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ẋ = Ax+Bu

y = Cx+Du
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Linear behaviors (LTI systems, mostly 3F1 and 3F2)

•The transfer function view: sinusoids map to sinusoids

• The state-space view: state parametrizes memory

LTI
(causal, stable)

• The interconnection view: systems are made of simpler systems

-

LTI

 LTI



ẋ = f(x, u)
y = h(x, u) (x, u) 2 M ⇥ U

3

Nonlinear behaviors 
(4F2: mostly time-invariant, continuous-time)

• Literally: every behavior that fails the homogeneity and 
superposition principle

• The state-space view: 

NLTI

• The interconnection view: systems are made of simpler systems

 Remark: This ‘open systems’ viewpoint will not be found in most textbooks on 
(closed) dynamical systems.

 higher harmonics, dependence on
amplitude and initial condition, ... 

Different sources of nonlinearity: state-space, update equation, output map

LTI NL
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4F2: Main questions of the course

• Nonlinear models versus linear models: why and when?

• Basic nonlinear phenomena in engineering: 
hysteresis, multistability, nonlinear oscillations, ... 

• Basic mathematical tools for analysis and design
     of nonlinear behaviors

Today’s lecture: static analysis and one-dimensional state-spaces.
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Static behaviors (SISO: one “input”, one “output”)

• A static behavior is described by the graph of an  
algebraic equation  F(u,y)=0

NL behavior:  every graph that is not a straight line 
through the origin.

(Unless specified, we will assume differentiability: 
derivatives exist and are continuous as needed...)

u

y
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Examples of static behaviors  

Affine Monotone Implicit 
u

y

u

y

u

y



F (u, y) = 0

dy = �Fu

Fy
(u0, y0)du

Fy = 0

7

Linear behaviors are local descriptions of global behaviors

u

y

“Bifurcation”, “singularity”

y = S(u)
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The sigmoidal behavior

Empirically found in many experiments

Sigmoid

Nearly agrees with cumulative distribution of a gaussian 

Kinetics activation

Soft quantization (neural networks)

u

y

Linear range

Saturation

Dead zone

y =
1

1 + e�u

y =
uN

MN + uN

y = tanhu



y = satu
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The saturation behavior 

Often found in engineering (control)

Models e.g. finite  actuator range

Operational amplifier, transistor, ...

Piecewise linear nature sometimes facilitates analysis 

u

y

Linear range

Saturation

Dead zone

y = sat1(u�Ky) ⌘ y = sat 1
1+K

(u)

1

K + 1

10

Negative feedback ‘linearizes’

The essence of the feedback amplifier.

The essence of control theory.

K

1

-



y = sat1(u+Ky) ⌘ y =

⇢
+1 u � �1�K
�1 u  K � 1

1

1�K
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Positive feedback ‘quantizes’

The essence of switches, ON-OFF devices,  boolean 
behaviors

K

1

+

An essential nonlinear phenomenon
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Oscillations = hysteresis + adaptation 

Oscillations arise from hysteresis loops : a combination of 
positive and negative feedback

-

An essential nonlinear phenomenon

  H(s)
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Lure feedback systems

-

LTI

static 
nonlinearity

A much studied class of nonlinear behaviors (Lure, 
Popov, Kalman, Yakubovich, ...).

Aizerman conjecture : stability of the local behavior 
implies stability of the global behavior?

A frequency characterization of the nonlinear behavior?

The root of dissipativity theory, a pillar of nonlinear 
systems theory.

✓
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Behaviors on nonlinear spaces

What is the state-space of the pendulum ? 

Every electromechanical system with an angle among 
configuration variables defines a behavior on a nonlinear 
space. 

An essential source of nonlinearity.

‘Angular’ spaces: circle, rotation group, sphere, ...



ẋ = f(x) + g(x)u

y = h(x)

x 2 M x 2 Rn

ẋ = Ax+Bu

y = Cx

x

yf(x)
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Nonlinear state-space models 

generalizes

f : M ! TM is called a vector field. It assigns an arrow to each 
point in the state space. 

