is a real exponential, with time constant

|1/p| .

p < 0 p > 0

• If p complex then we need to consider ℜ(αept) (the imaginary part

will cancel out with the contribution from p∗, which will also be a

pole†, since g(t) must be real).

This will give give either a damped or a growing sinusoid:

ℜ( α
︸︷︷︸

Aejφ

ept) = ℜ(Aejφept) = ℜ(Aeσtej(ωt+φ))

= Aeσt cos(ωt +φ)

(where we have put p = σ + jω again)

time constant = |1/σ | frequency =ω

2π/ω

σ < 0 σ > 0

† complex poles always appear in conjugate pairs since they are roots of a real

polynomial
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So each pair of complex poles contributes a term of the form

2Aeσt cos(ωt +φ)

where σ = ℜ(p), ω = ℑ(p)
Compare this with the impulse response of a second order system (see

Mechanics data book)

Ce−ωnζt sin(ωd t) =⇒







σ = −ωnζ

ω =ωd =ωn

√

1− ζ2

Clearly, the impulse response of any rational system can be regarded as a

combination of 1st and 2nd order terms. Furthermore, the contribution of

the second order terms can be understood in terms of the language of

second order systems, as the following very important figures make clear :

We have assumed that no poles are repeated for this discussion. Repeated

poles give rise to terms of the form tmept (or tmeσt cos(ωt + φ)), which

have the same general characteristics (as the exponential dominates the

polynomial term).

ℜ(s)

ℑ(s)

X

X

ωn

−ωnζ

ω

σ

ωn

√

1− ζ2
p= σ + jω

p∗ = σ − jω

cos−1 ζ

sin−1 ζ

0
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This figure shows that, given the pole locations, in the complex plane,

of a second order system we can read off the natural frequency, the

damping ratio and also ωnζ, the reciprocal of the time constant of

the decay.

For a higher order system, we can

read off the natural frequency and

damping ratio of each “mode” of

the system (each pair of complex

poles). The poles closest to the

imaginary axis are often called the

dominant poles (their contribution

dies away most slowly, and so

tends to dominate the response)

ℜ(s)

ℑ(s)

−2 −1 0

X

X

X

X

X

Re(s)

Im(s)

ζ
=

0

ζ = 1

ζ =
1/ √

2

ω
n =

1.0

ω
n =

1.5

ω
n =

0.5

ω
n =

2.0

−2 −1 0 1 2

2

1

−1

−2

ωnζ = 1.25

This figure shows radial contours of constant damping ratio ζ and

circles of constant natural frequency ωn as well as a vertical lines on

which ωnζ is constant.
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3.3 Asymptotic Stability and Pole Locations

We will now show the following:

Theorem: An LTI system with rational transfer function G(s) is

asymptotically stable if, and only if, all poles of G(s) lie in the LHP

ℜ(s)

ℑ(s)

Imaginary Axis

ℜ(s) = 0

Right Half Plane
RHP

Left Half Plane
LHP

ℜ(s) < 0 ℜ(s) > 0

Proof:

i) First we show that if all poles have a negative real part then the

system is asymptotically stable.

For now, assume that the poles of G(s) are distinct

i.e. that d(s) has no repeated roots

(we shall remove this restriction later)

then we can write

G(s) = n(s)

(s − p1)(s − p2) · · · (s − pn)

=α0+
α1

(s − p1)
+ α2

(s − p2)
+· · · + αn

(s − pn)

by partial fraction expansion, and so

g(t) = α0δ(t)+α1e
p1t +α2e

p2t + · · · +αnepnt .
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Now, let

σk = ℜ(pk) and ωk = ℑ(pk)
so pk = σk + jωk, for each k = 1 . . . n, then

|epkt| = |e(σk+jωk)t| = |eσktejωkt| = |eσkt| |ejωkt|
︸ ︷︷ ︸

1

= eσkt

and so

|g(t)| ≤ |α0|δ(t)+ |α1|eσ1t + |α2|eσ2t + · · · + |αn|eσnt .

