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Abstract

We derive decentralized and scalable robust stability con-
ditions for a fluid approximation of a class of Internet-
like communications networks operating a modified form
of TCP-like congestion control. The network consists of an
arbitrary interconnection of sources and links with hetero-
geneous propagation delays. Unlike previous results of this
kind, the model here allows for dynamics at both the sources
and the links.

Keywords: Robust control, Communication networks,
Complex systems

Notation

σ(Z) denotes the spectrum of a square matrix Z and ρ(Z)

its spectral radius. Whenever the meaning is unambiguous,
{ fi } is used as an abbreviation for { fi : i = 1, 2, . . . }.
In particular, Co{xi} denotes the convex hull of the set of
points {x1, x2, . . . } and diag(xi) denotes the matrix with the
elements x1, x2, . . . on the leading diagonal and zeros else-
where.

1 Introduction

We consider a communications network, such as the Inter-
net, consisting of an interconnection of users/sources which
generate data and resources/links which carry it. The key
constraint of the network that we are interested in is its de-
centralized nature: control information can only be passed
along the same routes as the data that is being transmitted,
and with the same propagation delay as that data. We wish
to investigate the limitations imposed by this structure. Such
a structure might arise, for example, if the resources are al-
lowed to communicate with the users by manipulating cer-
tain reserved portions of the data packet header (by mark-
ing for example). Kelly et al [4] have shown that a certain
network utility optimization problem may be solved in a de-
centralized manner over this structure. In this scheme, each
link sets a price per unit flow, based on the aggregate flow
through that link, and the sources set their transmission rates
based on the aggregate price they see. In the absence of de-
lays, this scheme is globally stable. Moreover, this stability
is maintained even if the sources are allowed to adapt their
rates arbitrarily fast to achieve arbitrarily high utilization of

the network. In the presence of delays this is no longer true.
In this paper we derive a sufficient condition for the local
stability of such a scheme, for arbitrary network topologies
and heterogeneous round trip times. Moreover, we show
that this condition captures a trade off between utilization
of the network and its speed of response.

Associated with each source is a route, which is the collec-
tion of links through which information from that source is
flowing. If xr is the sending rate of source r then the flow
through each link is given by

yl(t) =
∑

r:r uses l

xr(t −
→
τ lr ). (1)

where
→
τ lr denotes the propagation delay from source r to

link l. Similarly, if pl is the price per unit flow at link l,
then the aggregate price back at a source is given by

qr (t) =
∑

l:l used by r

pl(t −
←
τ lr ) (2)

where
←
τ lr represents the return delay from link l to source

r . We assume throughout that

→
τ lr +

←
τ lr = Tr ∀l, (3)

where Tr is the round-trip delay of the r th route. This
assumption is consistent with the price information being
communicated back to the source via the recipient, along
with acknowledgements.

We assume that the link prices are set according to the law

pl = fl(zl), fl > 0, f ′l > 0 (4)

where zl is an exponentially smoothed flow rate, satisfying

βl żl + zl = yl, βl ≥ 0 (5)

βl = 0 corresponds to the price being set as an instan-
taneous function of the rate, βl > 0 corresponds to the
more realistic scenario where the rate is estimated either
by arrivals over an exponentially weighted window or from
queue lengths. We derive such models for link dynamics in
Section 3. (Alternatively, it might be the price information
itself that is smoothed, i.e. (4) and (5) might be replaced by
p̂l = fl(yl) and βl ṗl + pl = p̂l . This would give the same
linearized transfer function from yl to pl and so all of our
results will still hold.)
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To complete the picture, the sources each have a utility
function Ur(·) and attempt to maximize their net utility
Ur (xr)− qr xr by setting their rates according to

ẋr(t) = kr xr(t − Tr )

(

1− qr(t)

U ′r(xr(t))

)

. (6)

We shall assume that these utility functions satisfy

U ′r (xr) > 0, U ′′r (xr) < 0 (7)

and so are concave. It is shown in [4] that if Tr = 0 for
each route and βl = 0 for each link then the interconnec-
tion is globally stable and converges to the unique equi-
librium which maximizes the global utility

