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Abstract. This paper provides algebraic criteria for the number of inductors and
capacitors which must be present in a realisation of a given electrical impedance
function. The criteria are expressed in terms of the rank and signature of the associated
Hankel, or Sylvester, or Bezoutian matrix, or equivalently in terms of an extended
Cauchy index.

1 Introduction
The purpose of this paper is to provide algebraic criteria for the number of reactive
elements that are needed in the realisation of a given impedance function in electrical
circuits. The basis for these results is the paper of Youla and Tissi [20] which
introduced the method of reactance extraction in network synthesis. There it was
shown that the number of capacitors and inductors needed to realise a given driving-
point behaviour is the same for any minimally reactive reciprocal realisation and is
related to the number of positive and negative entries in a certain “reactance signature
matrix” associated with the scattering matrix. In this paper we rework this result
starting with the more familiar impedance function. We first relate the number of
capacitors and inductors to the number of positive and negative eigenvalues of the
Hankel matrix. In turn this is related to conditions on the Sylvester and Bezoutian
matrices. The criteria for the latter matrices, and also in terms of an extended Cauchy
index, are shown to be valid for non-proper impedances. The case of non-minimally
reactive networks is also considered and the generalisation to multi-ports is discussed.
We are grateful for the opportunity provided by this Festschrift volume to acknowl-
edge the contributions of Uwe Helmke to the field of Dynamical Systems and Control
Theory in his many elegant results and papers. It is also an opportunity to thank him
for his initiative in organising the workshop on “Mathematical Aspects of Network
Synthesis” at the Institut für Mathematik, Universität Würzburg, 27-28 September
2010, which brought together researchers with common interests in this field, and
which led to a second workshop being held on the theme in Cambridge the following
year. Happy Birthday Uwe!

Mit herzlichen Glückwünschen an Professor Uwe Helmke
anlässlich seines 60. Geburtstags.

2 Notation
We denote the rank of a matrix by r(⋅) and the determinant of a square matrix by �⋅�.
For a real symmetric matrix we denote the number of strictly positive and strictly
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Figure 1: One-port network N with reactive elements extracted.

negative eigenvalues by π(⋅) and ν(⋅) respectively. The signature σ(⋅) of a real
symmetric matrix is defined by σ(⋅) = π(⋅)−ν(⋅). Let x1, . . . ,xr be a sequence of
non-zero real numbers. We define P(x1, . . . ,xr) to be the number of permanences
of sign and V(x1, . . . ,xr) to be the number of variations of sign in the sequence
x1, . . . ,xr. We denote the set of real-rational functions in the variable s by (s).
The subset of proper rational functions, denoted by p(s), are those which are
bounded at s =∞. We similarly denote the set of real-rational matrix functions with r
rows and c columns by r×c(s) and the corresponding subset of proper real-rational
matrix functions by r×c

p (s). We denote the McMillan degree [3, Section 3.6] of a
function F(s) ∈ r×c(s) by δ (F(s)). If F(s) = a(s)�b(s) ∈ (s) with a(s) and b(s)
coprime then δ(F(s)) =max{deg(a(s)),deg(b(s))}. The extended Cauchy index of
a rational function or a symmetric rational matrix function (see Definitions 5 and 12)
is denoted by γ(F(s)). We call a factorisation of a function F(s) ∈ r×c(s) into the
form F(s) = B−1(s)A(s) for A(s), B(s) real polynomial matrices in s a left matrix
factorisation. For a symmetric matrix F(s) ∈ m×m(s) with left matrix factorisation
F(s) = B−1(s)A(s) we denote the Bezoutian by B(B,A) (see Sections 6 and 9). We
denote by X +̇Y the block diagonal matrix with diagonal blocks X and Y .

3 Reactance extraction and the Hankel matrix

We begin with a function Z(s) ∈ p(s) with δ (Z(s)) = n. Suppose Z(s) is the
impedance of a one-port network N containing only transformers, resistors and
reactive elements (inductors and capacitors) with positive values, hereafter referred
to as a reciprocal network. Then N contains no fewer than n reactive elements [3,
Theorem 4.4.3], and is called minimally reactive if it contains exactly this many.

