Robust Control of Heterogeneous Networks (e.g. congestion control for the Internet)

Glenn Vinnicombe
gv@eng.cam.ac.uk.

University of Cambridge & Caltech
Introduction

Is it possible to build (locally verifiable) stable and robust large scale feedback interconnections of *linear* dynamical systems?

Yes, but only limited results so far (e.g. Internet congestion control).
Networks, Modules and Protocols

- We regard a network as being a collection of interconnected *modules*.
- *Modules* are elements of parameterized classes of linear, time-invariant, dynamical systems.
- *Protocols* are the rules by which interconnections between modules be made.
- Will present sufficient conditions for network stability for fairly general classes of asymptotically stable modules but fairly restricted interconnection protocols.
Modules and Protocols

Module: e.g. \(\gamma(t) = \sum u_i(t - T) \)

Protocol: e.g. f/b interconnection allowed if green’s \(T < \) red’s \(\tau \)

Module: e.g. \(\tau \dot{y}(t) = \sum u_i(t) \)

Note: this protocol still allows each red module to be connected to many green modules and each green module to be connected to many red modules.
Assume linearity, and that Laplace transforms have been taken everywhere, so

\[f_{To}(s) = f_T(s)f_{Ti}(s) \]
Example: Congestion Control
\[y_1 = x_1 \]
\[y_2 = x_1 + x_2 \]

Important: Feedback delayed by a “Round Trip Time”
Dynamic fluid model (links)

Flow through each link given by:

\[y_j(t) = \sum_{r: r \text{ uses } j} x_r(t - \tau_{jr}). \]

\(\tau_{jr} \) is the propagation delay from source \(r \) to link \(j \).

Links set their “prices” according to:

\[p_j(t) = G(\{y_j(\tau) : \tau \leq t\})(t) \]
Dynamic fluid model (sources)

Aggregate price at a source given by:

\[q_r(t) = \sum_{j: j \text{ used by } r} p_j(t - \tau_{jr}) \]

where \(\tau_{jr} \) is the delay from link \(j \) back to source \(r \).

\[T_r = \tau_{jr} + \tau_{jr}(RTT) \]

The sources set their rates according to:

\[x_r(t) = F\left(\{q_r(\tau) : \tau \leq t\}\right)(t) \]
Stability of Networks

We shall consider networks where all connections are symmetric, and all cycles have even length.

⇒ graph is bipartite.

This structure is clearly guaranteed by the protocol described.
Nyquist stability criterion

\[
\begin{align*}
\tilde{r}(s) + \tilde{e}(s) & \quad \text{represents the simultaneous equations:} \\
\tilde{e}(t) & = r(t) - z(t) \\
\tilde{z}(s) = K(s)G(s)\tilde{e}(s) & \quad \text{(i.e. } z(t) = k \ast g \ast e) \\
\Rightarrow \tilde{y}(s) & = \frac{K(s)G(s)}{1 + K(s)G(s)} \tilde{r}(s)
\end{align*}
\]

We write

\[L(s) = G(s)K(s)\text{ (the Return Ratio)}\]
Nyquist stability criterion

If $L(s)$ is stable, then

$$
\Rightarrow \frac{L(s)}{1 + L(s)} \text{ is asymptotically stable}
$$

$$
\Rightarrow \frac{L(s)}{1 + L(s)} \text{ is marginally stable}
$$

$$
\Rightarrow \frac{L(s)}{1 + L(s)} \text{ is unstable}
$$
$k = 1$

Closed-loop poles are at the roots of $s^3 + s^2 + 2s + 2 = 0$, i.e. $s = -1$ and $0 \pm 1.4142j$ (since $1 + L(1.4142j) = 0$)
$k = 0.8$

Closed-loop step response

Nyquist diagram, $k=0.8$

Closed-loop is asymptotically stable

Closed-loop poles are at the roots of $s^3 + s^2 + 2s + 1.8 = 0$, i.e.

$s = -0.0349 + 1.3906j, \quad -0.0349 - 1.3906j, \quad -0.9302$
\[k = 1.2 \]

Nyquist diagram, \(k=1.2 \)

Closed-loop step response

Closed-loop is unstable

Closed-loop poles are at the roots of \(s^3 + s^2 + 2s + 2.2 = 0 \), i.e.

\[
s = 0.0319 + 1.4377j, \quad 0.0319 - 1.4377j, \quad -1.0639
\]
Breaking the loop

\[f_{10}(s) = f_1(s)f_{1i}(s) \text{ etc} \]