∑

r Ur (xr) −
∑

l

∫ yl
0 pl(y) dy. For a closely related source law a simple

condition on the gains kr was derived in [2] which guar-
antees local stability of this equilibrium whenever all the
round-trip trip times are equal. This same condition was
conjectured to guarantee stability in the case of heteroge-
neous round trip delays. This conjecture is true ([5],[7]).
In [8] similar stability conditions were given for the general
source law (6) and allowing for lags at the links, i.e. βl > 0.
The condition is that if

ŷl f ′l (ŷl)

fl(ŷl)
· kr Tr < 1

whenever link l is on route r , then the network is locally
stable about its equilibrium for any collection of lag time
constants βl ≥ 0 and any admissible utility functions. Note,
however, without any constraints on the βl the robustness
of this interconnection may be arbitrarily small. In fact
there may be infinitesimal perturbations of the link dynam-
ics which destabilize the network1. In this paper we shall
show that, provided there exists a constant K such that
βl ≤ K τl for each link, where τl is the propagation de-
lay of link l, then this stability is quantifiably robust to per-
turbations in both gain and phase at both the links and the
sources. The tools we develop are also suitable for the anal-
ysis of more complex dynamics at both the sources and the
links.

We apply these results to a fluid flow approximation of a
network with sources operating TCP-like algorithms, where
the price is interpreted as the probability that a packet is
marked and the dynamics at the links may be interpreted as a
combination of queueing effects and the deliberate smooth-
ing introduced by systems such as RED. For the usual TCP
algorithm, the conclusion is that the network can be guar-
anteed to be stable only if the number of packets in flight is
sufficiently large. We propose a modification of TCP which
avoids this problem. (We should point out, though, that our
results are for rate-based control and ignore the potentially

1Note that although the focus of this paper is stability, as this is most
easy to quantify, in practice we are more concerned about the high vari-
ability of rates that will occur as instability is approached, which is likely
to drive the system out of the linear regime. Lack of robustness should be
understood as being roughly equivalent to such high variance

stabilizing effects of the window-based control used in cur-
rent TCP. It is argued elsewhere, though, (e.g. [3]) that this
distinction disappears in the limiting regime where capaci-
ties increase and queueing delays and queue emptying times
become small in relation to propagation delays)

2 Main result

We can write relationship (1) in terms of Laplace transforms
as

ȳ = R(s)x̄

where

Rlr =
{

e−s
→
τ lr if route r uses link l

0 otherwise.
(8)

Since →
τ lr +

←
τ lr = Tr ∀l,

where Tr is the round-trip time on route r , we can write (2)
as

q̄(s) = diag(e−sTi )RT (−s) p̄(s).

These routing relations also hold for small perturbations of
course, that is

Sδy = R(s)Sδx

and
Sδq(s) = diag(e−sTi )RT (−s)Sδp(s)

where y(t) = ŷ + δy(t) etc. Note that the incidence ma-
trix R(0) also determines the static relationships between
equilibrium values, i.e.,

ŷ = R(0)x̂, q̂ = R(0)T p̂. (9)

The source law (6) may be linearized around the equilibrium
qr = U ′r(xr ) to give

s Sδxr(s) = kr
x̂r

q̂r

(

U ′′r (xr) Sδxr(s)− Sδqr(s)
)

or

Sδxr (s) = −kr Tr
x̂r

q̂r

1

sTr + αr

Sδqr(s) (10)

where αr = −Tr
x̂r
q̂r

U ′′r (xr) > 0.

The link law (4–5) may be linearized to give

Sδpl(s) = f ′l (ŷl)
1

sβl + 1
Sδyl(s) (11)

First we state a stability result from [8] The proof of this
Proposition is a development of that in [7] for the slightly
different source law mentioned in the introduction.

First we recall some language typically used to describe
feedback systems. For the linearized system described

p. 2



above the return ratio seen at the links (i.e. −1× the loop
transfer function from δy(s) back around to δy(s)) is given
by

L(s) = R(s) diag

(

ki Ti
x̂i

q̂i

e−sTi

sTi + αi

)

· RT (−s) diag

(

f ′i (ŷi)
1

sβi + 1

)

The closed loop transfer function from disturbances at the
link arrival rates (due to uncontrolled flows for example
or stochastic effects) to the actual arrival rates is given by
(I + L(s))−1. We call the network stable if this transfer
function is stable (i.e. analytic and bounded in <(s) > 0),
corresponding to a finite gain from these disturbances to the
arrival rates.