Suppose that N contains exactly p inductors and q capacitors and is minimally
reactive, so p+q = n. Using the procedure of reactance extraction [20] N takes the
form of Figure 1 where the network Nr possesses a hybrid matrix M such that
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v
va
ib

�������
=
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M11 M12 M13
M21 M22 M23
M31 M32 M33

�������

�������

i
ia
vb

�������
, (1)

where ia = �i1, . . . , ip�
�

is the vector of (Laplace-transformed) currents through the
inductors in N with va the corresponding voltages, vb = �vp+1, . . . ,vp+q�

�
is the vector

of (Laplace-transformed) voltages across the capacitors in N with ib the corresponding
currents, and the matrix M is partitioned compatibly with the pertinent vectors. The
existence of a hybrid matrix in the form (1) follows from [3, Section 4.4] and is
discussed in greater detail in Section 8 of this paper. Since Nr is a reciprocal network
then, by [3, Theorem 2.8.1],

(1+̇Σ)M =M� (1+̇Σ) , (2)

where Σ = �Ip+̇− Iq�. When terminated on the reactive elements we have

�va
ib
� = −sΛ� ia

vb
� ,

where Λ = diag{L1, . . . ,Lp,C1, . . . ,Cq}. Then it can readily be seen that Z(s) = J +
H(sI−F)−1G where

F = −Λ−1 �M22 M23
M32 M33

� ∈ n×n, (3)

G = −Λ−1 �M21
M31
� ∈ n×1, (4)

H = �M12 M13� ∈ 1×n, (5)

J =M11 ∈ , (6)

and, since Σ2 = In, and Σ and Λ are both diagonal, from (2) we have

F =Λ−1ΣF�ΣΛ, (7)

G = −Λ−1ΣH�. (8)

Consider the controllability and observability matrices

Vc = �G,FG, . . . ,Fn−1G� , (9)

Vo = [H�,F�H�, . . . ,�F��n−1
H�]�. (10)

Since δ (Z(s)) = n the state-space realisation (3-6) must be controllable and observ-
able and hence Vo and Vc both have rank n. Furthermore from (7,8) we have

Vc = −Λ−1ΣV�o . (11)

We introduce the Hankel matrix

Hn =VoVc =

����������

h0 h1 . . . hn−1
h1 h2 . . . hn
...

...
. . .

...
hn−1 hn . . . h2n−2

����������

, (12)
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where hi =HFiG for i = 0,1,2, . . . are the Markov parameters, which are also directly
defined from the Laurent expansion

Z(s) = h−1+
h0

s
+ h1

s2 +
h2

s3 + . . . . (13)

It follows from (11) that

Hn =Vo �−Λ−1Σ�V�o . (14)

From (14) and Sylvester’s law of inertia [15] we deduce the following.

Theorem 1. Let Z(s) ∈ p(s) with δ (Z(s)) = n and let Hn be as in (12) for Z(s)
as in (13). If Z(s) is the impedance of a reciprocal network containing exactly p
inductors and q capacitors with p+q = n then π(Hn) = q and ν(Hn) = p.

Define the infinite Hankel matrix

H =

����������

h0 h1 h2 . . .
h1 h2 h3 . . .
h2 h3 h4 . . .
...

...
...

. . .

����������

, (15)

and the corresponding finite Hankel matrices

Hk =

����������

h0 h1 . . . hk−1
h1 h2 . . . hk
...

...
. . .

...
hk−1 hk . . . h2k−2

����������

, (16)

for k = 1,2, . . .. Then it is known thatH has finite rank equal to n and �Hn� ≠ 0 [10, p.
206-7]. From (14) and [9, Theorem 24, p. 343] we have the following.

Theorem 2. Let Z(s) ∈ p(s) with δ (Z(s)) = n and let Hk be as in (16) for Z(s)
as in (13). If Z(s) is the impedance of a reciprocal network containing exactly p
inductors and q capacitors with p+q = n then �Hn� ≠ 0, �Hk� = 0 for k > n, and

q = P(1, �H1�, . . . , �Hn�), (17)
p =V(1, �H1�, . . . , �Hn�). (18)

In any subsequence of zero values, �Hk� ≠ 0, �Hk+1� = �Hk+2� = . . . = 0, signs are

assigned to the zero values as follows: sign��Hk+ j �� = (−1)
j( j−1)

2 sign(�Hk�).

