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Summary

Stability, or the lack of it, is the most fundamental of system
properties. When designing a feedback system the most basic of
requirements is that the feedback system be stable.

There are different ways of defining stability. In this handout we shall:
#® Define the following notions:

o Asymptotic stability

» Marginal stability

» Instability

#® Relate stability of a system to the poles of its transfer function

In addition, we shall:

® Relate the transient response of a system to the poles of its
transfer function
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3.1 Asymptotic Stability

Definition:

An LTI system is asymptotically stable if its impulse response g(t)
satisfies the condition

jo g(D)]dt < oo

Examples:

1. LCR circuit; g(t) = e tsin(3t +2)

\ P’ t

J |g(t)|\dt’éj e tdt =1< oo
0 0

2. Delay line with lossy reflections:

g(t) = zzika(t—m
k=0
| 1,
t
|
JO dt—J Z—é(t—kT t=zz—k=2<oo

k=0




3.2 Poles and the Impulse Response

Although stability is most easily defined in terms of the impulse
response, it is most easily determined (at least for systems with
rational transfer functions (the ones that come from ODE’s) in terms of
pole locations. To understand this, we first need to look at the
relationship between the poles of a system and solutions to its
differential equation - in particular its impulse response.

Example: Consider the system with input u and output v related by the ODE

d?y dy du
W-f—O(E-FBy—OLE-Fbu.
The Auxillary Equation for this ODE is
A+ad+B=0

; r
with Complementary Facto VeE = AeMit 4 Belat

This decays to 0 as t — o only when A; < 0 and Az < O (or, if the roots are
complex, when their real parts are negative).

In terms of transfer functions we have

__as+b
s2+as+ B

y(s) u(s)

The poles of the system’s transfer function are given by the roots of the
denominator - that is the solutions to

s’+as+B=0

So, for a system described by an ODE, its poles are precisely the solutions to its
Auxiliary Equation.




Consider now a general LTI system described by an ODE, and
consequently having a rational transfer function G(s). That is, it can
be written as the ratio of two polynomials

(where the coefficients of d(s) comes from the LHS of the underlying
ODE and the coefficients of n(s) come from the RHS).

We can factorize the denominator to give

B n(s)
O = TGP )
We will also assume that G(s) is proper, that is eg. G(s)=s
(a differentiator)
deg[n(s)] < degl[d(s)]. is not proper

(This condition will always be satisfied for physically realizable systems. Moreover,
any system whose transfer function violates this condition is not asymptotically
stable.)

In this case we can perform a partial fraction expansion to give

x x x
G(s)=—1— =2 4...4 1

s—p1 S—p2 S—Pn

+C

where &; = lims—p. (s — p;)G(s) is called the residue at s = p;. (we are
assuming no repeated poles here, for simplicity of notation). Finally,
by taking inverse Laplace transforms, this means we can write the
impulse response in the form

g(t) = xpeP1l + oeP2t 4. .. 1 apePnl + C5(t)

Consider one of these terms, eP! say. How it contributes to g(t)
depends on whether p is real or complex:



e |If pis real: then ePt is a real exponential, with time constant

11/pl . k ‘L

p <0 p>0

e If p complex then we need to consider R (xeP?!) (the imaginary part
will cancel out with the contribution from p™*, which will also be a
polet, since g(t) must be real).

This will give give either a damped or a growing sinusoid:
%(&ept) = R(AeIPePl) = R(AeTle(WiFP)y
AeJ®
= Ae%tcos(wt + ¢p)
(where we have put p = 0 + jw again)

time constant = |1/0| frequency =

t complex poles always appear in conjugate pairs since they are roots of a real
polynomial



So each pair of complex poles contributes a term of the form
2Ae% cos(wt + ¢)

where 0 =R(p), w =3I(p)

Compare this with the impulse response of a second order system (see
Mechanics data book)

o =—-wnul

Ce @“ntlgin(wyt) =
W =wg = Wny1-—C2

Clearly, the impulse response of any rational system can be regarded as a
combination of 1st and 2nd order terms. Furthermore, the contribution of
the second order terms can be understood in terms of the language of
second order systems, as the following very important figures make clear :

We have assumed that no poles are repeated for this discussion. Repeated
poles give rise to terms of the form t™eP! (or t"e%! cos(wt + ¢)), which
have the same general characteristics (as the exponential dominates the

polynomial term).