Now,

∫∞

0
eσt dt =

[
1

σ
eσt

]∞

0
=







− 1

σ
, if σ < 0

∞, if σ ≥ 0

and furthermore, since every pole has σk < 0, then

∫∞

0
|g(t)|dt ≤ |α0| +

∣
∣
∣
∣
∣

α1

σ1

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣

α2

σ2

∣
∣
∣
∣
∣
+ · · · +

∣
∣
∣
∣

αn

σn

∣
∣
∣
∣<∞

and consequently the system is asymptotically stable as required.

Repeated poles: If G(s) has repeated poles, i.e.

G(s) = · · ·
· · · (s − p)l · · ·

,

where l denotes the multiplicity of the pole at s = p, then the partial

fraction expansion of G(s) will be of the form

G(s) = · · · + β1

(s − p) +
β2

(s − p)2 + · · · +
βl

(s − p)l
+ · · · .

Hence, the impulse response g(t) will be of the form

g(t) = · · · + β1e
pt + β2te

pt + · · · + βl
(l− 1)!

tl−1ept + · · ·

However, if p = σ + jω and σ < 0 (ie ℜ(p) < 0), then

∫∞

0
|tk−1ept|dt =

∫∞

0
tk−1eσt dt < ∞

for any k. Hence the conclusion remains valid.
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ii) Now we show the converse, that if a system is asymptotically stable

then all poles have a negative real part.

For all values of s for which ℜ(s) ≥ 0, we have

|G(s)| =
∣
∣
∣
∣

∫∞

0
e−stg(t)dt

∣
∣
∣
∣ ≤

∫∞

0

∣
∣
∣e−st

∣
∣
∣ |g(t)|dt

≤
∫∞

0
|g(t)|dt ( since

∣
∣
∣e−st

∣
∣
∣ ≤ 1 for Re(s) ≥ 0)

= A<∞.
since the system is asymptotically stable. This means that G(s) cannot

have any poles on the imaginary axis or in the right half of the

complex plane. So any poles it does have must have a negative real

part, as required. �.

So far, we have divided systems into two classes: those that are

asymptotically stable and those that are not. We shall now further

classify the systems that are not asymptotically stable into two

classes: those that are marginally (i.e. “almost”) stable and those that

are unstable.
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3.4 Marginal Stability

Definition: An LTI system is marginally stable if it is not

asymptotically stable, but there nevertheless exist numbers A,

B < ∞ such that

∫ T

0
|g(t)|dt < A+ BT for all T

Examples:

1. Integrator:

g(t) = H(t) =
T

∫ T

0
|g(t)|dt = T

G(s) = 1/s =⇒ jω-axis pole at s = 0

2. Undamped spring-mass system:

g(t) = cos(3t) =⇒
∫ T

0
|g(t)|dt ≤

∫ T

0
1dt = T

G(s) = s/(s2 + 9) =⇒ jω-axis poles

at s = ±3j
3. Delay line with lossless reflections:

g(t) =
∞∑

k=0

δ(t − k), =⇒
∫ T

0
|g(t)|dt ≤ T + 1

4. Something which cannot arise as the impulse response of any ODE:

(g(t)→ 0, but system is not asymptotically stable)

g(t) = 1

t + 1
=⇒

∫ T

0
|g(t)|dt = log(T + 1) ≤ T
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3.5 Instability

Definition: A system is unstable if it is neither asymptotically stable

nor marginally stable.

Examples:

1. Inverted pendulum:

g(t) = e4t + e−4t

G(s) =
1

s − 4
+ · · · =⇒ pole at s = 4

2. Two integrators in series:

g(t) = t
∫ ∫

G(s) =
1

s2
=⇒ double pole at s = 0

3. Oscillation of badly designed control system:

g(t) = e0.01t sin(0.3t)

G(s) = 0.3
(

(s − 0.01)2 + 0.32
)

=⇒ poles at s = 0.01± 0.3j

Warning: Different people use different definitions of stability. In particular,

systems which we have defined to be marginally stable would be regarded as

stable by some, and unstable by others. For this reason we avoid using the term

“stable” without qualification.
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3.6 Stability Theorem

It should be clear from these examples that

if any of the poles of G(s) have a positive real part then the

impulse response will have a term that blows up exponentially

(consider the partial fraction expansion of G(s)).

