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“Impulse responses, step responses and transfer

functions.”

G(s)

transfer function

⇌

g(t)

impulse response

ū(s)

u(t)

⇌

Laplace transform
pair

ȳ(s)= G(s)ū(s)

⇌

y(t)=

∫ t

0
u(τ)g(t − τ)dτ

= u(t)∗ g(t)
= g(t)∗u(t)
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Summary

The

impulse response,

step response and

transfer function

of a Linear, Time Invariant and causal (LTI) system each completely

characterize the inputoutput properties of that system.

Given the input to an LTI system, the output can be deterermined:

In the time domain: as the convolution of the impulse response

and the input.

In the Laplace domain: as the multiplication of the transfer

function and the Laplace transform of the input.

They are related as follows:

The step response is the integral of the impulse response.

The transfer function is the Laplace transform of the impulse

response.
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2.1 Preliminaries

2.1.1 Definition of the impulse “function”

The impulse can be defined in many different ways, for example:

a)

t

1
∆

∆
T

or b)

t

1
∆

2∆
T

as ∆→ 0.

(area= 1 in each case.)

tT

taking “limits”,
as ∆→ 0

= δ(t − T)

impulse at t = T
(impulse occurs
when argument= 0)

Note: The “convergence”, as ∆→ 0, occurs in the sense that both

functions a) and b) have the same properties in the limit:
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2.1.2 Properties of the impulse “function”

Consider a continuous function f(t), and let h∆(t) denote the pulse

approximation to the impulse ( (a) on previous page):

h∆(t) =





1/∆ if−∆/2 < t < ∆/2

0 otherwise

t

1
∆

h∆(t − T)

∆
T

f(t)

Let

I∆ =
∫∞

−∞
f(t)h∆(t − T)dt =

∫ T+∆2
T−∆2

f(t)
1

∆ dt =
1

∆

∫ T+∆2
T−∆2

f(t)dt

Now,

I∆ ≤

1

∆×

t

∆
T

=
1

∆ ×∆× max
T−∆/2≤t≤T+∆/2

f(t)

and also

I∆ ≥
1

∆×

t

∆
T

=
1

∆ ×∆× min
T−∆/2≤t≤T+∆/2

f(t)

So, it must be the case that lim∆→0 I∆ = f(T), that is

lim
∆→0

∫∞

−∞
f(t)h∆(t − T)dt =f(T)
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A similar argument leads to the same result for the triangular

approximation to the impulse ( defined above as (b) ).

Formally, the unit impulse is defined as any “function” δ(t) which has

the property ∫∞

−∞
f(t)δ(t − T)dt = f(T)

(Strictly speaking, δ(t) is a distribution rather than a function.)

Laplace transform of δ(t):

L
{
δ(t)} =

∫∞

0−
δ(t)e−st dt= e−s×0= 1

2.1.3 The Impulse and Step Responses

Definition: The impulse response of a system is the output of

the system when the input is an impulse, δ(t), and all initial

conditions are zero.

Definition: The step response of a system is the output of the

system when the input is a step, H(t), and all initial conditions

are zero.

where H(t) is the unit step function

H(t) =





1 if t ≥ 0

0 if t < 0

If you know the impulse response of a system, then the response of

that system to any input can be determined using convolution, as we

shall now show:
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2.2 The convolution integral

2.2.1 Direct derivation of the convolution integral

LTI system
(impulse response

= g(t))

u(t) y(t)

INPUT OUTPUT

δ(t) g(t)

impulse response

δ(t − τ) g(t − τ)

u(τ)δ(t − τ) u(τ)g(t − τ)

∫∞

−∞
u(τ)δ(t − τ)dτ

︸ ︷︷ ︸
u(t)

∫∞

−∞
u(τ)g(t − τ)dτ

Hence, the response to the input u(t) is given by:

y(t) =

∫∞

−∞
u(τ)g(t − τ)dτ
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2.2.2 Alternative statements of the

convolution integral

The convolution integral

y(t) =

∫∞

−∞
u(τ)g(t − τ)dτ

is abbreviated as

y(t) = u(t)∗ g(t)

Let T = t − τ, so τ = t − T and dτ = −dT

It follows that

y(t) =

∫∞

−∞
u(t − T)g(T)dT

= g(t)∗u(t)

NOTE: in either form of the convolution integral,

the arguments of u(·) and g(·) add up to t

If, in addition,

g(t) = 0 for t < 0 (CAUSALITY)

u(t) = 0 for t < 0 (standing assumption), then

y(t) =

∫ t

as g(t − τ) = 0 for t − τ < 0 (i.e. τ > t)