Open the loop at the “red” systems, to get

\[
\begin{bmatrix}
 f_{1i} \\
 f_{2i}
\end{bmatrix} =
\begin{bmatrix}
 1 & 1 & 1 & 1 & 0 \\
 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
 g_1 & 0 & 0 & 0 & 0 \\
 0 & g_2 & 0 & 0 & 0 \\
 0 & 0 & g_3 & 0 & 0 \\
 0 & 0 & 0 & g_4 & 0 \\
 0 & 0 & 0 & 0 & g_4
\end{bmatrix}
\begin{bmatrix}
 1 & 0 \\
 1 & 1 \\
 1 & 1 \\
 1 & 1 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 f_{10} \\
 f_{20}
\end{bmatrix}
\]

\[R_{ij} = 1 \text{ if } f_i \text{ is connected to } g_j \]
Multivariable Nyquist Criterion

“return ratio” \[
\begin{bmatrix}
 f_{10} \\
 f_{20}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 f_{10} \\
 f_{20}
\end{bmatrix}
\]
is given by

\[
\begin{bmatrix}
 f_1 & 0 \\
 0 & f_2
\end{bmatrix}
\begin{bmatrix}
 1 & 1 & 1 & 1 & 0 \\
 0 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
 g_1 & 0 & 0 & 0 \\
 0 & g_2 & 0 & 0 \\
 0 & 0 & g_3 & 0 \\
 0 & 0 & 0 & g_4
\end{bmatrix}
\begin{bmatrix}
 1 & 0 \\
 1 & 1 \\
 1 & 1 \\
 0 & 1
\end{bmatrix}
\]

Assume each \(f_i(s), g_j(s) \) stable (i.e. analytic and bounded in \(\mathcal{R}(s) > 0 \)) and continuous on \(\mathcal{R}(s) = 0 \) (i.e. approximable by rationals). Then

Closed-loop stable \(\iff \{ \lambda_i(F(j\omega)RG(j\omega)R^T) : \omega \in \mathcal{R} \} \) do not encircle \(+1\)
Aside: a graph viewpoint?

Stability can also be related to the non-singularity of

\[
I - \begin{bmatrix}
 f_1 & 0 & 0 & 0 & 0 & 0 \\
 0 & \ddots & 0 & 0 & 0 & 0 \\
 0 & 0 & f_{nf} & 0 & 0 & 0 \\
 0 & 0 & 0 & g_1 & 0 & 0 \\
 0 & 0 & 0 & 0 & \ddots & 0 \\
 0 & 0 & 0 & 0 & 0 & g_{ng}
\end{bmatrix}
\begin{bmatrix}
 0 & R \\
 R^T & 0 \\
\end{bmatrix}
\]

(as \(\det(\cdot) = \det(I - FRGR^T) \))

\(A = A^T \) is the adjacency matrix of an undirected bipartite graph.

Some sort of weighted Laplacian (note: \(f_i, g_j \) complex)?

Non-symmetric \(A \) (directed graphs)?

Non-bipartite graphs?
Simple case \((G \text{ real})\)

Assume all \(g\)'s real and positive, and let \(Q = RGR^T\).

Lemma:
Let \(Q = Q^* \geq 0, f_i \in \mathbb{C}\), then

\[
\sigma(\text{diag}(f_1, f_2, \ldots, f_n)Q) \subset \text{Co}(0 \cup \{f_i\})\rho(Q)
\]

Proof:

\[
\sigma(\text{diag}(f_1, f_2, \ldots, f_n)Q) = \sigma \left(Q^{1/2} \text{diag}(f_1, f_2, \ldots, f_n)Q^{1/2} \right)
\]

\[
\subset \{ v^* \sqrt{Q} \text{diag}(f_1, f_2, \ldots, f_n)Q^{1/2} v : \|v\| = 1 \}
\]

\[
\subset \rho(Q) \{ w^* \text{diag}(f_1, f_2, \ldots, f_n)w : \|w\| \leq 1 \}
\]

\((\text{since } \|Q^{1/2}v\| \leq \|Q^{1/2}\| = \sqrt{\rho(Q)})\)

\[
= \rho(Q) \left\{ \sum_i |w_i|^2 f_i : \sum_i |w_i|^2 \leq 1 \right\}
\]
Bounding $\rho(Q)$

Let $y = Rx$, $q = R^T p$ for real and positive x, p.

E.g. $x = 1_{n_g}$, $p = 1_{n_f}$ \Rightarrow y is vector of degree of in-degrees of each f, (d_i), and q is vector of in-degrees of each g, (e_j).