Proposition 1. The interconnection described by (1–7) is
locally asymptotically stable around the equilibrium yl ,
zl = ŷl; qr = U ′(xr) if

ŷl f ′l (ŷl)

fl(ŷl)
· kr Tr < 1 ∀ l, r : r uses l

Sketch of proof: The proof in [8] proceeds by showing that
the eigenloci of the feedback system’s return ratio are con-
tained within

Co{ e j x

j x+α
: x, α > 0}

Co{ j y + 1 : y ≥ 0}
which is the region below the curve in Figure 1, and so can-
not encircle the point−1.

−2 −1.5 −1 −0.5 0 0.5
−0.5

0

0.5

Figure 1: K = ∞ (Proposition 1)

Remark 1. Note that the condition in this Theorem may be
satisfied, for example, by ensuring that kr Tr < 1/B and

fl(yl) =
(

yl
Cl

)B
(giving

yl f ′l (yl)

fl (yl)
= B) for some global con-

stant B. This fl(·) is precisely the probability that an M/M/1
queue with an arrival rate yl and capacity Cl is of length B
or greater, and so is a fairly natural price in this context.
This result shows that such a pricing function remains de-
sirable in a more general context.

The result also captures a tradeoff between utilization of the
network and speed of convergence. In [4] the prices fl(·)
are regarded as barrier functions in the global maximiza-
tion of

∑

r Ur (xr) subject to the constraint that the flow at

each link is no greater than the capacity, a larger B would
thus correspond to the price remaining small until closer to
capacity and then increasing more rapidly around capac-
ity. However, a larger B also requires that the sources react
more slowly to fluctuations in the network if stability is to
be maintained.

Notice also that it is not necessary that the constant B
be universally agreed upon. In principle, each link could
choose its own B, perhaps in an attempt to optimize this
trade off locally, and communicate it2 to each source using
that link.

The main problem with the previous proposition is that is
does not directly guarantee any level of robust stability. This
is not a failing of the methods, as without placing bounds
on the time constants β it is possible to construct exam-
ples which satisfy the theorem statement but which will be
destabilized by arbitrarily small amounts of extra phase lag
at the links. The following is our main theorem. As before,
the source dynamics are written in terms of the roundtrip
time, now though the link dynamics are written in terms
of the link propagation delay. The key assumption is that
the roundtrip time on any route is at least as great as the
propagation delay associated with any link on that route,
expressed below as τl ≤ Tr whenever r uses l, i.e. Rlr 6= 0.
For X a nonempty subset of C we write

S(X) :=
{

(

Co
√

X
)2
}

where √
X := {y : y2 ∈ X}.

Note that, for any X , S(X) always contains the origin (since
if y ∈

√
X then so is −y). In fact S(X) is typically just a

little larger than Co(0 ∪ X). See the appendix for more
discussion of the operator S and the key Lemma which the
following Theorem depends upon.

Theorem 1. Consider a feedback system with return ratio

L(s) = R(s) diag
(

k̃ihi(sTi )
)

R∗(s) diag
(

k̄i gi(sτi )
)

where R is defined by (8), hr , gl are stable for all r , l and
Tr > 0, τl ≥ 0, k̃r > 0, k̄l > 0 for all l and r . Let ŷ, x̂ , q̂, p̂
be any real and positive vectors satisfying

ŷ = R(0)x̂, q̂ = R(0)T p̂.

and further assume that

Rlr 6= 0 H⇒







τl ≤ Tr

k̃r k̄l ≤
p̂l

ŷl

x̂r

q̂r

.