The arrow specifies the direction of motion.

A trajectory is an integral curve of the vector field: a curve whose 
velocity vector is everywhere given by the vector field.
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Linear versus nonlinear analysis

In linear systems analysis, the emphasis in on the 
solution at time t, or the flow:

In nonlinear systems analysis, the flow can only be 
approximated, typically with the help of a numerical 
integrator.

Therefore, the emphasis is on the vector field and 
trajectories in the state space. 

The central question is : what can be said about the 
asymptotic behavior (large times) without integrating the 
vector field?

�(t, x0) = e

At
x0
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A problem of historical importance

Newton proposes a general law for motions: F=m a
(1689). Solves the two-body problem and ‘proves’ Kepler laws for 
the behavior ‘earth+sun’.

(Kepler laws are about integral curves. Newton law is about the 
vector field). Newton also invents a calculus to approximately 
solve nonlinear differential equations.

Laplace raises the question of the asymptotic behavior:
Is the solar system stable? Will the observed behavior persist 
eternally?

Poincaré puts an end to the attempt to answer asymptotic 
questions from approximate solutions for the three-body problem. 
He invents the geometric analysis of nonlinear systems, based 
on a study of the vector field in the state space.

ẋ = sin(x) + u

x

ẋ
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Vector fields on the line

is a real number, denoting position on the real line.

is a real number, the sign of which indicates the direction of 
motion

(u=0)



⇡

ż = sin(⇡)z + v

(z, v) 2 R⇥ R

ẋ = sin(x) + u

(x̄, ū) = (⇡, 0)
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Local analysis near equilibria

near

Rationale:                                            
approximates                            for small deviations 
around                            .   

(x̄+ z(t), ū+ v(t))
(x(t), u(t))

(x̄, ū) = (⇡, 0)

Advantage: linear behaviors can be used to approximate 
nonlinear behaviors 

✓̇ = sin(✓) + u

✓

✓̇

T✓S
1 ⇡ R

R
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Vector fields on the circle

is an angle, denoting position on the circle.

is a real number, the sign of which indicates the direction of 
motion in the tangent space

✓
✓̇

T✓S
1 ⇡ R

R

Both the angle and the velocity can be represented by real 
numbers locally (a coordinate representation) but they are 
different objects!
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Scalar vector fields derive from a potential

By definition, the potential decreases along solutions:

This means that solutions move ‘downhill’ in the potential 
landscape. 

V̇ = �(
@V

@x

)2  0

ẋ = x

1/3

ẋ = 1 + x

2
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Existence and uniqueness of solutions

several solutions with initial condition 

solution blows up to infinity in finite time 



x+ = Ax
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Vector fields versus maps

Discrete-time and continuous-time linear systems are treated on the same foot
because of the analogy between the solution of                  and the solution of  

The analogy does not extend to nonlinear behaviors.

Trajectories of                      are integral curves of the vector field.

Trajectories of                     are a sequence of points generated by iterating the 
map

This course is primarily about continuous-time nonlinear behaviors.

 

ẋ = Ax

x+ = F (x)

x0, x1 = F (x0), x2 = F (F (x0)), . . . , xN = F

N (x0), . . .

ẋ = f(x)
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4F2: Phase portraits, linearization, and saddle points

Past lecture: static analysis and one-dimensional state-spaces.

Today: two-dimensional state-spaces. 



ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

f1(x1, x2)

f2(x1, x2)

x1

x2

f(x)
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Vector fields and phase portrait

The vector equation

is equivalent to two coupled scalar equations:

ẋ = f(x)

Drawing the phase portrait means attaching an arrow to each point and
sketching the integral curves of the vector field.