Then can rescale, and bound spectral radius in terms of row sums, to get

$$\sigma(FRGR^T) \subset \text{Co} \left(\left\{ f_i \frac{y_i}{p_i} g_j \frac{q_j}{x_j} : i, j, R_{ij} \neq 0 \right\} \right)$$

E.g.

$$\sigma(F(j\omega)RGR^T) \subset \text{Co} \left(\left\{ f_i(j\omega)d_i g_j e_j : i, j, R_{ij} \neq 0 \right\} \right)$$

Hence,

$$1 \notin \text{Co} \left(\left\{ f_i(j\omega)d_i g_j e_j : i, j, R_{ij} \neq 0, \omega > 0 \right\} \right) \Rightarrow \text{stability}$$

Note: this is a local condition
Example I

For the source law

\[\dot{x}_r(t) = k_r \left(w_r - x(t - T_r)q_r(t) \right) \]

and link law

\[p_j(t) = g_j(y_j(t)) \]

sufficient condition for (local) stability is

\[k_r T_r \sum_{j \text{ used by } r} \left(g_j + g'_j y_j \right) \leq \frac{\pi}{2} \quad \forall r \]

as conjectured by Johari & Tan [2000],
(proof: Massoulie [2000] (for 1 on RHS), Vinnicombe [2000]).

since all loops have a return ratio of the form

\[k \frac{e^{-sT}}{sT + \epsilon} \]
(More) General case: Dynamic G

For $X \subset \mathbb{C}$ let $S(X) = \left(\text{Co} \left(\sqrt{X} \right) \right)^2$, where $\sqrt{X} := \{ y : y^2 \in X \}$. Note that $S(X)$ is a little larger than $\text{Co}(0 \cup X)$.

![Graph showing the relationship between S(X) and Co(0 union X)]
(More) General case: Dynamic G

Lemma: $(f_i, g_j \in \mathbb{C})$

$$\sigma(\text{diag}\{f_i\} R \text{diag}\{g_j\} R^T) \subset \rho(R^T R) \text{Co}\{f_i S\{g_j : R_{ij} \neq 0\} : i\} \quad \text{etc}$$

$$\sigma(\text{GRFR}^*)$$

$$f = (1 + j, -2 - 2j), \quad g = (1, -2 + j), \quad \|R\| \leq 1, \quad R_{22} = 0$$
A proposed scheme

- The sources each have a utility function $U_r(x_r)$ and set their rates according to:

$$T_r x_r(t) = \frac{\kappa}{B} x_r(t) \left(1 - \frac{q_r(t)}{U'_r(x_r(t))} \right).$$

- Links set prices (marking probabilities) according to:

$$p_j(z_j) = \left(\frac{z_j}{C_j} \right)^B, \quad \beta_j \dot{z}_j + z_j = y_j$$

with $\beta_j < K \min_{r: r \text{ uses } j} T_r$.

capacity
A proposed scheme

- Equilibrium is unique maximum of

\[\sum_{r} U_r(x_r) - \sum_{j} \int_{0}^{v_j} p_j(v) \, dv \]

(and, in the absence of delays, stable for all \(k > 0 \)).

- Source law linearizes to

\[\delta x_r = -\frac{\kappa x_r}{B q_r s T_r + \alpha_r} \delta q_r, \quad \alpha_r > 0 \]

- Link law linearizes to

\[\delta p_j = B \frac{p_j}{\gamma_j \beta_j s + 1} \delta y_j \]
Stability Proof

- Including delay:

\[f_r(s) = -\frac{\kappa x_r e^{-sT_r}}{B q_r sT_r + \alpha_r}, \quad g_j(s) = B \frac{p_j}{\gamma_j \beta_j s + 1} \]

Interconnection permitted only if \(\beta_j \leq K T_r \).

- Note that \(\gamma = R x, \quad q = R^T p \) at equilibrium

\[\Rightarrow -\sigma (FR^T GR)(j\omega) \subset \kappa \text{Co} \left\{ f_r(j\omega) S \left\{ g_j(j\omega) : R_{rj} \neq 0 \right\} \right\} \]

\[\subset \kappa \text{Co} \left\{ \frac{e^{-jx}}{jx} S \left\{ \frac{1}{j\gamma + 1} : 0 \leq \gamma \leq K x \right\} : x > 0 \right\} \]

- Scheme is (locally) stable if \(-1 \notin \) this set.
Example: $K = 2$

\Rightarrow closed-loop stability for $\kappa < 1$.

Note: this provides a stability certificate for the scheme.
Robust stability: $K = 2, \delta = 0.1$

\Rightarrow if $\kappa < \frac{1}{1.3}$ then closed-loop stability is maintained for all source/delay and link dynamics within 0.1 of nominal.