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The Aims of the course are to:

Introduce and motivate the use of feedback control systems.

Introduce analysis techniques for linear systems which are used in

control, signal processing, communications, and other branches of

engineering.

Introduce the specification, analysis and design of feedback control

systems.

Extend the ideas and techniques learnt in the IA Mechanical

Vibrations course.

By the end of the course students should:

Be able to develop and interpret block diagrams and transfer functions

for simple systems.

Be able to relate the time response of a system to its transfer function

and/or its poles.

Understand the term ‘stability’, its definition, and its relation to the

poles of a system.

Understand the term ‘frequency response’ (or ‘harmonic response’), and

its relation to the transfer function of a system.

Be able to interpret Bode and Nyquist diagrams, and to sketch them for

simple systems.

Understand the purpose of, and operation of, feedback systems.

Understand the purpose of proportional, integral, and derivative

controller elements, and of velocity feedback.

Possess a basic knowledge of how controller elements may be

implemented using operational amplifiers, software, or mechanical

devices.

Be able to apply Nyquist’s stability theorem, to predict closed­loop

stability from open­loop Nyquist or Bode diagrams.

Be able to assess the quality of a given feedback system, as regards

stability margins and attenuation of uncertainty, using open­loop Bode

and Nyquist diagrams.
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What the course is really about

Understanding complex systems as an interconnection of simpler

subsystems.

Relating the behaviour of the interconnected system to the

behaviour of the subsystems.

(but we’ll only consider the feedback interconnection in detail)

Part 1 (1st 7 lectures or so)

Part 2 (last 7 lectures or so)

Σ
+

−
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SYLLABUS

Section numbers
Course material book 1 book 2

Examples of feedback control systems. Use of block

diagrams. Differential equation models. Meaning of

‘Linear System’.

1.1­1.13

2.2­2.3

1.1­1.3

2.1­2.5

Review of Laplace transforms. Transfer functions.

Poles (characteristic roots) and zeros. Impulse

and step responses. Convolution integral. Block

diagrams of complex systems.

2.4­2.6 3.1­3.2

Definition of stability. Pole locations and stability.

Pole locations and transient characteristics.

6.1

5.6

3.3­3.6

Frequency response (harmonic response). Nyquist

(polar) and Bode diagrams.

8.1­8.3 6.1­6.3

Terminology of feedback systems. Use of feedback

to reduce sensitivity. Disturbances and steady­state

errors in feedback systems. Final value theorem.

4.1­4.2

4.4­4.5

4.1

3.1.6

Proportional, integral, and derivative control.

Velocity (rate) feedback. Implementation of

controllers in various technologies.

7.7

12.6

4.3

Nyquist’s stability theorem. Predicting closed­loop

stability from open­loop Nyquist and Bode plots.

9.1­9.3 6.3

Performance of feedback systems: Stability

margins, Speed of response, Sensitivity reduction.

8.5

9.4­9.6

12.5

6.4,6.6

6.9
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1.1 Examples of feedback systems

1.1.1 Ktesibios’ Float Valve regulator

(Water­clock, Alexandria 250BC)

Supply
qi

x Outflow
qoE

Needs a

constant flow

rate at “E”

is a feedback control system.

Block Diagram:

Float
chamber

Float
& valve

Orifice
“E”Σ

“q”

Net
Inflow
Rate

Water
level

“x”

outflow rate

“qo”

−

Supply Pressure
(Disturbance)

+

Supply
flow rate

“qi”

Signals have units (usually), are functions of time, and are represented

by the connections:

e.g. Net inflow “q(t)” is measured in m3/s
Water level “x(t)” is measured in m
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Systems have equations, and are represented by the blocks:

e.g. the Float chamber is described by

x(t) =
1

A
cross­sectional area

∫ t

0
q(τ)dτ
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1.1.2 Watt’s Governor

8



Watt’s Governor

���������	
��
Æ���������������
Is a feedback control system.