4 The Cauchy index and the Sylvester matrix
The Cauchy index of a real-rational function F(s) between limits −∞ and +∞,
denoted I+∞−∞F(s), is the difference between the number of jumps of F(s) from −∞
to +∞ and the number of jumps from +∞ to −∞ as s is increased in from −∞
to +∞. From [10, Theorem 9, p. 210], if F(s) ∈ p(s) then I+∞−∞F(s) is equal to
the signature of the corresponding Hankel matrix. From Theorem 1 we deduce the
following.
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Theorem 3. Let Z(s) ∈ p(s) be the impedance of a reciprocal network containing
exactly p inductors and q capacitors and with p+q = δ (Z(s)). Then

q− p = I+∞−∞Z(s).
We now write

Z(s) = a(s)
b(s) =

ansn+an−1sn−1+ . . .+a0

bnsn+bn−1sn−1+ . . .+b0
. (19)

Multiplying by b(s) in (13) and equating coefficients of s we obtain

h−1bn = an,

h−1bn−1+h0bn = an−1,

...

h−1b0+h0b1+ . . .+hn−2bn−1+hn−1bn = a0,

hrb0+hr+1b1+ . . .+hr+n−1bn−1+hr+nbn = 0, (r = 0,1, . . .).

Define the matrices

S2k =

�����������������

bn bn−1 . . . bn−k+1 bn−k . . . bn−2k+1
an an−1 . . . an−k+1 an−k . . . an−2k+1
0 bn . . . bn−k+2 bn−k+1 . . . bn−2k+2
0 an . . . an−k+2 an−k+1 . . . an−2k+2
...

...
. . .

...
...

. . .
...

0 0 . . . bn bn−1 . . . bn−k
0 0 . . . an an−1 . . . an−k

�����������������

, (20)

for k = 1,2, . . ., in which we put a j = 0, b j = 0 for j < 0. Following [10, p. 214] we
observe that S2k = Γ2kU2k where

Γ2k =

�����������������

1 0 . . . 0 0 . . . 0
h−1 h0 . . . hk−2 hk−1 . . . h2k−2
0 1 . . . 0 0 . . . 0
0 h−1 . . . hk−3 hk−2 . . . h2k−3
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0
0 0 . . . h−1 h0 . . . hk−1

�����������������

,

U2k =

������������

bn bn−1 bn−2 . . . bn−2k+1
0 bn bn−1 . . . bn−2k+2
0 0 bn . . . bn−2k+3
...

...
...

. . .
...

0 0 0 . . . bn

������������

.

Since a sequence of k(k−1) pairwise row permutations carries Γ2k into a block lower
triangular matrix with diagonal blocks Ik andHk then

�S2k� = b2k
n �Hk�. (21)
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It may be observed that �S2n� is the Sylvester resultant of a(s) and b(s), which is well
known to be non-zero when a(s) and b(s) are coprime. Accordingly we will refer to
the matrices S2k in (20) as Sylvester matrices. If Z(s) ∈ p(s) then bn ≠ 0 and from
(21) and Theorem 2 we obtain the following.

Theorem 4. Let Z(s) ∈ p(s) with δ (Z(s)) = n and let �S2k� be as in (20) for Z(s)
as in (19). If Z(s) is the impedance of a reciprocal network containing exactly p
inductors and q capacitors with p+q = n then �S2n� ≠ 0, �S2k� = 0 for k > n, and

q = P(1, �S2�, �S4�, . . . , �S2n�),
p =V(1, �S2�, �S4�, . . . , �S2n�).

In any subsequence of zero values, �S2k� ≠ 0, �S2(k+1)� = �S2(k+2)� = . . . = 0, signs are

assigned to the zero values as follows: sign��S2(k+ j)�� = (−1)
j( j−1)

2 sign(�S2k�).

We remark that Theorem 4 still holds when the polynomials a(s) and b(s) in (19)
are not coprime providing we replace n with r = δ (a(s)�b(s)) in the above theorem
statement. Indeed the conditions �S2r � ≠ 0 and �S2k� = 0 for all k > r hold if and only if
the function Z(s) in (19) has δ (Z(s)) = r or equivalently the polynomials a(s) and
b(s) have exactly n− r roots in common.

5 Non-proper impedances and the extended Cauchy index
We consider the extension of the previous results to general rational functions (without
the assumption of properness). We first introduce the following.

Definition 5. For F(s) ∈ (s) we define the extended Cauchy index γ (F(s)) to be
the difference between the number of jumps of F(s) from −∞ to +∞ and the number
of jumps from +∞ to −∞ as s increases from a point a through +∞ and then from
−∞ to a again, for any a ∈ which is not a pole of F(s).