— + 1
A A o122

cos1 C /\\ R(s)




This figure shows that, given the pole locations, in the complex plane,
of a second order system we can read off the natural frequency, the
damping ratio and also w,C, the reciprocal of the time constant of
the decay.

For a higher order system, we can X F(s)
read off the natural frequency and «
damping ratio of each “mode” of
the system (each pair of complex
poles). The poles closest to the
imaginary axis are often called the « R(s)
dominant poles (their contribution —¢ -1 0
dies away most slowly, and so
tends to dominate the response)
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This figure shows radial contours of constant damping ratio € and
circles of constant natural frequency w3y, as well as a vertical lines on
which w4 C is constant.



3.3 Asymptotic Stability and Pole Locations

We will now show the following:

Theorem: An LTI system with rational transfer function G(s) is
asymptotically stable if, and only if, all poles of G(s) lie in the LHP

J(s)
Left Half Plane Right Half Plane
LHP RHP
R(S)
R(s) <0 R(s) >0
Imaginary AXxis
RS

Proof:

i) First we show that if all poles have a negative real part then the
system is asymptotically stable.

For now, assume that the poles of G(s) are distinct
i.e. that d(s) has no repeated roots
(we shall remove this restriction later)

then we can write

B n(s)
G = )G =) G—pn)
_ gt —2 X2 “n

-p1) G-p2) T G-pn)

by partial fraction expansion, and so

g(t) = xpd(t) + xgeP1t + oeP2t + ... 4 qpePnt,



Now, let
ok = R(py) and wy = J(py)

so Py = Oy + Jwy, for each k = 1...n, then
|e}9kt| _ |e(0k+jwk)t| — |eO'ktejwkt| _ |eO'kt| |ejwkt| — eO'kt
ﬁ_J
and so 1
()] < lxglS(t) + [oxq[e91F + |axple2E + -+ + [y [eE.
Now,

1
J“’egtdt:[legt]“: g if o <0
0 o 0 00, if o >0

and furthermore, since | every | pole has o} < 0, then

&2
g2

+ +ooee

R
S

ldt < |lxol + | —
jo 9(t)ldt < ol + |

and consequently the system is asymptotically stable as required.

Repeated poles: If G(s) has repeated poles, i.e.

Gls) — - |
where | denotes the multiplicity of the pole at s = p, then the partial
fraction expansion of G(s) will be of the form

B1 B2 Bi

G(S):"'+(S_p)+(s_p)2+"'+(s_7p)l+"-

Hence, the impulse response g(t) will be of the form

B e

gt) =+ prePt + BotePl 4 ... ¢ T- 1

However, if p = 0 + jw and o < 0 (ie R(p) < 0), then

(0)0) (0)0)
JO itk—LePl) gt = JO th=1o0t gt <

for any k. Hence the conclusion remains valid.
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ii) Now we show the converse, that if a system is asymptotically stable
then all poles have a negative real part.

For all values of s for which R(s) > 0, we have
Gl = || etawar| < | et 19w ar

< JOOO lg(t)|dt ( since )e‘”) <1 for Re(s) = 0)

= A< oo,

since the system is asymptotically stable. This means that G(s) cannot
have any poles on the imaginary axis or in the right half of the
complex plane. So any poles it does have must have a negative real
part, as required. O.

So far, we have divided systems into two classes: those that are
asymptotically stable and those that are not. We shall now further
classify the systems that are not asymptotically stable into two
classes: those that are marginally (i.e. “almost”) stable and those that
are unstable.
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3.4 Marginal Stability

Definition: An LTI system is marginally stable if it is not
asymptotically stable, but there nevertheless exist numbers A,
B < o0 such that

T
JO lg(t)|dt < A+ BT forall T

Examples:

1. Integrator:

T
g(t) = H(t) = J lgt)ldt =T
T 0

G(s) =1/s = jw-axispoleats =0

2. Undamped spring-mass system:

T T
g(t) = cos(3t) — J lg(t)|dt < J 1dt =T
0 0
G(s) = S/(S2 +9) = jw-axis poles
at § = +3]J

3. Delay line with lossless reflections:

g T
gty = S st—-k), = I gWldt<T + 1
k=0 0
4. Something which cannot arise as the impulse response of any ODE:
(g(t) — 0, but system is not asymptotically stable)
1

T
g = o = JO g()dt =log(T+1) <T
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3.5 Instability

Definition: A system is unstable if it is neither asymptotically stable
nor marginally stable.

