

A generating set for the class of series-parallel minimally reactive bicubic impedances

Timothy H. Hughes (thh22@cam.ac.uk)

Workshop on Networks and Control, Wednesday 5th July 2017

Cambridge University Engineering Department

Motivation (courtesy of Malcolm)

Motivation (courtesy of Malcolm)

Mechanical	Electrical
$ \begin{array}{c c} \frac{s}{k} & \frac{dF}{dt} = k(v_2 - v_1) \\ F & k > 0 \\ \hline v_2 \downarrow & v_1 \downarrow & \text{spring} \end{array} $	$ \begin{array}{ccc} Ls & \frac{di}{dt} = \frac{1}{L}(v_2 - v_1) \\ i & L > 0 \\ v_2 & v_1 & \text{inductor} \end{array} $
$F = b \frac{\frac{1}{bs}}{V_2} F = b \frac{d(v_2 - v_1)}{dt}$ $\downarrow V_1 \downarrow \downarrow \qquad \text{inerter}$	$ \begin{array}{c c} \frac{1}{Cs} & i = C \frac{d(v_2 - v_1)}{dt} \\ \downarrow & \downarrow & C > 0 \\ \downarrow & V_1 & capacitor \end{array} $
$ \begin{array}{c c} \frac{1}{c} & F = c(v_2 - v_1) \\ F & c > 0 \\ \hline v_1 \downarrow & damper \end{array} $	$ \begin{array}{ccc} R & i = \frac{1}{R}(v_2 - v_1) \\ \downarrow & \downarrow & \downarrow & R > 0 \\ \downarrow & \downarrow & \text{resistor} \end{array} $

MINIMAL: least possible number of elements

MINIMALLY REACTIVE: impedance degree = no. reactive elements

Minimal and minimally reactive

Degree	Series-parallel	General	
Bilinear			

Biquadratic

MINIMAL: least possible number of elements

 $\label{eq:minimal_problem} \mbox{MINIMALLY REACTIVE: impedance degree} = \mbox{no. reactive elements}$

Minimal and minimally reactive

Degree	Series-parallel	General
Bilinear	Cauer	and Foster forms

Biquadratic

MINIMAL: least possible number of elements MINIMALLY REACTIVE: impedance degree = no. reactive elements

Minimal and minimally reactive

Degree	Series-parallel	General
Bilinear	Cauer	and Foster forms
Biquadratic		
	Jiang & Smith	

MINIMAL: least possible number of elements MINIMALLY REACTIVE: impedance degree = no. reactive elements

Minimal and minimally reactive

Degree	Series-parallel	General
Bilinear	Cauer and Foster forms	
Biquadratic		Reichert Chen & Smith $+$ Zhang, Jiang & Smith

MINIMAL: least possible number of elements MINIMALLY REACTIVE: impedance degree = no. reactive elements

Minimal and minimally reactive

Degree	Series-parallel	General
Bilinear	Cauer and Foster forms	
Biquadratic		Reichert Chen & Smith $+$ Zhang, Jiang & Smith

BUT minimal realisations need not be minimally reactive (Hughes & Smith + Hughes)

MINIMAL: least possible number of elements MINIMALLY REACTIVE: impedance degree = no. reactive elements

Minimal and minimally reactive

Degree	Series-parallel	General
Bilinear	Cauer and Foster forms	
Biquadratic		Reichert Chen & Smith + Zhang, Jiang & Smith

BUT minimal realisations need not be minimally reactive (Hughes & Smith + Hughes)

CONJECTURE: minimal and minimally reactive realisations of the impedance $\frac{p_n s^n + p_{n-1} s^{n-1} + \ldots + p_0}{q_n s^n + q_{n-1} s^{n-1} + \ldots + q_0}$ (degree n) contain (at most) n+1 resistors

A (very) useful result

The Zobel/Norton transformation:

A (very) useful result

The Zobel/Norton transformation:

- 3 inductors or 3 capacitors: SOLVED
- Consider 2 inductors $+\ 1$ capacitor
- 1 inductor + 2 capacitor by freq. inversion
- other cases by duality

- 3 inductors or 3 capacitors: SOLVED
- Consider 2 inductors $+\ 1$ capacitor
- 1 inductor + 2 capacitor by freq. inversion
- other cases by duality

 5 networks with 3 reactive elements and (at most) 5 resistors

- 5 networks with 3 reactive elements and (at most) 5 resistors
- Set each of the series resistances/ parallel conductances to zero in turn:
- 25 networks with 3 reactive elements and 4 resistors (some duplicates)

$$\begin{split} Z(s) &= \frac{a(s)}{b(s)} = \frac{a_3 s^3 + a_2 s^2 + a_1 s + a_0}{b_3 s^3 + b_2 s^2 + b_1 s + b_0} \\ R_1 &= \frac{\hat{a}}{\hat{b}}, \quad R_2 = \frac{\gamma_1 x}{\hat{b}^2}, \quad R_3 = \frac{\gamma_1 c_0}{\hat{b} d_0}, \quad G_4 = \frac{\hat{b} d_0 \gamma_7}{\gamma_4^2 \gamma_1}, \\ R_5 &= \frac{-\gamma_4^2 \gamma_3}{\hat{b}^3 d_0^2 S}, \quad L_1 = \frac{\gamma_1}{\hat{b}^2}, \quad L_2 = \frac{-\gamma_4 \gamma_1}{\hat{b} d_0^2}, \quad C_1 = \frac{-\hat{b}^3 d_0^2 S}{\gamma_4^3} \end{split}$$

