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Lecture 3

How to study the asymptotic behavior of NL systems?

Consider the differential equation                 in         and 
assume that the solution                     exists for 
all           .

•How to study the limiting behavior of the solution for large t ?

•How complicated can it be?

•Is it stable to perturbations?

ẋ = f(x)
�(t, x0)

t � 0

M



!(x0) = {x 2 M | 9(tn)n�0 ! +1 s.t. �(tn, x0) ! x as n ! +1}
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The limit set of a solution

The        -limit set  of  a (bounded) solution is defined as

• Examples of limit sets : fixed point, closed orbit, homoclinic 
orbit, heteroclinic orbit, ...

• Anything else?

• The     -limit set is the same definition for                   . 

!

↵ tn ! �1
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Poincaré-Bendixson theorem

Limit sets of  two-dimensional systems are not arbitrary. They 
are characterized as follows:               . 

Suppose that the solution                   is confined to an invariant 
compact set             in the plane. If               does not contain a 
fixed point, then it  is a closed orbit. 

�(t, x0)
⌦ !(x0)

• Proof is not trivial.
• Essence of the theorem: trajectories define non-intersecting 
curves.
• No such restriction in higher dimensions.
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A caveat about Poincaré-Bendixson theorem

A false implication of the theorem is as follows: limit sets of 
planar systems are either equilbria or closed orbits.              

A counter-example: heteroclinic orbit
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Little is known about limit sets in general.

Limit sets have the following properties:               . 

Limit sets can have a complicated structure. For instance, the 
limit set of a strange attractor in         is neither a surface nor a 
curve. 

•  the limit set of a bounded solution  is not empty.
•  limit sets are closed.
•  limit sets are invariant: if                      then 
                                 for all t.

x 2 !(x0)
�(t, x) 2 !(x0)

R3

Definition and properties of limit sets extends to periodic 
differential equations and to (time-invariant or periodic) maps. 
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Stable and unstable manifolds of a fixed point

Consider                      and  assume smoothness.

The stable manifold              of a fixed point      is the set

The unstable manifold of p is the set

        
Stable manifold theorem:  if p is hyperbolic, then              is
a smooth manifold locally tangent to the stable eigenspace of 
the linearization at p. Likewise,               is a smooth manifold
locally tangent to the unstable eigenspace of the linearization.  

ẋ = f(x)

pW s(p)

W s(p)

Wu(p)

W

u(p) = {x | �(t, x) ! p as t ! �1}

W

s(p) = {x | �(t, x) ! p as t ! +1}
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Stable and unstable manifolds of a bistable system

The green curve is the stable manifold of the saddle point. It
is a separatrix of the two basins of attraction. The red curve is 
the unstable manifold of the saddle. It connects the saddle to 
the two stable equilibria.  A general and important picture.
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Lyapunov stability

10

Checking Lyapunov stability
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Checking Lyapunov stability
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Energy as a Lyapunov function

Remember that the energy 

is constant along the solutions of the pendulum equation.               . 

E =

1

2

v2 � g

l
cos ✓
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Checking as stability: an important refinement
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Asymptotic stability of the damped pendulum
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Phase portrait of the damped pendulum

Phase portrait 
Energy portrait 
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More on Lyapunov stability
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Lyapunov stability for linear systems
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Lyapunov stability for linear systems
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Local Lyapunov stability for nonlinear systems
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The asymptotic behavior of nonlinear systems is studied 
through  a characterization of its limit sets.

Stable and unstable manifolds of hyperbolic fixed points are 
important robust geometric objects. Locally characterized by 
linearization.

Lyapunov stability helps estimating the basin of attraction of 
a limit set. Quadratic Lyapunov functions can be constructed
locally. Energy considerations help the construction.

Summary of lecture



21

Lecture 4

Limit cycles

C
dV

dt
= �I � �(V )

L
dI

dt
= V

�(V ) =
1

3
V 3 � V
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Van der Pol oscillator

  I
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Van der Pol oscillator: history

•  First designed by Dutch electrical engineer Van der Pol 
while working at Phillips. 

• Forcing Van der Pol oscillator with a harmonic signal 
might lead to chaotic behavior. Accidentally observed 
experimentally (irregular noise was heard near certain 
driving frequencies).