Block diagram:

Engine
&

throttle

Steam
pressure Engine

inertia

Pulley

Fly­ball
Dynamics

Linkage

Load torque

Σ
−

Engine
torque+

Net
torque

fly­ball
angle

butterfly
angle

fly­ball
angular
velocity

Engine
speed

Note: it would be wrong to label the input to the feedback system as

simply “steam” rather than “steam pressure”. Steam in itself is not a

quantity (although its pressure, temperature or flow rate is).
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1.1.3 A Helicopter Flight Control System

Is a feedback control system

Block Diagram:

Helicopter
dynamics

measurements
(outputs)

controls
(inputs)

vertical accn

pitch rate

roll rate

yaw rate

main rotor
collective

cyclic pitch

cyclic roll

tail rotor

collective









sensorsactuators

flight
control

computer

wind gusts
(disturbances)

pilot
demands

ADCDAC
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1.1.4 Internet congestion control (TCP)

link A

link B

src 1 dst 1
x1

acks

Is a feedback control system

– in fact, the largest man made one in the world.

(in reality, of course, there are many source/destination pairs

competing for bandwidth over many links)

Note: This is NOT a block diagram

– it shows the flow of “stuff” (in this case packets) not information.

Files to be transferred across the Internet using the Transmission Control Protocol

(TCP) ­ eg a download from the web ­ are broken into packets of size typically

around 1500bytes, with headers specifying the destination and the number of the

packet amongst other information. These packets are sent one by one into the

network, with the recipient sending acknowledgements back to the source

whenever one is received. Routers in the network typically operate a drop tail

queue. If a packet is received when the queue is full then it is simply discarded.

Packet loss thus indicates congestion. If a packet is received out of order, it is

assumed that intervening packets have been lost. The recipient sends a duplicate

acknowledgement to signal this and the source lowers its rate (in response to the

congestion) and resends the lost packet(s). Whilst a steady stream of successive

acknowledgements is being received the source gradually increases its sending

rate. In normal operation sources are thus constantly increasing and decreasing

their rates in an attempt to make use of the available bandwidth. Congestion (ie

full queues and the resulting packet loss) can occurr anywhere in the network ­ at

the edges (eg your adsl modem, or at the exchange), in the core (eg a big

transatlantic link) or, very often, at peering points, which are the connections

between the networks that make up the Internet.
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1.1.5 The lac operon – E.Coli (≈ 130 million years BC!)

(Only read this if you’re interested!) The diagram above illustrates 4 genes and

some control regions along the DNA of E.Coli. E.Coli’s favourite sugar is glucose,

but it will quite happily “eat” lactose if there’s no glucose around. If there is

glucose around or if there is no lactose around then there is no need to produce

β­galactosidase (the enzyme which breaks down lactose, first into allolactose and

then glucose) or the permease (which transports lactose into the cell). In addition,

when it is metabolising lactose, it wants to regulate the amount of enzyme

production to match the available lactose. This is the control system which

achieves this: The lacI gene codes for a protein (the repressor) which binds to the

operator (O) and stops the lacZ,Y and A genes being transcribed (ie “read”). If

there’s lactose in the cell, and at least some β­galactosidase, then there will also be

allolactose (the inducer). In this case the repressor binds with it instead, and falls

off the DNA. In the absence of glucose, the cAMP/CRP complex binds at the

promoter (P), this encourages RNA polymerase to bind and initiate transcription of

lacZ,Y and A.

– for more details, see 3G1 next year . . .
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1.2 Block Diagrams

1.2.1 What goes in the blocks?

Some of them act like “amplifiers” or “attenuators”

1

Mass

“Gain”

F

Force

a

Acceleration

a =
1

Mass
× F

But many are dynamic processes described by Ordinary Differential

Equations (ODEs).

∫
dt

a

Acceleration

v

Velocity
v̇ = a

Vi Vo
−
+

C

RVi

Voltage

Vo

Voltage
V̇o = −

1
RCVi

(We shall (later) describe these by transfer functions.)

Note: By drawing this circuit as a block, we are implicitly assuming

that any current it draws has negligible effect on the preceding block

and that the following block draws insignificant current from it (i.e.

that R is large and the op­amp is close to ideal).
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1.2.2 Signals and systems

Block diagrams represent the flow of information, not the flow of

“stuff”.