Also, if G(s) has a repeated imaginary axis pole then the impulse

response will have a term that still blows up, although more slowly.

In either of these cases, the system is unstable.

Isolated poles on the imaginary axis, on the other hand, give rise

to terms in the impulse response which remain bounded (e.g.

steps or sinusoids).

In this case the system is not asymptotically stable but is nevertheless

marginally stable (provided it has no RHP or repeated imaginary axis

poles).

In fact, (for systems with proper rational transfer functions) it can

be shown that

Stability Theorem:

1. A system is asymptotically stable if all its poles have negative

real parts.

2. A system is unstable if any pole has a positive real part, or if

there are any repeated poles on the imaginary axis.

3. A system is marginally stable if it has one or more distinct poles

on the imaginary axis, and any remaining poles have negative real

parts.

Note: we proved part 1, and the converse statement that a system is not

asymptotically stable if any of its poles have a zero or positive real part, on page 6)

The refinement of “not asymptotically stable” into marginal stability and instability

has only been illustrated by examples. The proof of parts 2 and 3 is not difficult,

but is messy (and so is omitted).

14



XX

X

X

asymptotically
stable

XX

X

X

unstable

XX

X

X

repeated
jω-axis poles

unstable

X

X

X

X

X

X

marginally
stable

Note: it’s the “worst” poles that determine the stability properties

15



ℜ(s)

ℑ(s)

X

X

X

Poles/zeros for G(s) = (s + 1.5)(s2 − s + 1)

(s + 2)(s2 + 0.1s + 4)

Note: this is an asymptotically stable system.

−3 −2 −1 0 1 2 3
−2

0

2

0

1

2

3

4

5

pole at s = −2 pole at s = −0.05+ 2j

pole at s = −0.05− 2j

zero at s = −1.5
zero at s = 0.5− 0.87j

zero at s = 0.5+ 0.87j

ℜ(s)
ℑ(s)

|G
(s
)|
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3.7 Poles and the Transient Response

The term Transient Response refers to the initial part of the (time

domain) response of a system to a general input (before the

“transients” have died out). To a very large extent, these transients are

a characteristic of the system itself rather than the input.

If, for example a system with transfer function

G(s) = n(s)

(s − p1)(s − p2) · · · (s − pn)

is given an input u(t), with Laplace transform ū(s), then the response

is given by

ȳ(s) = G(s)ū(s) = n(s)

(s − p1)(s − p2) · · · (s − pn)
ū(s)

= γ1

s − p1
+ γ2

s − p2
+ · · · + γn

s − pn
+ other stuff

and so

y(t) = γ1e
p1t + γ2e

p2t + · · · + γnepnt + other stuff

That is, the response y(t) contains the same terms as the impulse

response (although with different amplitudes) plus some extra terms

due to particular characteristics of the input.
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3.8 Key Points

• The impulse response of an LTI system is a sum of terms due to

each real pole, or pair of complex poles.

• The system’s response to any input will also include these features.

The following figure shows a selection of pole locations, with their

corresponding contribution to the total response.

This again is an important figure.

Note:

The real part of the pole, σ , determines both stability and the time

constant, |1/σ |.

The imaginary part of the pole, ω, determines the damped natural

frequency (actual frequency of oscillation) in rad/sec.

The magnitude of the pole determines the natural frequency.

The argument of the pole determines the damping ratio.

Real(s)

Imag(s)

Right half planeLeft half plane

Imaginary axis

XX X

X

X

X X

XX

XX

X

X

X

X

Pole locations and corresponding transient responses
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