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Lecture 3

How to study the asymptotic behavior of NL systems?

Consider the differential equation & = f(x)in M and

assume that the solution ¢(t,zy)  exists for
all t > 0.

*How to study the limiting behavior of the solution for large t ?
*How complicated can it be?

*|s it stable to perturbations?




The limit set of a solution

The w -limit set of a (bounded) solution is defined as

w(zg) ={xr e M | I(tn)n>0 = +00 s.t. ¢(tn,x0) = x asn — 400}

* Examples of limit sets : fixed point, closed orbit, homoclinic
orbit, heteroclinic orbit, ...

* Anything else?

e The « -limit set is the same definition for ¢,, - —o0.

Poincaré-Bendixson theorem

Limit sets of two-dimensional systems are not arbitrary. They
are characterized as follows:

Suppose that the solution  ¢(t, o) is confined to an invariant
compactset € inthe plane. If w(xp) does not contain a
fixed point, then it is a closed orbit.

* Proof is not trivial.

» Essence of the theorem: trajectories define non-intersecting
curves.

* No such restriction in higher dimensions.




A caveat about Poincaré-Bendixson theorem

A false implication of the theorem is as follows: limit sets of
planar systems are either equilbria or closed orbits.

A counter-example: heteroclinic orbit

Little is known about limit sets in general.

Limit sets have the following properties:

 the limit set of a bounded solution is not empty.

* limit sets are closed.

e limit sets are invariant: if = € w(xo) then
o(t,x) € w(xg) forall t.

Limit sets can have a complicated structure. For instance, the
limit set of a strange attractor in R? is neither a surface nor a
curve.

Definition and properties of limit sets extends to periodic
differential equations and to (time-invariant or periodic) maps.
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Stable and unstable manifolds of a fixed point

Consider & = f(z) and assume smoothness.

The stable manifold 1 ?(p) of a fixed point P is the set
We(p) ={x | ¢(t,x) > p as t - o0}
The unstable manifold of p is the set

W*(p) = {z | $(t,x) = p as t — —oc}

Stable manifold theorem: if p is hyperbolic, then W?*(p) is

a smooth manifold locally tangent to the stable eigenspace of
the linearization at p. Likewise, W*“(p) is a smooth manifold
locally tangent to the unstable eigenspace of the linearization.

Stable and unstable manifolds of a bistable system
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Figure 1.24: Phase portrait of the tunnel diode circuit of Example 1.2,

The green curve is the stable manifold of the saddle point. It
is a separatrix of the two basins of attraction. The red curve is
the unstable manifold of the saddle. It connects the saddle to
the two stable equilibria. A general and important picture.




Lyapunov stability

&= f(x) cxeR", feC!
A solution z*(t) can be

stable : close init. cond. = solutions stay close on [0, c0)
(continuity on the infinite interval)

unstable : not stable

attractive : close init. cond. = same asymptotic behavior

asymptotically stable : stable + attractive

exponentially stable : as. stable + exponential decay estimate
of solutions

globally asymptotically stable (GAS) : as. stable and domain of
attraction is IR™.

Common restriction: z*(t) is an equilibrium solution, say z*(t) = 0

Checking Lyapunov stability

Lyapunov first method:

2,
Study Jacobian linearization A = —f(;zr*)

ox

e 1 exp. stable if Jacobian linearization as. stable

(i.e. A Hurwitz)

e 1™ exp. unstable if Jacobian linearization exp. unstable
(i.e. A has one eigenvalue in right-half plane)

e inconclusive otherwise
(A has one eigenvalue on the imaginary axis)




Checking Lyapunov stability

Lyapunov second method: Lyapunov function

Find a scalar function V € CY(IR™ IR), minimum at the
equilibrium, V(0) =0, V(x) > 0, and study

AV 9Var 9V

1% = =
dt ox Ot ox

- f(z)

e V < 0 near the equilibrium implies Lyapunov stability
e V < 0 near the equilibrium implies asymptotic stability

e V < 0 everywhere (except 0) and V' proper implies global
asymptotic stability

Energy as a Lyapunov function

1
Remember that the energy FE = 51}2 — %cos@

is constant along the solutions of the pendulum equation.