Blocks represent “systems

equations mapping inputs into outputs

”, whose inputs and outputs are “signals

taking a numeric value as a function of time

”.

This is NOT a block diagram (in our sense)

This IS a block diagram
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1.2.3 ODE models – A circuits example

R yC

Li

x

x −y = L
di

dt

i = Cẏ +
y

R

=⇒

x − y = L

(
Cÿ +

ẏ

R

)

which gives a 2nd­order linear Ordinary Differential Equation:

=⇒

LCÿ +
L

R
ẏ +y = x

LCÿ + L
R ẏ +y = x

x y
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1.2.4 Block diagrams and the control engineer

For the control engineer:

Some blocks are given (fixed)

eg

Steam Engine Dynamics

Aircraft Dynamics

(the “plant”)

while other blocks are to be designed

eg

Geometry of fly­ball mechanism in Watt governor.

The program in an aircraft’s flight control computer.

(the “controller”)
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1.3 Linear Systems

1.3.1 What is a “linear system”

Consider a “system” f mapping dynamic inputs u into outputs y

f
u(t) y(t)

y = f
(
u
)

the “system” f is linear if superposition holds, that is, if

f
(
u1

)

︸ ︷︷ ︸
+f

(
u2

)

︸ ︷︷ ︸
= f

(
u1 +u2

)

for any u1 and u2.

In terms of block diagrams. If f is a linear system,

f

f
u1

u2

Σ
+

+

y1

y2

=
fΣ

+

+

u1

u2
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In particular, f
(
2u
)
= 2f

(
u
)
, eg

0 1 2 3 4
0

1

Linear

Non­linear

0 1 2 3 4
0

1

0 1 2 3 4
0

1

In addition, we shall also assume that all systems are:

causal – the output at time T , y(T), depends only on the input up

to time t (ie y(t), t ≤ T is independent of u(t), t ≥ T ).

0 1 2 3 4
0

1 independent
of input here

0 1 2 3 4
0

1

response
here is

time­invariant – the response of the system to a particular input

doesn’t depend on when that input is applied, ie if

u(t)→ y(t), then u(t − τ)→ y(t − τ)

for any τ.

0 1 2 3 4
0

1

τ

u(t) u(t − τ)

0 1 2 3 4
0

1

τ

y(t) y(t − τ)
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Almost all the linear systems we will consider in this course can be

described as linear differential equations with constant coefficients

and, possibly, delays. For example

d2x(t)

dt2
+ x(t − T) =

du(t)

dt
+ 2u(t)

describes a linear system, as if

d2x1(t)

dt2
+ x1(t − T) =

du1(t)

dt
+ 2u1(t)

and
d2x2(t)

dt2
+ x2(t − T) =

du2(t)

dt
+ 2u2(t)

then

d2

dt2

(
x1(t)+ x2(t)

)
+
(
x1(t − T)+ x2(t − T)

)

=
d

dt

(
u1(t)+u2(t)

)
+ 2

(
u1(t)+u2(t)

)

which is just the superposition of solutions. If there are x2 terms or

sin(x) terms, for example, then this doesn’t work.
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1.3.2 Linearization

All real systems are actually nonlinear, but many of these behave

approximately linearly for small perturbations from equilibrium.

e.g. Pendulum:

θ l

mg

F

Fl cosθ +mlg sinθ = −ml2θ̈

But, for small θ

Fl+mlgθ ≈ −ml2θ̈

or

lθ̈ + gθ ≈ −F/m which is a linear ODE

General case

Suppose a system is described by an ODE of the form

ẋ = f(x,u)

where f is a smooth function. Assume that this system has an

equilibrium at (x0, u0), by which we mean that

f(x0,u0) = 0.

where x0 and u0 are constants.
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Let x = x0 + δx, u = u0 + δu,

and use a Taylor series expansion to obtain:

0
ẋ0 + δ̇x = f(x0 + δx,u0 + δu)

= f(x
0

0, u0)+
∂f

∂x

∣∣∣∣
x0,u0︸ ︷︷ ︸
A

δx +
∂f

∂u

∣∣∣∣
x0,u0︸ ︷︷ ︸
B

δu+ higher

neglect
order

terms

which results in the linear ODE

δ̇x = Aδx + Bδu

This is a simple example of a state­space model. This procedure can

be generalized to higher order systems with many inputs and outputs ­

see 3F2 next year.