Finally, assume that there exist parameterized regions Hx ,
G y such that hr ( j x) ∈ Hx for all r and x and gl( j y) ∈ G y

for all l and y.
2e.g. by overwriting some information in a control packet if its B is

larger than the B represented there
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Under these conditions, the feedback system is stable (i.e.
(1+ L(s))−1 is analytic and bounded in <(s) > 0) if

−1 6∈ Co
{

∪x Hx S(∪y≤x G y)
}

Example 1. Before proving Theorem 1 we show the result
of its application to the network described above, for which
the return ratio is given by

R(s) diag

(

ki Ti
x̂i

q̂i

e−sTi

sTi + αi

)

RT (−s) diag

(

f ′i (ŷi)
1

sβi + 1

)

This corresponds to the return ratio of the Theorem, with

hi = e−sTi

sTi+αi
and gi = 1

sβi+1 . The condition on the gains
(with ŷ, x̂ , q̂, p̂ taking the same meanings as outside the
Theorem statement) then becomes

kr Tr f ′l (ŷl) ≤
p̂l

ŷl

(as in Proposition 1). We assume that βl ≤ K τl , where
τl is the propagation delay of the lth link. So, gi(sτi ) =

1

sτi
βi
τi
+ 1

i.e. gi( j y) = 1

j y βi
τi
+ 1

and we can take G y =
{

1

j z + 1
: z ≤ K y

}

which is an arc of the circle centred

at +1/2, from the point +1 to the point 1/( j K y + 1).
In this case ∪y≤x G y = Gx . Figure 2 illustrates G y

and S(G y) for K y = 0.5 and K y = 5. Similarly, we

take Hx =
{

e− j x

j x + α
: α > 0

}

. Figure 3 shows the final

region, obtained by overlying the S(G y) on the Hx , for
K = 2. In this case (and, in fact, for all K up to around
6) the regions Hx S(Gx ) are all contained within the union
of the Nyquist contours of the set of single-input systems
{

e−sT

sT (sτ+1)
: τ ≤ T

}

, which is shown as the thicker solid

line. In particular, note that the region does not include
−1 and so the feedback system is stable. This in itself is
unremarkable, since we already know it from Proposition 1.
What is important is that the eigenloci are strictly bounded
away from 1. Since the operations involved in generating
this picture are all continuous this means that the stability
is robust to perturbations of the link and/or source dynam-
ics (which would simply result in perturbations to the re-
gions G y and Hx respectively). In addition a rather large
amount of guaranteed robustness can be gained by reducing
the gains. For example, Figure 4 shows the corresponding
picture when each of Hx and G y are increased by a ra-
dius of 0.1, that is each Hx is replaced by Hx + 1 where
1 = {z : |z| ≤ 0.1} and similarly for G y . The intercept
with the negative real axis now occurs at about −1.3. The
conclusion is then that if

kr Tr
f ′l (ŷl)ŷl

p̂l
≤ 1

1.3

whenever r uses l then the network will be stable for all sta-
ble link dynamics satisfying ‖gl(s) − 1

sβl+1‖∞ ≤ 0.1 for

some βl ≤ 2τl and all stable source+delay dynamics satis-

fying ‖hr (s) − e−sTr

sTr+αr
‖∞ for some α > 0. (‖ · ‖∞ denotes

theH∞ norm, sup<(s)>0 | · |)

In contrast, without using any bound on the βs, the proof
of Proposition1 only guarantees that the eigenloci lie un-
derneath the curve in Figure 1. Thus they may approach
−1 arbitrarily closely and, even worse, the situation is not
improved if the gains are reduced.
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Figure 2: S({1/( j x + 1) : x < X})
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Figure 3: K = 2

Proof of Theorem 1. The conditions on the k̃rs and k̄ls are
sufficient to rescale R such that the return ratio is similar to
(i.e. shares the same eigenvalues as)

R̂(s) diag
(

hi(sTi )
)

R̂∗(s) diag
(

gi(sτi)
)

where now ρ(|R̂|T |R̂|) = ρ(R̂(0)T R̂(0)) ≤ 1 (this can be
shown by taking row sums as in [2]). Lemma 1 now applies
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Figure 4: K = 2, δ = 0.1

to give

σ
(

L( jω)
)

⊂ Co {hi( jωTi)S{gk( jωτk) : Rki 6= 0}}
⊂ Co

{

hi ( jωTi)S{G y : y < ωTi}
}

⊂ Co
{

hi ( j x)S{G y : y < x} : x ∈ R+
}

= Co
{

Hx S{G y : y < x} : x ∈ R+
}

.

By assumption, the point −1 is not contained in this hull.
Since the hull contains the origin this means that no point
on the real axis to the left of the point −1 can be included
either. It follows that the eigenloci cannot cross the real axis
at or to the left of the point −1, and hence that the closed-
loop system is stable by the generalized Nyquist stability
criterion ([1]).