(Matlab command ‘quiver’ draws f(x))

, x =

✓
x1

x2

◆
2 R2
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Goal of lecture: understanding the behavior of
two-dimensional systems from their phase portrait

Imagine a few possible solutions of this phase portrait.
Where is the time information? What are the asymptotic behaviors?

Observe: trajectories do not intersect ! 



ẋ1 = 0 ⌘ f1 = 0

ẋ2 = 0 ⌘ f2 = 0
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Isoclines: ‘loci of same slope’

x1

x2

Equilibria or fixed points are solutions of 

They are the intersections of the nullclines.

f(x) = 0

ẋ = Ax

✓
ẋ1

ẋ2

◆
=

✓
a11 a12

a21 a22

◆✓
x1

x2

◆
⌘

✓
x1(t)
x2(t)

◆
= e

At

✓
x1(0)
x2(0)

◆

28

Linear phase portraits

Solution:

Geometry of solution is determined by the eigenvalues and eigenvectors of A
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Linear phase portraits with real eigenvalues

Stable node Unstable node Saddle point

Robust phase portraits: 

Fragile phase portraits: 

repeated eigenvalue zero eigenvalue
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Linear phase portraits with complex eigenvalues

Stable focus Unstable focus

Robust phase portraits: 

Fragile phase portraits: 

center



⌧

�
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Classification of linear phase portraits 

is the trace of A

is the det of A

ż = A(t)z, A(t) =
@f

@x

(x⇤(t)), aij(t) =
@fi

@xj
(x⇤(t))
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Linearization

The (Jacobian) linearization (or variational equation)  of                       
along                    is the linear system

Consider a solution                of              

The variational equation is obtained by retaining  the first-order terms in 
the Taylor expansion of                       along  

x

⇤(t) ẋ = f(x)

ẋ = f(x)
x

⇤(t)

ẋ = f(x) x

⇤(t)
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Linearization at hyperbolic fixed points

Robust linear phase portraits are important because they capture 
the local behavior of nonlinear phase portraits near hyperbolic 
fixed points.  

ẋ = f(x)

A fixed point is called hyperbolic if the eigenvalues of the 
linearization lie off the imaginary axis (nodes, foci, saddles).  

(Hartman Grobam theorem)
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A nonlinear electrical circuit: tunnel diode
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Phase portrait of the  tunnel diode
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Reduced modeling

Compare the following three behaviors:

The static model 

The one-dimensional model

The two-dimensional model 

 

Cẋ = v � f(x)

0 =
u� x

R

� f(x)

v =
u� x

R



⌘ ⌘
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The motif of bistability

An archetype model of switches, on-off behaviors, positive 
feedback, memory, hysteresis, ...

Widespread in biology and electronics

 

K

+
v i

E

38

The saddle point organizes the phase portrait

But the saddle point will never be observed experimentally.

Hence the role of modeling!

 



✓̈ = �g

l
sin(✓)

⇢
✓̇ = v
v̇ = � g

l sin ✓
, (✓, v) 2 S1 ⇥ R
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A nonlinear mechanical system: the  pendulum

State-space model:

The state-space is a cylinder, not a plane !
 

Newton’s law:
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The  pendulum: local analysis near fixed points



Ė =
@E

@v
v̇ +

@E

@✓
✓̇ = 0
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The  pendulum: energy conservation

Energy: E =

1

2

v2 � g

l
cos ✓

Energy conservation:

Vector field is everywhere tangent to the level curves of E.
This means that the level curves of E are the integral curves of 
the vector field !
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The  phase portrait of the pendulum 

Plotting E instead of v along the vertical axis:

Wrapping the plane onto a cylinder:

(Strogatz, pp. 170-171)
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Phase portrait: two-dimensional behaviors can be drawed.

Linear phase portraits determine local behavior near 
hyperbolic fixed points

Tunnel diode: archetype example of bistable behavior

Pendulum: archetype example of conservative mechanical 
behavior.

The saddle point is an important ‘hidden’ fixed point. A key 
ruler of nonlinear behaviors.

Summary of lecture