$$Z(s) = \frac{a(s)}{b(s)} = \frac{a_3 s^3 + a_2 s^2 + a_1 s + a_0}{b_3 s^3 + b_2 s^2 + b_1 s + b_0}$$

$$R_1 = \frac{\hat{a}}{\hat{b}}, \quad R_2 = \frac{\gamma_1 x}{\hat{b}^2}, \quad R_3 = \frac{\gamma_1 c_0}{\hat{b} d_0}, \quad G_4 = \frac{\hat{b} d_0 \gamma_7}{\gamma_4^2 \gamma_1},$$

$$R_5 = \frac{-\gamma_4^2 \gamma_3}{\hat{b}^3 d_0^2 s}, \quad L_1 = \frac{\gamma_1}{\hat{b}^2}, \quad L_2 = \frac{-\gamma_4 \gamma_1}{\hat{b} d_0^2}, \quad C_1 = \frac{-\hat{b}^3 d_0^2 s}{\gamma_4^3}$$

$$\hat{a}(x) = a(-x), \quad \hat{b}(x) = b(-x), \quad \gamma_1 = \hat{a} \frac{d\hat{b}}{dx} - \hat{b} \frac{d\hat{a}}{dx}$$

$$\begin{split} Z(s) &= \frac{a(s)}{b(s)} = \frac{a_3 s^3 + a_2 s^2 + a_1 s + a_0}{b_3 s^3 + b_2 s^2 + b_1 s + b_0} \\ R_1 &= \frac{\hat{a}}{\hat{b}}, \quad R_2 = \frac{\gamma_1 x}{\hat{b}^2}, \quad R_3 = \frac{\gamma_1 c_0}{\hat{b} d_0}, \quad G_4 = \frac{\hat{b} d_0 \gamma_7}{\gamma_4^2 \gamma_1}, \\ R_5 &= \frac{-\gamma_4^2 \gamma_3}{\hat{b}^3 d_0^2 S}, \quad L_1 = \frac{\gamma_1}{\hat{b}^2}, \quad L_2 = \frac{-\gamma_4 \gamma_1}{\hat{b} d_0^2}, \quad C_1 = \frac{-\hat{b}^3 d_0^2 S}{\gamma_4^3} \end{split}$$

 $\exists x \geq 0$ such that one of the following holds:

- (a) $\hat{b} > 0$, $\gamma_7 \ge 0$, $\gamma_1 > 0$, S > 0, $\hat{a} \ge 0$, $\gamma_4 < 0$, $\gamma_3 \le 0$, $c_0 \le 0$, $d_0 < 0$;
- (b) $\hat{b} > 0$, $\gamma_7 \le 0$, $\gamma_1 > 0$, S > 0, $\hat{a} \ge 0$, $\gamma_4 < 0$, $\gamma_3 \le 0$, $c_0 \ge 0$, $d_0 > 0$;
- (c) $\hat{b} < 0$, $\gamma_7 \ge 0$, $\gamma_1 > 0$, S > 0, $\hat{a} \le 0$, $\gamma_4 > 0$, $\gamma_3 \ge 0$, $c_0 \le 0$, $d_0 > 0$;
- (d) $\hat{b} < 0$, $\gamma_7 \le 0$, $\gamma_1 > 0$, S > 0, $\hat{a} \le 0$, $\gamma_4 > 0$, $\gamma_3 \ge 0$, $c_0 \ge 0$, $d_0 < 0$;

Show that if any one of conditions (a)–(d) hold, then x can be altered to make either $\hat{a}=0$, $c_0=0$, $\gamma_7=0$, $\gamma_3=0$ or x=0 (without violating any of the other inequalities)

Higher degree

Minimally reactive

	•	
Degree	Series-parallel	General
Bilinear	2 resistors	2 resistors
Biquadratic	3 resistors	3 resistors
Bicubic	4 resistors	

Degree n

Higher degree

Minimally reactive

Degree	Series-parallel	General
Bilinear	2 resistors	2 resistors
Biquadratic	3 resistors	3 resistors
Bicubic	4 resistors	
Degree n	2n-1 resistors	

Higher degree

Minimally reactive

Degree	Series-parallel	General
Bilinear	2 resistors	2 resistors
Biquadratic	3 resistors	3 resistors
Bicubic	4 resistors	
Degree n	2n-1 resistors	(n+1)(2n+1) resistors

Note on mechanical design

- Considered problem of realising bicubic impedance with a series-parallel network containing 3 reactive elements (no limit on no. of resistors/dampers)
- Case of 3 inductors or 3 capacitors is known. Considered 2 inductors $+\ 1$ capacitor (case of 1 inductor $+\ 2$ capacitors is similar)
- Showed impedance is always realised by one of < 50 series-parallel networks, each containing 3 reactive elements and 4 resistors
- Realisability conditions of form: $\exists x \geq 0$ such that $f_1(x) = 0$, $f_2(x) \geq 0, \ldots, f_m(x) > 0, \ldots$
- Quantifier elimination can remove x, but not pretty!
- In practice: root finding algorithms give (approximate) realisations