3 Link dynamics

In this section we consider how the link dynamics (4–5)
may arise when the flow consists of discrete packets, and
the link price is set either as a function of packet arrival rate
or as a function of queue lengths.

If the arrival rate is to be measured then a natural way
to achieve this is to average arrivals over an exponentially
weighted window. If the arrival times are τi then we can
define an average arrival rate at time t as

y(t) =
∑

i:τi <t

1

β
e
−(t−τi )

β

(for t 6= τi ). If the arrivals are a time varying Poisson pro-
cess with rate µ then y is a stochastic process whose mean
evolves as

β
d

dt
E(y(t))+ E(y(t)) = µ(t).

That is, we can write y(t) = E(y(t))+w(t) where E(y(t))
is determined by µ and w is a zero mean noise signal. In ad-
dition, it is straightforward to verify that w is uncorrelated

with µ. The choice of β is a tradeoff between noise attenu-
ation at source and lack of robustness (leading to noise am-
plification). We would typically be interested in the value
of y actually at the arrival instants, in which case it would

be reasonable to define y(τk) as
∑

i:τi <τk
1
β

e
−(τk−τi )

β + 1
2β

.
These values can be calculated recursively as

y(τi) = e
−(τi−τi−1)

β

(

y(τi−1)+
1

2β

)

+ 1

2β
.

If Cl is the capacity of the link, then we can set the price pl

as
pl = (yl/Cl)

Bl .

Provided kr Tr < Bl for all routes using link l then the net-
work is stable. This stability is robust if the time constant
βl is not large in comparison to the propagation delay.

We now consider the scheme where prices/marking prob-
abilities are set in terms of queue lengths. Kelly et al [4]
assume that queue dynamics may be averaged over round
trip times, and consequently that marking probabilities at
each link may be approximated by a static function of flow
rate. In contrast, Paganini et al [6] in common with much of
the literature, model each queue as a saturated (at zero) inte-
grator. In this section, we derive a single dynamic model of
a queue which reduces to each of these special cases under
appropriate limiting conditions, with low load/short queues
leading to the former model and high load/long queues lead-
ing to the latter. In particular, we show that, for an M/M/1
queue with threshold marking, the linearized transfer func-
tion from arrival rate to marking probability has a time con-
stant N(1 + q0)/λ (where q0 is the expected equilibrium
queue length for the current load, N is the marking thresh-
old and λ is the service rate). As noted above, any route
using this buffer must have a round trip time of at least
the propagation time of the link, and so the effect of queue
dynamics become small on links for which the maximum
number of packets in flight is greater than N(1+q0), at least
for the purposes of the local stability analyses of the previ-
ous sections. Equivalently, the ratio of propagation delay
to queueing delay should be greater than N . We recognize
that an M/M/1 queue is not particularly representative of a
buffer on the Internet, but should at least give results of the
right form.

Consider an M/M/1 queue with service rate λ and ar-
rival rate µ(t), which is assumed to be time varying (i.e.
the expected number of arrivals in the interval [t1, t2] is
∫ t2

t1
µ(t) dt and is independent of arrivals in any other inter-

val). For any given function of the queue length, e.g. F(q),
we wish to write

F
(

q(t)
)

= f ({µ(τ) : τ ≤ t})+w(t)

where w(t) is a noise source uncorrelated with µ. It is
straightforward to show that this is achieved by letting
f ({µ(τ) : τ ≤ t}) be simply the expected value of F(q).
This choice also results in w being zero mean and having
the smallest variance of all possible choices.
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If we let

x =

















p0
p1
...

pk
...

















where pk(t) is the probability that the queue is of length k at
time t , then the evolution of x is governed by the differential
equation

ẋ = Ax

where

A =



















−µ λ 0 0 · · ·
µ −λ− µ λ 0

0 µ −λ− µ
.. .

0 0
. . .

. . .

...



















For fixed µ0 < λ, this has an equilibrium

x0 = (1− r)











1
r
r2

...











where r = µ0
λ

. Linearizing about this equilibrium, i.e. let-
ting µ(t) = µ0 + δµ(t) and x(t) = x0 + δx(t), we obtain

δ̇x = A0δx + Bδµ (12)

where A0 is obtained from A by replacing µ with µ0, and

B = ∂ A

∂µ
x0 = (1− r)



















−1 0 0 0 · · ·
1 −1 0 0

0 1 −1
. . .