0

as u(τ) = 0 for τ < 0

u(τ)g(t − τ)dτ

and also

y(t) =

∫ t

as u(t − τ) = 0 for t − τ < 0 (i.e. τ > t)

0

as g(τ) = 0 for τ < 0

u(t − τ)g(τ)dτ
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2.3 The Transfer Function (for ODE systems)

As an alternative to convolution, the response of a linear system to

arbitrary inputs can be determined using Laplace transforms. This is

clear when the system is described as a linear ODE:

For example, if a linear system has input u and output y satisfying

the ODE

d2y

dt2
+α

dy

dt
+ βy = a

du

dt
+ bu

and if all initial conditions are zero, i.e.
dy
dt

∣∣∣
t=0

= y(0) = u(0) = 0,

then taking Laplace transforms gives

s2ȳ(s)+αsȳ(s)+ βȳ(s) = asū(s)+ bū(s)

or (
s2 +αs + β

)
ȳ(s) =

(
as + b

)
ū(s)

and so

ȳ(s) =
as + b

s2 +αs + β︸ ︷︷ ︸
Transfer function

ū(s)

The function
as+b

s2+αs+β
is called the transfer function from ū(s) (the

input) to ȳ(s) (the output).

Clearly the same technique will work for higher order linear ordinary

differential equations (with constant coefficients). For such systems,

the transfer function can be regarded as a placeholder for the

coefficients of the differential equation.
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2.3.1 Laplace transform of the convolution integral

We have seen that both convolution with the impulse reponse (in the

time domain) and multiplication by the transfer function (in the

Laplace domain) can both be used to determine the output of a linear

system. What is the relationship between these techniques?

Assume that g(t) = u(t) = 0 for t < 0,

L
(
g(t)∗u(t)

)
= L

(∫∞

−∞
g(τ)u(t − τ)dτ

)

=

∫∞

0
e−st

∫∞

−∞
g(τ)u(t − τ)dτ dt

=

∫∞

−∞

∫∞

0
e−stg(τ)u(t − τ)dt dτ

Note that τ is constant for the inner integration, and let

T = t − τ, which implies t = T + τ and dt = dT ,

giving (so e−st = e−sT e−sτ )

L
(
g(t)∗u(t)

)
=

∫∞
0

−∞

∫∞
0

−τ

e−sτe−sTg(τ)u(T)dT dτ

=

∫∞

0
e−sτg(τ)dτ ×

∫∞

0
e−sTu(T)dT

= L
(
g(t)

)
×L

(
u(t)

)
= ḡ(s) ū(s)

In words, a Laplace transform (easy when you get used to them) turns

a convolution (always hard!) into a multiplication (very easy).
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2.4 The transfer function for any linear system

It follows from the result of the previous section that, if

y(t) = g(t)∗u(t)

is the response of an LTI system with impulse response g(t) to the

input u(t), then we can also write

ȳ(s) = G(s) ū(s)

where G(s) = Lg(t) is called the transfer function of the system.

It follows that all LTI systems have transfer functions (given by the

Laplace transform of their impulse response).

G(s)

transfer function

⇌

g(t)

impulse response

ū(s)

u(t)

⇌

ȳ(s)= G(s)ū(s)

⇌

y(t)= g(t)∗u(t)

We shall use the notation x̄(s) to represent the Laplace transform of a

signal x(t), and uppercase characters to represent transfer functions

(e.g. G(s)).
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In general a system may have more than one input. In this case, the

transfer function from a particular input to a particular output is

defined as the Laplace transform of that output when an impulse is

applied to the given input, all other inputs are zero and all initial

conditions are zero.

This is most easily seen in the Laplace domain: If an LTI system has an

input u and an output y then we can always write

ȳ(s) = G(s)ū(s)+ other terms independent of u.

G(s) is then called the transfer function from ū(s) to ȳ(s). (Or, the

transfer function relating ȳ(s) and ū(s))

Here the “other terms” could be a result of nonzero initial conditions

or of other nonzero inputs (disturbances, for example).