Examples:
1. Inverted pendulum:

g(t) = + e 4t
1

G(s) =

+ -+ = poleat s =4
s—4

2. Two integrators in series:

git) =t LI Ilg

1
G(s) = 2 — doublepoleat s =0

3. Oscillation of badly designed control system:

gt) = e0-01t gin(0.3¢)

0.3
Gls) = ((s — 0.01)2 + 0.32)

— polesat s =0.01+0.3j

Warning: Different people use different definitions of stability. In particular,
systems which we have defined to be marginally stable would be regarded as
stable by some, and unstable by others. For this reason we avoid using the term

“stable” without qualification.
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3.6 Stability Theorem

It should be clear from these examples that

® if any of the poles of G(s) have a positive real part then the
impulse response will have a term that blows up exponentially
(consider the partial fraction expansion of G(s)).

® Also, if G(s) has a repeated imaginary axis pole then the impulse
response will have a term that still blows up, although more slowly.

In either of these cases, the system is unstable.

® |solated poles on the imaginary axis, on the other hand, give rise
to terms in the impulse response which remain bounded (e.g.
steps or sinusoids).

In this case the system is not asymptotically stable but is nevertheless
marginally stable (provided it has no RHP or repeated imaginary axis
poles).

In fact, (for systems with proper rational transfer functions) it can
be shown that

Stability Theorem:

1. A system is asymptotically stable if all its poles have negative
real parts.

2. A system is unstable if any pole has a positive real part, or if
there are any repeated poles on the imaginary axis.

3. A system is marginally stable if it has one or more distinct poles
on the imaginary axis, and any remaining poles have negative real
parts.

Note: we proved part 1, and the converse statement that a system is not
asymptotically stable if any of its poles have a zero or positive real part, on page 6)
The refinement of “not asymptotically stable” into marginal stability and instability
has only been illustrated by examples. The proof of parts 2 and 3 is not difficult,
but is messy (and so is omitted).
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® Note: it’s the “worst” poles that determine the stability properties
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J(s)

(s+1.5)(s2=s5+1)

f =
Poles/zeros for G(s) (s+2)(s2+0.1s + 4)

Note: this is an asymptotically stable system.

L —

.:,ﬁ .pole at s = —0.05 + 2j
|l pole at s = -0.05 - 2

 zeroats =0.5+0.87]
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3.7 Poles and the Transient Response

The term Transient Response refers to the initial part of the (time
domain) response of a system to a general input (before the
“transients” have died out). To a very large extent, these transients are
a characteristic of the system itself rather than the input.

If, for example a system with transfer function

n(s)

) = oG- G —pn)

is given an input u(t), with Laplace transform 11(s), then the response
is given by

—— S n(s) _
Y =GR = G s )
Y1 Y2 L Y Gther stuff
S=pP1 S—Pp2 S—Pn

and so
Y(t) = y1eP1t 4 yreP2l 4 ... 4y, ePnt 4 other stuff

That is, the response y(t) contains the same terms as the impulse
response (although with different amplitudes) plus some extra terms
due to particular characteristics of the input.
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3.8 Key Points

e The impulse response of an LTI system is a sum of terms due to
each real pole, or pair of complex poles.

e The system’s response to any input will also include these features.

The following figure shows a selection of pole locations, with their
corresponding contribution to the total response.

This again is an important figure.
Note:

® The real part of the pole, o, determines both stability and the time
constant, |1/0/.

® The imaginary part of the pole, w, determines the damped natural
frequency (actual frequency of oscillation) in rad/sec.

® The magnitude of the pole determines the natural frequency.

® The argument of the pole determines the damping ratio.

Imag(s)
NI xﬁvﬁv\ca XW xpeA X /
N LS A x%& Y G I

— /Rl()
¥ - x\ X e =

Left half plane Right half plane

Imaginary axis

Pole locations and corresponding transient responses
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