0 0
. . .

. . .

...





























1
r
r2

...











= (1− r)2















−1/ (1− r)

1
r
r2

...















3.1 Transfer function to queue length
First we derive the transfer function from arrival rate to ex-
pected queue length. We shall not use these results directly,
but they are illustrative.

If we let
C =

[

0 1 2 . . .
]

then q0 = Cx0 = r
1−r is the expected equilibrium queue

length and δq = Cδx is the deviation of the expected queue
length from this equilibrium.

The transfer function from δµ to δq is infinite dimensional,
but may be approximated reasonably well by a first or-
der lag. We shall approximate it by the lag which has the
identical low and high frequency asymptotic behaviour. To
achieve this, we need to calculate δ̇q(0) and δq(∞) in re-
sponse to

δµ =
{

0, t < 0

1, t ≥ 0
.

From (12),
δ̇q(0) = C B = 1

as expected (the queue must integrate excess arrivals over
short periods). Furthermore, setting δ̇x = 0, we can solve
(12) to obtain

δx(∞) = 1

λ





















1
(1− r)− r

2r(1− r)− r 2

...

kr k−1(1− r)− r k

...





















(where we have used the fact sum
∑

δx(t) = 1 for all t)
and so

δq(∞) = Cδx(∞) = 1

λ(1− r)2 .

This results in the approximate transfer function

Sδq(s) ≈ 1

s + λ(1− r)2
Sδµ(s),

which approaches a pure integrator as load r → 1.

3.2 Transfer function to threshold marking probability
Alternatively, if we let

C =
[

01×N 1 1 · · ·
]

then δp = Cδx is the change in probability that the queue
is of length N or greater. It may be similarly calculated that

δp(∞) = 1

λ

∞
∑

k=N

kr k−1(1− r)− r k = N

λ
r N−1

and

δ̇p(0) = 1
∞
∑

k=N

(1− r)2r k−1 = r N−1(1− r)

and so the time constant is

T = N

λ(1− r)
= N(q0 + 1)

λ

and the approximate transfer function

Sδp(s) ≈
N
λ

r N−1

Ns
λ(1−r) + 1

Sδµ(s) = N p0/µ0
Ns

λ(1−r) + 1
Sδµ(s).
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Figure 5 shows the true Bode diagrams for this Transfer
function normalized to the above time constant and DC
gain. Notice the identical low and high frequency behaviour
and that they all give approximately 45◦ of phase lag around
ω = 1/T , confirming that a first order lag is a reasonable
approximation (although the regions required for Theorem1
could just as easily be determined for these exact frequency
responses).
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Figure 5: Bode diagrams for arrival rate→ marking prob

Transfer functions can be derived, in a similar manner,
for marking according to the RED scheme. In this case
C = [ci ] where ci is zero for i less than the minimum
threshold, ramps up to maxp at the maximum threshold, at
which point it jumps to 1. In this case an extra lag should
be added, since RED is based on an averaged queue length.
This situation may also be analysed using Theorem 1, the
conclusion being that this extra lag does not compromise
stability as long as its time constant is not much larger than
the propagation delay of the link.

4 TCP-like algorithms

We consider a class of algorithms where, as in TCP, the
source maintains a window cwnd of sent but not yet
acknowledged packets. This window is incremented by
acwndn for each unmarked acknowledgement, and decre-
mented by bcwndm for each marked acknowledgement,
where m > n. Conventional TCP in its congestion avoid-
ance phase uses an increment of 1/cwnd and a decre-
ment cwnd/2 (and with packets being dropped rather than
marked). Properties of this algorithm may be analysed using
the methods of the previous section provided it is assumed
that queueing delays are small relative to propagation de-
lays, which is equivalent to the assumption that queue dy-
namics may be averaged over periods significantly shorter
than round trip times. See [3] for justification of this limit-
ing regime, and the derivation of models of this kind. We

let
xr (t) = cwnd(t)/Tr

be a continuous approximation of the sending rate to obtain

d

dt
cwnd(t) =

acwndn
(

1− qr(t)
)