Lovel curves of £ = mfconthasm)-1) + 5.3 w7
— —

2

=L

E' is minimum at (0,0) and vector field is everywhere tangent to

the level curves (conservation of energy) = Lyapunov stability.

Remark: Linearization is inconclusive for stability of (0,0) but
proves instability of (7,0).
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Checking as stability: an important refinement

Frequent situtation: V(z) < —W (z)
with W (xz) > 0 but not positive definite.

Fact 1 : bounded solutions asymptotically converge to the set

M ={z e R": W(zx) =0}
Fact 2 : w-limit sets of & = f(x) are invariant

(1)+(2) = bounded solutions converge to the largest invariant
set contained in M!

This is LASALLE INVARIANCE PRINCIPLE.
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Asymptotic stability of the damped pendulum

Pendulum with friction 9:

H = w
{ Jw = —mglsinf — dw

Energy: E = mgl(1 — cosf) + %JwQ — E=-6w?2<0

Solutions converge to the largest invariant set with zero
velocity: the origin.

If 0 = d(%), one only has the weaker conclusion that the velocity
asymptotically vanishes along solutions.
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Phase portrait of the damped pendulum
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Phase portrait

Energy portrait
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More on Lyapunov stability

Mathematical definitions and time-varying case (uniformity !)
e Converse theorems

Characterizations from estimates

Weaker regularity conditions on f and V

Standard reference: Khalil

Remark: stability results about equilibria extend almost trivially
to stability results about compact sets.
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Lyapunov stability for linear systems

r=Ax
xr =0 asymptotically stable < 2 =0 exp. stable
< Re AM(A) <0
& 3IP=PT>0: PA+ ATP =—1 "Lyapunov equation”

SJda>0, K>0: |z < K|z(0)|e
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Lyapunov stability for linear systems

o V(z)=2aTPx
7 o ) ,T, . A e
=V=—x'2<0 vr # 0

= Jag, a0 >0 : ai|z]|? < 2T Pz < as|z||?
— exponential estimate

e Choose

pP= /OC(EAT)T(EAT)dT
0

(<:> Viz) = /OOC .l‘|2d7')
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Local Lyapunov stability for nonlinear systems

_of

o

i=f(z) f(0)=0 A (0)

e = = ( exponentially stable & A Hurwitz

(use 2T Px as Lyapunov function)

e = = 0 asymptotically stable

S Jdag(l|z]]) < Vi(z) < as(||z]) : \."(I) < —as(||z||)

= lz(t)

< B(||z(0)],2)

a1 " class K" 3 "class KL"

Summary of lecture

The asymptotic behavior of nonlinear systems is studied
through a characterization of its limit sets.

Stable and unstable manifolds of hyperbolic fixed points are
important robust geometric objects. Locally characterized by
linearization.

Lyapunov stability helps estimating the basin of attraction of

a limit set. Quadratic Lyapunov functions can be constructed
locally. Energy considerations help the construction.
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Lecture 4

Limit cycles

7\

stable unstable half-stable
limit cycle limit cycle limit cycle

A closed orbit is the trace (in phase space) of a periodic
solution with a finite period.

A limit cycle is an isolated closed orbit.
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Van der Pol oscillator

i i=0 4(v) 1 | 7
Lo I oY
E, :
A%
L — TV
dl
1E —vy
dt
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Van der Pol oscillator: history

» First designed by Dutch electrical engineer Van der Pol
while working at Phillips.

* Forcing Van der Pol oscillator with a harmonic signal
might lead to chaotic behavior. Accidentally observed
experimentally (irregular noise was heard near certain
driving frequencies).