As an example of a higher order state­space model, consider the

differential equation

ÿ + ẏ +y = u

which we will regard as representing a linear system with input u and

output y. If we write x1 = y and x2 = ẏ then this equation can be

rewritten as the pair of equations

ẋ1 = x2

ẋ2 = u− x2 − x1

or, in matrix form
[
ẋ1
ẋ2

]
=

[
0 1
−1 −1

][
x1
x2

]
+

[
0
1

]
u, y =

[
1 0

] [x1
x2

]

which is usually written as

ẋ = Ax + Bu, y = Cx.
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1.3.3 When can we use linear systems theory?

Linearity is often desirable:

Hi­Fi audio system (non­linearities are called distortion).

Aircraft fly­by­wire system (for predictable response)

If we are going to design a controller to keep a system near

equilibrium then we can ensure that perturbations are small (and

hence that behaviour is approximately linear). This justifies the use of

linear theory for the design!

– so linear systems theory is often very useful even when the

underlying systems are actually nonlinear

However: some systems are designed to behave

nonlinearly:

Switch or relay (because it is either on or off).

Automated air traffic control system.

(either have a collision or not) .

In such cases linear theory is of little use in itself.

(flying along a trajectory is often a linear problem, but choosing that

trajectory is usually a nonlinear problem)
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1.4 Laplace Transforms

Laplace transforms are an essential tool for the analysis of linear,

time­invariant, causal systems. We shall now briefly review some pertinent

facts that you learnt at Part IA and introduce some new ideas.

DEFINITION:

ȳ(s) =

∫∞

0−
y(t)e−st dt

(provided the integral converges for sufficienty large and positive values of

s.)

Note, a Laplace transform

is NOT a function of t

IS a function of s.

Various notations:

L
{
y(t)

}
= Ly = ȳ(s) =

∫∞

0−
y(t)e−st dt

Notation for the inverse transform:

y(t) = L−1ȳ(s)

EXAMPLES

Find ȳ(s) if y(t) = C (a constant )

ȳ(s) =

∫∞

0
Ce−stdt = C

[
−e−st

s

]∞

0

=
C

s
(taking Real(s) > 0 ).

Find ȳ(s) if y(t) = e−at

ȳ(s) =

∫∞

0
e−(s+a)tdt =

[
e−(s+a)t

−(s + a)

]∞

0

=
1

s + a
(taking Real(s) > −a ).
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Addition or Superposition property

If

y(t) = Ay1(t)+ By2(t)

then

ȳ(s) = Aȳ1(s)+ Bȳ2(s)

(A, B constants)

Proof:

ȳ =

∫∞

0
(Ay1 + By2)e

−stdt

= A

∫∞

0
y1e

−stdt + B

∫∞

0
y2e

−stdt

= Aȳ1 + Bȳ2

=⇒ The operation of taking a Laplace transform is linear.

Transforms of derivatives

Lẏ(t) =

∫∞

0

dy

dt
e−stdt

=
[
y(t)e−st

]∞
0
+ s

∫∞

0
y(t)e−stdt

= sȳ − y(0)

Lÿ =

∫∞

0

d2y

dt2
e−stdt

=

[
dy

dt
e−st

]∞

0
+ s

∫∞

0

dy

dt
e−stdt

= −ẏ(0)+ s(sȳ −y(0))

= s2ȳ − sy(0)− ẏ(0)
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Obvious pattern:

Ly = ȳ

Lẏ = sȳ −y(0)

Lÿ = s2ȳ − sy(0)− ẏ(0)

...
...

...

L
dny

dtn
= snȳ − sn−1y(0)− sn−2ẏ(0)−

− . . .−

(
dn−1y
dtn−1

)
(0)

In particular, if y(0) = ẏ(0) = ÿ(0) = · · · = 0, then

Ly = ȳ

Lẏ = sȳ

Lÿ = s2ȳ

...
...

...