− bcwndmqr (t)

Tr/cwnd(t − Tr )

where the “price” qr(t) should now be interpreted as the
probability that an acknowledgement received at time t car-
ries a mark. In terms of rates, this becomes

Tr ẋr(t) = xr(t − Tr )

(

a(xr(t)Tr )
n(1− qr(t)

)

−

b(xr(t)Tr )
mqr(t)

)

(13)

This equation does not quite fall into the framework of the
previous section, because of the (1−qr ) term. However, the
presence of this term does not affect the linearizations. The
equation may be linearized about its equilibrium

q̂r =
a(x̂r Tr)

n

a(x̂r Tr)n + b(x̂r Tr)m

to give

Tr
d

dt
δxr (t) = x̂r

(

−δqr(t)
(

a(x̂r Tr)
n + b(x̂r Tr )

m)+
(

aTrn(x̂r Tr)
n−1(1− q̂r

)

− bTrm(x̂r Tr )
m−1q̂r

)

δxr (t)
)

= x̂r

(

−δqr(t)
a(x̂r Tr)

n

q̂r
− bTr(m − n)(x̂r Tr)

m−1q̂rδxr(t)

)

= −
(

ax̂r(x̂r Tr)
n

q̂r

)

δqr(t)− αrδxr(t). (14)

where
αr = b(m − n)(x̂r Tr )

m q̂r > 0

with the transfer function

Sδxr = −
ax̂r(x̂r Tr)

n

q̂r

1

(sTr + αr )
Sδqr

Comparison with (10) shows that Proposition 1 guarantees
local stability whenever a(x̂r Tr )

n < 1/B. As mentioned
above, conventional TCP has n = −1, a = 1 and so sta-
bility is only guaranteed if the equilibrium congestion win-
dow x̂r Tr is greater than B. For routers operating threshold
marking, B might correspond to something like the buffer
size (in packets) at which packets are marked. (This would
be exact it the buffers behave as M/M/1 queues). An appeal-
ing alternative is to take n = 0 and choose a = 1/B, that
is choose a fixed increment of something like the reciprocal
of the average buffer level at which packets are marked.

5 Conclusions

We have derived a simple decentralized stability condition
for a network consisting of an interconnection of links and
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sources. The results suggest that TCP as usually imple-
mented is likely to be prone to instabilities when the conges-
tion window is small, and overly sluggish when it is large
(at least in the limiting regime as capacities increase and
queueing delays and queue emptying times become small in
relation to propagation delays). We have suggested a simple
scalable modification which avoids this fact, where the TCP
window length is increased by a fixed amount of 1/B for
each acknowledgement and links either perform threshold
marking at the level B, or (preferably) calculate a marking
probability in terms of measured rate which is equivalent
to the marking probability of an M/M/1 queue at thresh-
old B. This scheme is shown to be locally stable about all
equilibria, and moreover is robust to dynamic uncertainty at
both the links and the sources (including the delay). A fur-
ther conclusion is that the exponential smoothing introduced
by protocols such as RED, or associated with rate measure-
ment, need not compromise stability (at least as long as the
time constants are not large in relation to link propagation
delays.)

Appendix

If R is a matrix, certain of whose elements are
known to be zero, then intuitively the spectrum of
R∗ diag( f1, . . . )R diag(g1, . . . ) should not depend too
much on the products fi gk for any i , k for which Rik = 0.
The following theorem shows that this is indeed the case if
a bound on the spectral norm of the absolute value of R is
known, in which case then the spectrum of this matrix may
be located in terms of the products fi gk for which Rik is
nonzero.

Let S{xi : i = 1, . . . } =
(

Co{±√xi : i = 1, . . . }
)2.

This set clearly contains the origin as well as each
of the points xi , and is typically a little larger than
Co (0 ∪ {xi : i = 1, . . . }) (see Figure 6 for an example). We
use |R| to denote the elementwise absolute value of a ma-
trix, i.e. |[Ri j ]| := [|Ri j |].

