
Engineering Tripos Part IIB

Module 4F2: Nonlinear Systems and Control

Examples Paper 4F2/3

1. Suppose two nonlinear dynamic systems are coupled together, as shown in Fig. 1,
and that their defining equations are:

System A:
d3y(t)

dt3
= g[y(t), ẏ(t), ÿ(t), u(t), t]

System B: ü = h[u(t), u̇(t), y(t), t]

where g and h are nonlinear functions. Show that they can be represented by a
single vector differential equation

ẋ(t) = f [x(t), t].

What is the dimension of x?
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Figure 1: Feedback interconnection

2. Let S(x) := max(−1, min(1, x)). Consider the feedback interconnection in Fig. 2.
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Figure 2: A saturated positive feedback interconnection.

a) Write a state space model of the system;
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b) for constant u, find Vk(x, u), such that

ẋ = −∂Vk

∂x
(x, u);

c) determine for which pairs (u, k) the system is bistable, that is, has 2 stable
and 1 unstable fixed point.

3. A phase-locked loop (used in communications networks) is described by the equation

ÿ(t) + [a + b cos y(t)]ẏ + c sin y(t) = 0

where a > b ≥ 0 and c > 0. Express this in state-space form. Find the equilibrium
points and examine their stability.

4. Find the analytic solution of
ẋ = −x3

for an arbitrary initial condition x0 and

a) show that x(t) → 0 as t → ∞ but the decay is not exponential;

b) use MATLAB to compare the solutions of ẋ = −x3 and ẋ = −x for the
initial condition x0 = 10 and 0 ≤ t ≤ 10.

5. Consider the two-dimensional system described by the feedback interconnection in
Fig. 3, where each block in E is defined by

E :

{

ẋ = −x+ S(u)
y = 2x

,

with S(·) is a smooth sigmoid.

E

E

Figure 3: E-E interconnection

a) Draw a phase portrait of the system using MATLAB.

b) Using the change of coordinate zi = S(2xi), i = 1, 2, show that the system is a
gradient system, that is, it can be written as

ż = −Q(z)
∂V

∂z

where V (·) is a scalar potential and the (diagonal) matrix Q(z) is positive definite
for all z.

c) Determine the limit sets of the system by using V (z) as a Lyapunov function.

d) Use MATLAB to draw the level curves of V in the phase portrait. Try to visualize
the shape of V , in particular in the vicinity of the saddle point.
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6. In each of the cases below show that the general solution of the equation ẋ = Ax is
as given: (Hint: reduce the matrix equation to appropriate scalar equation(s).)

(a) A =

(

0 0
0 0

)

, x(t) = c1

(

1
0

)

+ c2

(

0
1

)

,

(b) A =

(

0 1
0 0

)

, x(t) = c1

(

1
0

)

+ c2

(

t
1

)

,

(where c1 and c2 are arbitrary constants.) Characterise the stability of the equilib-
rium in each case. Find the eigenvalues of A. Comment.

7. The Rössler system has been used to model a variety of systems to demonstrate
evolution from well-behaved limit cycles to chaotic solutions, e.g. dripping water as
flow rate is increased, onset of cardiac fibrillation. The system is described by

ẋ1 = x1 − x1x2 − x3

ẋ2 = x2

1
− ax2

ẋ3 = bx1 − cx3.

Find the equilibrium solutions and investigate their stability as a function of the
parameters. (Note: The Routh-Hurwitz Stability Criteria given in the Control
section of the Electrical and Information Data Book will be useful for part of this
question.)

8. Consider the following piecewise-linear system representing a non-linear PD-controller
for an inertial mass. The torque input to the inertial mass is provided through a
relay with dead-zone: u = ±U if |z| > 1, u = 0 otherwise. Let r = 0, kp = 2,
kv = 1 and U = 4J . Obtain a state equation description of the system and find the
equilibrium states. (Hint: You need a different equation for each condition of the
relay.)

Sketch the state-plane trajectories. Notice that, strictly speaking, the vector field for
the overall system is discontinuous. Determine the points at which discontinuities
occur (“switching surfaces”). Do solutions exist starting at these points? If not,
speculate about the possible behaviours of the physical system if it finds itself on
one of these switching surfaces.
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Figure 4: Nonlinear PD controller

9. Prove that limit sets are invariant.

10. Consider the phase-locked loop of question 3.

(i) By writing the system in the standard state equation form with x1 = y and
x2 = ẏ and using the function

V (x1, x2) = c(1− cosx1) +
1

2
x2

2

where c > 0, show that the origin is a stable equilibrium point.

(ii) Use LaSalle’s theorem to show that the origin is asymptotically stable.

(iii) Sketch the function V (x1, x2) and deduce the stability of each equilibrium.

Answers

3. Equilibrium points: y = nπ for n an integer. Stable equilibria: n is even or zero.

7. Equilibrium points: origin and, if d = a(1 − b/c) > 0, (±
√
d, 1− b/c,±b

√
d/c). At

the origin stability requires a > 0, b > c > 1. Under the assumption that d > 0,
stability at other equilibria requires:

c > 0

a+ c > b/c

a

(

(a+ c− b

c
)(c+ 2− 3b

c
)− 2(c− b)

)

> 0

Past papers
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The following past Tripos questions are suitable for further practice:
Part IIB Module 4F2: 2011, Q. 1. Part IIB Module 4F3: 2010, Q. 1. 2009, Q. 1.
2008, Q. 2. 2007, Q. 2. 2006, Q. 4. 2005, Q. 1. 2004, Q. 1. 2003, Q. 2. Part IIB Module
I3: 2002, Q. 2, 3(b). 2001, Q. 1. 2000, Q. 1(a) and (b). 1999, Q. 1. 1998, Q. 1,4(a).
1997, Q. 1. 1996 Q. 1,2.
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February 2014
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