NOTE: Remember that although the transfer function is defined

in terms of the impulse response, it is usually most easily

calculated directly from the system’s differential equations.
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2.5 Example: DC motor

The following example will illustrate the impulse and step responses

and the transfer function. We take the input to the motor to be the

applied voltage e(t), and the output to be the shaft angular velocity

ω := θ̇(t).

e(t)

Kω(t)

R i L

J B

τ θ

1) τ(t) = Ki(t) Linearized motor equation

2) τ(t)− Bω(t) = Jω̇(t) Newton

3) e(t) = Ri(t)+ L
di(t)

dt
+Kω(t) Kirchoff

Find the effect of e(t) on ω(t):

Take Laplace Transforms, assuming that ω(0) = i(0) = 0:

1) τ̄(s) = Kī(s)

2) τ̄(s)− Bω̄(s) = J
(
sω̄(s)−ω(0)

)

3) ē(s) = Rī(s)+ L
(
sī(s)− i(0)

)
+Kω̄(s)
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We can now eliminate ī(s) and τ̄(s) to leave one equation relating ē(s)

and ω̄(s):

First 1) and 2) give:

Kī(s) = (Js + B)ω̄(s)

and rearranging 3) gives:

ē(s) = (Ls + R)ī(s)+ Kω̄(s)

putting these together leads to

ē(s) =

(
(Ls + R)

(Js + B)

K
+K

)
ω̄(s)

or, in the standard form (outputs on the left)

ω̄(s) =
K

(Ls + R)(Js + B)+K2
ē(s)

=
k

(sT1 + 1)(sT2 + 1)
ē(s)

for suitable definitions of k, T1 and T2 (assuming real roots).

That is,

ω̄(s)

output

=
k

(T1s + 1)(T2s + 1)︸ ︷︷ ︸
Transfer Function

ē(s)

input

We call G(s) = k
(sT1+1)(sT2+1) the transfer function from ē(s) to ω̄(s)

(or, relating ω̄(s) and ē(s)).

The diagram

G(s)
ē(s) ω̄(s)

represents this relationship between the input and the output:

By using Laplace transforms, all LTI blocks can be

treated as multiplication by a transfer function.

For the lego NXT motor we have k ≈ 2.2, T1 ≈ 54ms and T2 ≈ 1ms, as

demonstrated in lectures.
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2.5.1 Impulse Response of the DC motor

To find the impulse response, we let

e(t) = δ(t) unit impulse

which implies

ē(s) = 1

and put

ω(0) = i(0) = 0.

So,

ω̄(s) =
k

(T2s + 1)(T1s + 1)
×1

Split into partial fractions:

ω̄(s) = k

[
1

1−
T1

T2

×
1

sT2 + 1
+

1

1−
T2

T1

×
1

sT1 + 1

]

=
k

T1 − T2

[
−

1

s + 1/T2
+

1

s + 1/T1

]

Hence,

ω(t) =
k

T1 − T2

[
−e−t/T2
︸ ︷︷ ︸

Fast Transient

e.g. T2 ≈ 1ms

+ e−t/T1
︸ ︷︷ ︸

Slow Transient

T1 ≈ 54 ms

]

0 0.05 0.1 0.15 0.2 0.25 0.3
−50

−40

−30

−20

−10

0

10

20

30

40

50
slow transient

fast transient

total impulse response

−
k

(T1 − T2)

k

(T1 − T2)

initial value= 0 (= lims→0 sω̄(s))

t (sec)

ω
(r

a
d

/
s
e
c
)
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2.5.2 Step Response of the DC motor

To find the step response, we let

e(t) = H(t)

which implies that

ē(s) =
1

s
and put

ω(0) = i(0) = 0

(as for the impulse response.) So,

ω̄(s) =
k

(T2s + 1)(T1s + 1)
×

1

s

Split into partial fractions:

ω̄(s) = k


1

s
+

T2

T1 − T2
×

1

s +
1
T2

−
T1

T1 − T2
×

1

s +
1
T1




Hence,

ω(t) = k

[
H(t)+

T2

T1 − T2
× e−t/T2

︸ ︷︷ ︸
Fast Transient

−
T1

T1 − T2
× e−t/T1

︸ ︷︷ ︸
Slow Transient

]

0 0.05 0.1 0.15 0.2 0.25 0.3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

slow transient

fast transient

total step response

step

kT2

(T1 − T2)

−
kT1

(T1 − T2)

k

initial slope= 0

t (sec)

ω
(r

a
d

/
s
e
c
)
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2.5.3 Deriving the step response from the

impulse response

For a system with impulse response g(t), the step response is given by

y(t) =

∫ t

0−
g(τ)H(t − τ)dτ =

∫ t

0−
g(τ)dτ

i.e.

step response = integral of impulse response

Check this on the example. Make sure you understand where the term H(t)

in the step response comes from.