If F(s) is proper or has a pole of even multiplicity at s =∞ then γ (F(s)) = I+∞−∞F(s).
If F(s) is non-proper and has a pole of odd multiplicity at s =∞ then γ (F(s)) differs
from I+∞−∞F(s) by ±1. Note that Definition 5 does not depend on the choice of a. It is
straightforward to verify the following.

Lemma 6. Let F(s), F1(s), F2(s) ∈ (s) . Then

1. γ (F(s)) = −γ (1�F(s)).

2. If F(s) = F1(s)+F2(s) and δ(F(s)) = δ(F1(s))+δ(F2(s)) then γ (F(s)) =
γ (F1(s))+γ (F2(s)).

Now suppose that a non-proper Z(s) with δ (Z(s)) = n is the impedance of a min-
imally reactive reciprocal network containing p inductors and q capacitors. Then
1�Z(s) is (strictly) proper and is the admittance of the network. Again following
[3, Section 4.4, Theorem 2.8.1], reactance extraction provides a hybrid matrix M
satisfying (1) with v and i interchanged, and with (2) satisfied for Σ = �−Ip+̇Iq�. If
we now form the Hankel matrixH†

n corresponding to 1�Z(s) we can deduce that

p−q = σ(H†
n) = γ (1�Z(s)) ,
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where we have used the same reasoning as for Theorem 1 (noting the change in sign
due to the change in sign in Σ) and the fact that the extended Cauchy index for a
proper rational function is equal to the signature of the corresponding Hankel matrix
[10, p. 210]. Hence using Lemma 6(1.) and combining with Theorem 3 for the case
that Z(s) is proper we obtain the following result.

Theorem 7. Let Z(s) ∈ (s) be the impedance of a reciprocal network containing
exactly p inductors and q capacitors and with p+q = δ (Z(s)). Then

q− p = γ (Z(s)) .

We further consider a non-proper Z(s). As in Section 3 we can form Hankel matrices
�H†

k � corresponding to 1�Z(s). It can then be seen that Theorem 2 holds with Z(s)
replaced by 1�Z(s), the expressions for q and p in (17,18) interchanged, and �Hk�
replaced everywhere by �H†

k �. Now if Z(s) is written in the form (19) then an ≠ 0 and
we can define Sylvester matrices S†

2k corresponding to 1�Z(s). As in Section 4 it
follows that

�S†
2k� = a2k

n �H†
k �. (22)

We further note that S†
2k differs from S2k by the interchange of row i with row i+1

for i odd. Therefore

�S†
2k� = (−1)k�S2k�. (23)

Combining the modified form of Theorem 2 with (22) and (23) we obtain the follow-
ing.

Theorem 8. Theorem 4 (and its subsequent remark) holds for any Z(s) ∈ (s).

6 The Bezoutian matrix
Let Z(s) ∈ (s) be written as in (19). The Bezoutian matrix is a symmetric matrix
B =B(b,a) whose elements Bi j satisfy

a(w)b(z)−b(w)a(z) =
n
�
i=1

n
�
j=1
Bi jzi−1(z−w)w j−1. (24)

If Z(s) ∈ p(s) then, for Hk as in (16) with Z(s) written as in (13), the matrix
B(b,a) is congruent to Hn [8, equation 8.58]. It follows that γ (Z(s)) = σ (Hn) =
σ (B(b,a)) and δ (Z(s)) = r(Hn) = r(B(b,a)), these relationships holding irre-
spective of whether a(s) and b(s) are coprime. If Z(s) is not proper then, since
b(s)�a(s) is proper and B(b,a) = −B(a,b), we have that γ (Z(s)) = −γ (1�Z(s)) =
−σ (B(a,b)) = σ (B(b,a)) and δ (Z(s)) = r(B(a,b)) = r(B(b,a)). There is also a
close relationship between the Bezoutian matrix and the Sylvester matrix. Let Z(s)
be as in (19) and let Bk be the matrix formed from the final k rows and columns of
B(b,a), i.e.

Bk = (Bi j)ni, j=n−k+1, (25)
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for k = 1,2, . . . ,n. Define matrices T,P11,P12,P21,P22 ∈ k×k where

T =

������������

0 0 � 0 1
0 0 � 1 0
...