Lemma 1. Let R ∈ Cm×n satisfy ρ(|R|T |R|) ≤ 1, and
G = diag(g1, . . . , gn), F = diag( f1, . . . , fm), gi , fi ∈ C

∀i then

σ
(

R∗F RG
)

⊂ Co
{

fi S{gk : Rik 6= 0} : i = 1, m
}

= Co

{

(

Co{±
√

fi gk : Rik 6= 0}
)2
: i = 1, m

}

Proof. First note that ρ(|R|T |R|) ≤ 1 implies that
v∗|R|T |R|v ≤ 1∀v ∈ Cn : v∗v = 1 or, equivalently,

∑

i

∣

∣v1|Ri1| + v2|Ri2| + · · ·
∣

∣

2 ≤ 1 ∀v ∈ C
n : v∗v = 1.

Since this is true for all such v, it must also be the case that

∑

i

(

|v1 Ri1| + |v2 Ri2| + · · ·
)2 ≤ 1 ∀v ∈ C

n : v∗v = 1.

(15)

Also,

σ
(

G R∗F R
)

⊂
{

v∗G1/2 R∗F RG1/2v : v ∈ C
n, v∗v = 1

}

(where G1/2 = diag(
√

g1, . . . ,
√

gn), where either value of

each square root may be used)

=
{

∑

k

fkv
∗G1/2R∗k•Rk•G

1/2v : v ∈ C
n, v∗v = 1

}

=
{

∑

k

fk(v
∗
1 R∗k1
√

g1 + v∗2 R∗k2
√

g2 + · · · )

(v1 Rk1
√

g1 + v2 Rk2
√

g2 + · · · ) : v ∈ C
n, v∗v = 1

}

(16)

Next, note that for any α ∈ Cn ,

(α∗1
√

g1 + α∗2
√

g2 + · · · )(α1
√

g1 + α2
√

g2 + · · · )

= |α1|2g1 + |α2|2g2 + · · · + 2<
(

α∗1α2
)√

g1g2 + · · ·

∈ Co
{

(|α1|
√

g1 + |α2|
√

g2 + · · · )2,

(|α1|
√

g1 − |α2|
√

g2 + · · · )2, . . .
}

(since <
(

α∗1α2
)

∈ [−|α1α2|, |α1α2|] etc)

⊂ (|α1| + |α2| + · · · )2 Co
{

(Co{√g1,
√

g2, . . . })2,

(Co{√g1,−
√

g2, . . . })2, . . .
}

(since (|α1|
√

g1 + |α2|
√

g2 + · · · ) ∈ (|α1| + |α2| +
· · · ) Co{√g1,

√
g2, . . . })

⊂ (|α1| + |α2| + · · · )2 Co
{

(Co{±√g1,±
√

g2, . . . })2}

(since each term, e.g. (Co{√g1,−
√

g2, . . . )
2, ⊂

(Co{±√g1,±
√

g2, . . . })2 )

In particular, following on from (16),

σ
(

R∗F RG
)

⊂
{

∑

k

fk(|v1 Rk1| + |v2 Rk2| + · · · )2

· Co
{

(Co{±√g1,±
√

g2, . . . })2} : v ∈ C
n, v∗v = 1

}
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=
(

∑

k

(|v1 Rk1| + |v2 Rk2| + · · · )2

)

· Co fk
{

(Co{±√g1,±
√

g2, . . . })2}
⊂ Co fk

{

(Co{±√g1,±
√

g2, . . . })2}

using (15).

An (obvious) inclusion we have used a several times in this
proof is: For xi ∈ R+, X i ⊂ C, i = 1, . . . then

∑

i xi X i ⊂
(
∑

i xi
)

Co{X i : i = 1, . . . }.

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Figure 6: Co{±√gi} vs Co(0 ∪ {gi})

The result of Lemma 1 is demonstrated in Figure 7, which
shows the eigenvalues of R∗F RG for 1000 random values
of R (all with R22 = 0, ρ(|R|T |R|) = 1) together with
the bounding region from Lemma 1. The products fi gk are
also marked. Note how the region is bounded away from
the product f2g2 (at 6+ 2 j ). Note also that the eigenvalues
do not always lie inside the convex hull of f1g1, f1g2 and
f2g1; showing that the larger region defined in the Theorem
is, in some sense, necessary.

−4 −3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

Figure 7: f = (1+ j,−2− 2 j), g = (1,−2+ j), R22 = 0
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