• A model for many oscillatory systems, including the two-
dimensional reduction of Hodgkin-Huxley model of the 
action potential (studied by Fitzugh and Nagumo).
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A first view: oscillation = hysteresis + adaptation

  I

Hysteretic switch studied in first lecture

Integral negative feedback ( = adaptation)

We expect integral action to be slow compared to system 
dynamics: this mechanism will require L >> C

            

C
dV

dt
= �I � �(V )

L
dI

dt
= V
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A first view: oscillation = hysteresis + adaptation

Hysteretic switch studied in first lecture

Integral negative feedback ( = adaptation)

We expect integral action to be slow compared to system 
dynamics: this mechanism will require L >> C

(from Scholarpedia)

C
dV

dt
= �I � �(V )

L
dI

dt
= V

C
dV

dt
= �I � �(V )

L
dI

dt
= V

✏ =

r
L

C

LC V̈ + V = �L�0(V )V̇

V̈ + V = �✏�0(V )V̇
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A second view: oscillation = regulated exchange of energy

rewritten as

or, in new time t0 =
tp
LC

 with  

Harmonic oscillator with nonlinear damping.
Weakly nonlinear for    small, that is when C>>L ✏



V̈ + V = �✏�0(V )V̇

Ė = �✏�0(V )V̇ 2
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Sustained oscillation when negative damping balances 
positive damping on average

A second view: oscillation = regulated exchange of energy

Energy E =
V 2

2
+

V̇ 2

2

satisfies
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Limit cycles: analysis

• Difficult in general because the analysis requires 
integrating the vector field

• Special tools in the plane, e.g. Poincaré-Bendixson

• Asymptotic methods: singular perturbation analysis or 
averaging

Limit cycles: stability analysis

•  stability of limit cycle is different from stability of a periodic 
solution

•  Poincaré idea: convert limit cycle stability analysis to fixed 
point analysis of the Poincaré map
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k1
⌧1s+ 1

k2
⌧2s+ 1

⌧1ẋ1 = �x1 + S(k1x1 � k2x2)

⌧2ẋ2 = �x2 + S(k1x1 � k2x2)
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Illustration of Poincaré-Bendixson

+-

A positive feedback loop for hysteresis

A negative feedback loop for adaptation

1

When does this model admit a limit cycle oscillation?



ẋ2 = 0

Tr > 0 , k1 � 1

⌧1
>

1� k2
⌧2

� > 0 , k1 � k2 < 1
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Illustration of Poincaré-Bendixson

ẋ1 = 0

A limit cycle must exist if the origin is a repeller.

dV

dt
= �I � �(V )

dI

dt
= V, I = ��(V ) + 0(✏)

✏
dV

dt
= �I � �(V )

dI

dt
= V
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Slow-fast analysis (L>>C)

(the bistable switch, again)

Fast dynamics: vector field is nearly horizontal away from 
cubic isocline

Slow dynamics: there exists an invariant manifold near the 
cubic where the local dynamics are roughly



V̈ + V = �✏�0(V )V̇

ṙ = �✏r�0
(r sin ✓) cos2(✓), ˙✓ = 1 + 0(✏)
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Averaging analysis (C>>L)

In polar coordinates V = r sin ✓, ˙V = r cos ✓

The averaged system 

has an exponentially stable equilbrium at r = 2

ṙ = �✏r
1

2⇡

Z 2⇡

0
�0
(r sin ✓) cos2(✓)d✓

=

✏

8

(1� r2

4

)
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Limit cycles are the steady-state solutions of nonlinear 
oscillators. 

Two oscillation mechanisms are illustrated by the Van der 
Pol circuit: (1) hysteresis + adaptation (widespread in 
biology) and (2) conservative system with nonlinear damping 
(widespread in electromechanical devices).

Analysis of limit cycles is hard in general. But asymptotic 
methods are powerful to analyze relaxation oscillators or 
weakly nonlinear oscillators.

Summary of lecture
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Phase portrait: two-dimensional behaviors can be drawed.

Linear phase portraits determine local behavior near 
hyperbolic fixed points

Tunnel diode: archetype example of bistable behavior

Pendulum: archetype example of conservative mechanical 
behavior.

The saddle point is an important ‘hidden’ fixed point. A key 
ruler of nonlinear behaviors.

Summary of lecture