...
...

...
0 1 � 0 0
1 0 � 0 0

������������

,

and

P = �P11 P12
P21 P22

� =

����������������

an−k � an−2k+1 bn−k � bn−2k+1
...

. . .
...

...
. . .

...
an−1 � an−k bn−1 � bn−k
an � an−k+1 bn � bn−k+1
...

. . .
...

...
. . .

...
0 � an 0 � bn

����������������

,

in which we put a j = 0, b j = 0 for j < 0. Then, following [8, Theorem 8.44], the
matrices P21 and P22 commute and, using a Gohberg-Semencul formula [12, Theorem
5.1], we find

�P� = �P11P22−P12P21� = �Bk��T �.
Since a sequence of k(k−1)�2 pairwise column permutations carries T into Ik, and a
sequence of k(3k−1)�2 pairwise column permutations followed by k(2k−1) pairwise
row permutations carries P into S�2k, it follows that

�S2k� = �Bk�,
for k = 1,2, . . . ,n. Theorems 7 and 8 then lead to the following result.

Theorem 9. Let Z(s) ∈ (s) be as in (19) with δ (Z(s)) = n. Further let Bk be as
in (25) for Bi j, B(b,a) defined via (24). If Z(s) is the impedance of a reciprocal
network containing exactly p inductors and q capacitors with p+q = n then

q = 1
2
(δ (Z(s))+γ (Z(s))) = π(B(b,a)) = P(1, �B1�, . . . , �Bn�),

p = 1
2
(δ (Z(s))−γ (Z(s))) = ν(B(b,a)) =V(1, �B1�, . . . , �Bn�).

In any subsequence of zero values, �Bk� ≠ 0, �Bk+1� = �Bk+2� = . . . = 0 signs are assigned

to the zero values as follows: sign��Bk+ j �� = (−1)
j( j−1)

2 sign(�Bk�).
We remark that the above theorem still holds when the polynomials a(s) and b(s) are
not coprime providing we replace n with r = δ (a(s)�b(s)) in the theorem statement.

7 Biquadratic functions
Despite their apparent simplicity the realisation of biquadratic functions has been
much studied by circuit theorists. Accordingly we write down explicitly the condi-
tions obtained in this paper which apply to this class. Let

Z(s) = a2s2+a1s+a0

b2s2+b1s+b0
. (26)
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The Sylvester matrix S4 takes the form

S4 =

���������

b2 b1 b0 0
a2 a1 a0 0
0 b2 b1 b0
0 a2 a1 a0

���������

,

and we have

�S2� = b2a1−b1a2,

�S4� = (b2a1−b1a2)(b1a0−b0a1)−(b2a0−b0a2)2 .

The realisability conditions implied by Theorem 8 are shown in Table 1. Note that
�S4� > 0 implies �S2� ≠ 0. The conditions take the identical form if Theorem 9 is used
together with the Bezoutian

B2 = �
b1a0−a1b0 b2a0−a2b0
b2a0−a2b0 b2a1−a2b1

� .

In Table 1 it may be observed that whether the reactive elements are of the same kind,
or of different kind, is determined by the sign of the resultant �S4�. This fact is stated
by Foster [7] but no proof is provided, as noted by Kalman [14]. Also, for the case
that �S4� > 0, [7] differentiates the 2 cases in Table 1 according to sign(b2a0−a2b0)
rather than sign(�S2�), which is easily shown to be equivalent.
Table 1 does not contain any information about synthesis, namely whether a reciprocal
realisation exists for a given impedance function Z(s), only the properties that a
minimally reactive reciprocal realisation must satisfy if it does exist. It is well known
that a function is realisable by a passive network if and only if it is positive-real. For
the biquadratic (26) this is equivalent to

b1a1−�
�

b0a2−
�

b2a0�
2
≥ 0,

and all coefficients in (26) have the same sign. Under this condition it is known that
minimally reactive reciprocal realisations always exist [20], [3] and that transformers
are not needed if �S4� > 0 (see Section 10). On the other hand, transformers are needed
for some functions if �S4� < 0 [16]. Results on the classification of transformerless,
minimally reactive reciprocal realisations of the biquadratic can be found in [13].