L
dny

dtn
= snȳ

differentiation (in the time domain) corresponds

to multiplication by s (in the s domain)
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Laplace Transform of tn

Define ȳn(s) = L
tn

n!
.

ȳn =

∫∞

0

tn

n!
e−stdt

=

[
−

1

s

tn

n!
e−st

]∞

0
+

1

s

∫∞

0

ntn−1

n!
e−stdt

=
1

s

∫∞

0

tn−1

(n− 1)!
e−stdt

=
1

s
ȳn−1,

(since for Real(s) > 0, and as t →∞, then
∣∣e−st

∣∣→ 0 faster than tn →∞).

Thus we have

ȳ0 = L1 =
1

s

ȳ1 = L t =
1

s2

ȳ2 = L
t2

2
=

1

s3

ȳ3 = L
t3

3× 2
=

1

s4

Similarly ȳn = L
tn

n!
=

1

sn+1

integration (in the time domain) corresponds to

division by s (in the s domain)
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Poles and Zeros

Suppose G(s) is a rational function of s, by which we mean

G(s) =
n(s)

d(s)

where n(s) and d(s) are polynomials in s.

Then the roots of n(s) are called the zeros of G(s)

and the roots of d(s) are called the poles of G(s)

Example:

G(s) =
4s2 − 8s − 60

s3 + 2s2 + 2s

=
4(s + 3)(s − 5)

s(s + 1+ j)(s + 1− j)

Zeros of G(s) are −3,+5.

Poles of G(s) are −1− j, −1+ j, 0

Real(s)

Imag(s)

X

X

X

−3 5

X – denote poles
– denote zeros
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2

t

Im

Re

s-plane pole positionstime functions

3

t

Time functions and pole positions for y(t) = t and y(t) = t2

Laplace Transforms of Sines and Cosines

y = eiωt = cosωt + i sinωt

ȳ =
1

s − iω
= L cosωt + iL sinωt

=
s + iω

s2 +ω2

Equating reals : L cosωt =
s

s2 +ω2

and similarly : L sinωt =
ω

s2 +ω2

poles at s = ±ωi in both cases

NOTE: Results like this are tabulated in the Maths and Electrical Data Books.
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Shift in s theorem

If Ly(t) = ȳ(s)

then Leaty(t) = ȳ(s − a).

Proof:

Leaty(t) =

∫∞

0
e−(s−a)ty(t) dt

= ȳ(s − a),

Example of use:

L−1 20

s2 + 2s + 101
= L−1 20

(s + 1)2 + 100

= 2e−t sin 10t

because L−1 10

s2 + 100
= sin 10t

-1

10i

t

1

Im

Re

s-plane pole positionstime function

1

Time functions and pole positions for y(t) = 2e−t sin 10t
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Initial and Final Value Theorems

If ȳ(s) = Ly(t) then whenever the indicated limits exist we have

Final Value Theorem:

lim
t→∞

y(t) = lim
s→0

sȳ(s)

Initial Value Theorem:

lim
t→0+

y(t) = lim
s→∞

sȳ(s)

Proofs omitted (as it’s a little tricky to prove these properly.)

However, for rational functions of s it is easy to demonstrate that these

relationships hold:

Let a partial fraction of ȳ(s) be given as:

ȳ(s) =
b0

s
+

n∑

i=1

bi
s + ai

and so y(t) = b0 +

n∑

i=1

bie
−ait.

Hence

y(0) = b0 +

n∑

i=1

bi and, provided ai > 0, y(∞) = b0.

On the other hand,

sȳ(s) = b0 +

n∑

i=1

sbi
s + ai

hence

sȳ(s)|s=∞ = b0 +

n∑

i=1

bi and, provided ai ≠ 0, sȳ(s)|s=0 = b0

which are the same expressions as above.

30



1.5 Key points

Feedback is used to reduce sensitivity.

We use block diagrams to represent feedback

interconnections.

Each block represents a “system”.

Each connection carries a “signal”.

We shall assume that systems are described by linear,

time­invariant and causal ODE’s.

We distinguish between causes (the input signals) and effects (the

output signals).

Large and complex systems can be constructed by connecting

together simpler sub­systems.

Laplace transforms are central to the study of linear, time­invariant

systems.
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