2.6 Transforms of signals vs Transfer functions of

systems

Mathematically there is no distinction, but in practice they have different

interpretations

G(s) Signals Systems

L−1G(s) ȳ(s) = G(s) · ū(s)
m

1 δ(t) y(t) = u(t)

1
s H(t) y(t) =

∫ t

0
u(τ)dτ (integrator)

1
s+a e−at ẏ(t)+ ay(t) = u(t) (lag)

ω
s2+ω2 sin(ωt) ÿ(t)+ω2y(t) =ωu(t)

e−sT δ(t − T) y(t) = u(t − T) (delay)

In each case, the “signal” is the impulse response of the “system”.
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2.7 Interconnections of LTI systems

a) F(s)

G(s)

x̄(s)

ȳ(s)

Σ

+

+

H(s)
v̄(s) z̄(s)

represents the equations:

v̄(s) = F(s)x̄(s)+G(s)ȳ(s)

and

z̄(s) = H(s)v̄(s)

=⇒ z̄(s) = H(s)
(
F(s)x̄(s)+G(s)ȳ(s)

)

= H(s)F(s)︸ ︷︷ ︸
transfer function
from x̄(s) to z̄(s)

x̄(s)+ H(s)G(s)︸ ︷︷ ︸
transfer function
from ȳ(s) to z̄(s)

ȳ(s)

b) G(s)

K(s)

Σ
+r̄ (s) ē(s) ȳ(s)

−

represents the simultaneous equations:

ē(s) = r̄ (s)−K(s)ȳ(s)

and
ȳ(s) = G(s)ē(s)

=⇒ ȳ(s) = G(s)r̄ (s)−G(s)K(s)ȳ(s)

=⇒ (1+G(s)K(s))ȳ(s) = G(s)r̄ (s)

=⇒ ȳ(s) =
G(s)

1+G(s)K(s)
r̄ (s)
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2.7.1 “Simplification” of block diagrams

Recognizing that blocks represent multiplications, and using the above

formulae, it is often easier to rearrange block diagrams to determine overall

transfer functions, e.g. from ū(s) to ȳ(s) below.

G1(s) G2(s) G3(s)

K1(s)

ΣΣ
+ū(s)+ ȳ(s)

−+

⇓

G1(s)G2(s)
G3(s)

1+G3(s)K1(s)
Σ

ū(s)+ ȳ(s)

+

⇓

⇓

G1(s)G2(s)G3(s)

1+G3(s)K1(s)

−1

Σ
+ū(s) ȳ(s)

−

⇓

ȳ(s) =

G1(s)G2(s)G3(s)

1+G3(s)K1(s)

1−
G1(s)G2(s)G3(s)

1+G3(s)K1(s)

ū(s)

or

y(s) =
G1(s)G2(s)G3(s)

1+G3(s)K1(s)−G1(s)G2(s)G3(s)
ū(s)
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2.8 More transfer function examples

To obtain the transfer function, in each case, we take all initial conditions to

be zero.

The following three systems all have the same transfer

function (a 1st order lag)

1) Spring/damper system

y(t) x(t)

λ

k

λẏ = k(x −y)

=⇒
λ

k
ẏ +y = x

=⇒
λ

k
sȳ(s)+ ȳ(s) = x̄(s)

=⇒

(
λ

k
s + 1

)
ȳ(s) = x̄(s)

=⇒ ȳ(s) =
1

Ts + 1
x̄(s) T = λ/k

Step Response:

x̄(s) =
1

s
=⇒ ȳ(s) =

1

s(sT + 1)
=

1

s
−

T

sT + 1

=⇒ y(t) = H(t)− e−t/T

t

y(t)

T
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2) RC network� ��R � �ÿ���� C���ÿ������ �ý����� ����� �û�� y(t)�x(t) ��������
i = C

dy

dt
=
x −y

R

=⇒ RCẏ +y = x

=⇒ (RCs + 1)ȳ(s) = x̄(s)

=⇒ ȳ(s) =
1

Ts + 1
x̄(s) T = RC

3) Water Heater

q(t) (J/s)

θoθi

ṁ
(kg/s)

M(kg)

(assuming perfect mixing – i.e.

all the water in the tank is at the

same temperature, θo)

q =Mc

specific
heat capacity

θ̇0 + ṁc(θo − θi)

=⇒ (Mcs + ṁc)θ̄o(s) = q̄(s)+ ṁcθ̄i(s)

=⇒ θ̄o(s) =
1

ṁc

1

Ts + 1
q̄(s)

input

+
1

Ts + 1
θ̄i(s)

disturbance

T =M/ṁ
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2.9 Key Points

The step response is the integral (w.r.t time) of the impulse

response.

The transfer function is the Laplace transform of the impulse

response.

By using transfer functions, block diagrams represent simple

algebraic relationships (all blocks become multiplications).
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