�S2� > 0 �S2� < 0 �S2� = 0
�S4� > 0 (0,2) (2,0) -
�S4� < 0 (1,1) (1,1) (1,1)
�S4� = 0 (0,1) (1,0) (0,0)

Table 1: The number of reactive elements (# inductors, # capacitors) in a minimally
reactive reciprocal realisation of a biquadratic.
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Figure 2: The network Nr obtained by removing all reactive elements from N.

8 Non-minimally reactive networks
Youla and Tissi use the scattering matrix formalism to establish lower bounds on
the number of capacitors and inductors which are needed in reciprocal realisations
(possibly non-minimally reactive) of a given scattering matrix [20, Theorem 2]. In
this section we derive an equivalent result using the reactance extraction procedure
as described in Anderson and Vongpanitlerd [3].
Let Z(s) ∈ p(s) be the impedance matrix of a one-port reciprocal network N con-
taining exactly p inductors and q capacitors. Using the procedure in [3, Section 4.4],
upon removal of the reactive elements in N we are left with the network Nr in Fig. 2
possessing a hybrid matrix M [3, equation 4.4.56] such that

�����������

v
va
ib
ic
vd

�����������

=

�����������

M11 M12 M13 M14 M15
M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
−M�14 −M�24 −M�34 0 0
−M�15 −M�25 −M�35 0 0

�����������

�����������

i
ia
vb
vc
id

�����������

,

where (ia,va), . . . ,(id,vd) are pairs of Laplace-transformed vectors of currents and
voltages of dimensions p′, q′, p− p′, q−q′ respectively, and M is partitioned compat-
ibly with the pertinent vectors. The network N is obtained upon terminating the ports
corresponding to (ia,va), (ic,vc) with inductors and the ports (ib,vb), (id,vd) with
capacitors. Then we have

�va
ib
� = −s�L2 0

0 C3
�� ia

vb
� ,

�vc
id
� = −s�L4 0

0 C5
�� ic

vd
� ,
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where L2 = diag�L1, . . . ,Lp′�, C3 = diag�C1, . . . ,Cq′�, L4 = diag�Lp′+1, . . . ,Lp� and
C5 = diag�Cq′+1, . . . ,Cq�. It follows that equations (4.4.60) and (4.4.61) in [3, p. 195]
must hold.
Since Nr is reciprocal then, by [3, Theorem 2.8.1],

�1+̇Ip′ +̇− Iq′ +̇− Ip−p′ +̇Iq−q′�M =M� �1+̇Ip′ +̇− Iq′ , +̇− Ip−p′ +̇Iq−q′� . (27)

which implies that all entries in M15, M25 and M34 are zero. Furthermore since
Z(s) is proper we require M14 = 0. It may then be verified that Z(s) has a state-
space realisation with state vector �ia�,vb

��� with dimension n = p′ +q′ and with
Z(s) = J+H (sI−F)−1 G where

F = −R�M22 M23
M32 M33

� ∈ n×n, (28)

G = −R�M21
M31
� ∈ n×1, (29)

H = �M12 M13� ∈ 1×n, (30)

J =M11 ∈ . (31)

Here

R = �R11 0
0 R22

� ,

with

R11 = �L2+M24L4M�24�
−1 ∈ p′×p′ ,

R22 = �C3+M35C5M�35�
−1 ∈ q′×q′ ,

where existence of R11 > 0 and R22 > 0 is guaranteed since both �L2+M24L4M�24�
and �C3+M35C5M�35� are positive definite.

Let Σ = �Ip′ +̇− Iq′�. It is straightforward to verify that Σ2 = In, ΣR = RΣ, and both R
and Σ are symmetric. Then from (27-31) we have F = RΣF�ΣR−1 and G = −RΣH�.
Let Vc and Vo be as in (9,10) with Hn as in (12). It is straightforward to show that
Vc = −RΣV�o and hence

Hn =Vo (−RΣ)V�o .