» A model for many oscillatory systems, including the two-

dimensional reduction of Hodgkin-Huxley model of the
action potential (studied by Fitzugh and Nagumo).
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A first view: oscillation = hysteresis + adaptation

| —— E l I
S I . V| = C v §L <f> Iy
E, :
av . . .
OE = —1 — ¢(V) Hysteretic switch studied in first lecture
L% — 1/ Integral negative feedback ( = adaptation)
t

We expect integral action to be slow compared to system
dynamics: this mechanism will require L >> C 24




A first view: oscillation = hysteresis + adaptation

. (from Scholarpedia)

C% = —I — ¢(V) Hysteretic switch studied in first lecture
Lﬁ _ v Integral negative feedback ( = adaptation)
dt

We expect integral action to be slow compared to system
dynamics: this mechanism will require L >> C 2

A second view: oscillation = regulated exchange of energy

dv
O— = —1— (V)

dI
L= =V
dt

rewritten as

LCV +V =-L¢'(V)V

or, in new time ¢ - _*_

VLC
C / y . L
V+V=—e(V)V with €= o

Harmonic oscillator with nonlinear damping.
Weakly nonlinear for € small, that is when C>>L
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A second view: oscillation = regulated exchange of energy

Energy E=—+—

satisfies E=—ed/(V)V?

Sustained oscillation when negative damping balances
positive damping on average 27

Limit cycles: analysis

e Difficult in general because the analysis requires
integrating the vector field

e Special tools in the plane, e.g. Poincaré-Bendixson

* Asymptotic methods: singular perturbation analysis or
averaging
Limit cycles: stability analysis

* stability of limit cycle is different from stability of a periodic
solution

* Poincaré idea: convert limit cycle stability analysis to fixed
point analysis of the Poincaré map 28




Asymptotic methods and perturbation theory

Introduce a "small” parameter £ > ()

e & = f(x,e,t) : "regular perturbation”

— series expansion x(t,g) = wq(t) + cx1(t) + 2xo(t) + O(e?)
(convergence over finite time interval)

— averaging theory for & = e f(t,x, ) with f T-periodic
(conclusion over infinite time interval)

[
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b ot
S~ Tk
b [

—~—
~
—_
= =
SV W)
S

. "singular perturbation”
(conclusion over infinite time interval)
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lllustration of Poincaré-Bendixson

S

- 4%+

k1
s+ 1 A positive feedback loop for hysteresis
k2 A negative feedback loop for adaptation
728 + 1
7’15i31 = —aI + S(k?1$1 — kQZL’Q)
TQLiZQ = — T2 + S(klﬂ?l — ]'CQQZQ)

When does this model admit a limit cycle oscillation?

30




lllustration of Poincaré-Bendixson

Tr>0<:>k1_1>1_k2
' # T1 T2
—/ / A>06k —Fky <1
........ 5’7 2—0 ........
NE — “

A limit cycle must exist if the origin is a repeller.
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Slow-fast analysis (L>>C) . )
. i\
A S .
D o(V)
dl A
a =V

Fast dynamics: vector field is nearly horizontal away from
cubic isocline %

— = —I —¢(V) (the bistable switch, again)

Slow dynamics: there exists an invariant manifold near the
cubic where the local dynamics are roughly

dI
— =V I=—6(V)+0(c)
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Averaging analysis (C>>L)

V4+V=—e(V)V

In polar coordinates V = rsinf, V = rcosé
i = —erd (rsin ) cos?(0), 6 =1+ 0(e)

The averaged system ,
o 1 " / : 2
7= €T_27r/0 ¢’ (rsin 0) cos*(6)do

€ 7’2

8(1_Z)

has an exponentially stable equilbriumat 7 =2 »

Summary of lecture

Limit cycles are the steady-state solutions of nonlinear
oscillators.

Two oscillation mechanisms are illustrated by the Van der
Pol circuit: (1) hysteresis + adaptation (widespread in
biology) and (2) conservative system with nonlinear damping
(widespread in electromechanical devices).

Analysis of limit cycles is hard in general. But asymptotic
methods are powerful to analyze relaxation oscillators or
weakly nonlinear oscillators.
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Summary of lecture

Phase portrait: two-dimensional behaviors can be drawed.

Linear phase portraits determine local behavior near
hyperbolic fixed points

Tunnel diode: archetype example of bistable behavior

Pendulum: archetype example of conservative mechanical
behavior.

The saddle point is an important ‘hidden’ fixed point. A key
ruler of nonlinear behaviors.
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