From [15, Theorem 2], the number of positive and negative eigenvalues ofHn cannot
exceed the corresponding quantities for −RΣ. Since −RΣ = (−R11+̇R22) with −R11 < 0
and R22 > 0, it follows that −RΣ has exactly q′ positive and p′ negative eigenvalues.
From the dimension of the state vector it follows that the McMillan degree of Z(s) is
no greater than n = p′+q′. Hence, for Hk as in (16), we have π (Hn) = π (Hk) and
ν (Hn) = ν (Hk) for all k ≥ δ (Z(s)), and so π (Hk) ≤ q′ ≤ q and ν (Hk) ≤ p′ ≤ p for
all k ≥ δ (Z(s)).
Using the argument in Section 5 about the existence of either a proper impedance
or a proper admittance we obtain the following theorem which holds irrespective of
whether the network is minimally reactive or whether a(s) and b(s) are coprime.
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Theorem 10. Let Z(s) ∈ (s) be as in (19). If Z(s) is the impedance of a reciprocal
network containing exactly p inductors and q capacitors then

q ≥ 1
2
(δ (Z(s))+γ (Z(s))) = π (B(b,a)) ,

p ≥ 1
2
(δ (Z(s))−γ (Z(s))) = ν (B(b,a)) .

Here π (B(b,a)) and ν (B(b,a)) can be calculated in accordance with Theorem 9
providing we replace n with r = δ (a(s)�b(s)).

9 Multi-port networks, generalised Bezoutians, and the extend-
ed matrix Cauchy index

The results in this paper generalise in a natural way to multi-port networks. In contrast
to the one-port case there is no guarantee of existence of a proper impedance or a
proper admittance function. However from [2] any reciprocal m-port network N
possesses a scattering matrix description S(s) where

����������

v1− i1
v2− i2

...
vm− im

����������

= S(s)

����������

v1+ i1
v2+ i2

...
vm+ im

����������

, (32)

and i1,v1, . . . are the Laplace-transformed currents and voltages at the m ports. It is
well known that S(s) ∈ m×m

p (s) and is symmetric [20, Section 2].
Consider the transformation

φ(s) = s+α
s−α

, α > 0, (33)

for which
φ−1(s) = α (s+1)

s−1
,

which maps the left half of the s-plane onto the interior of the unit circle in the
φ -plane. Let

Ŝ(s) = S(φ−1(s)).
It follows from [20, Section 3] that Ŝ(s) ∈ m×m

p (s) is symmetric and has a reali-
sation Ŝ(s) = J +H (sI−F)−1 G satisfying J = J�, ΣF = F�Σ, and ΣG = H� where
Σ = �Ip+̇− Iq� with p (respectively q) the number of inductors (respectively capac-
itors) in N. It may then be shown that Vc = ΣV�o where Vc, Vo are as in (9,10) for
n = p+q ≥ δ �Ŝ(s)�.
Consider now the infinite Hankel matrix for Ŝ(s)

H =

����������

W0 W1 W2 �
W1 W2 W3 �
W2 W3 W4 �
...

...
...

. . .

����������

, (34)
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together with the finite Hankel matrices

Hk =

����������

W0 W1 � Wk−1
W1 W2 � Wk
...

...
. . .

...
Wk−1 Wk � W2k−2

����������

,

for k = 1,2, . . . where Wi =HFiG for i = 0,1,2 . . . which coincide with the matrices in
the Laurent series expansion of Ŝ(s)

Ŝ(s) =W−1+
W0

s
+W1

s2 +
W2

s3 + . . . . (35)

Then from [20, Appendix 1], r(H) = r(Hk) = δ �Ŝ(s)� for all k ≥ δ �Ŝ(s)� (and
indeed for all k ≥ r where r ≤ δ �Ŝ(s)� is the degree of the least common multiple of
all denominators of Ŝ(s)). Furthermore if Ŝ(s) is symmetric then so too isH and, as
shown in [4], for k ≥ δ �Ŝ(s)�we also have σ (H)=σ (Hk). SinceHn =VoVc =VoΣV�o
and n ≥ δ �Ŝ(s)� then from [15, Theorem 2] (upon a suitable bordering of the matrices
Hn and Vo to make them square and compatible) we have the following.

Theorem 11. Let S(s) be the scattering matrix of a reciprocal m-port network
containing exactly p inductors and q capacitors. Further let Ŝ(s) = S�φ−1(s)� for
φ(s) as in (33). Then Ŝ(s) ∈ m×m

p (s) is symmetric and, withH as in (34) for Ŝ(s)
written as in (35), we have p ≥ π (H) and q ≥ ν (H).

For H as in (34) with Ŝ(s) ∈ m×m
p (s) symmetric and written as in (35), σ (H) is

equal to the matrix Cauchy index of Ŝ(s) [4]. To extend these results to the case of
non-proper rational matrix functions we introduce the following generalisation of the
extended Cauchy index.

Definition 12. For a symmetric matrix F(s) ∈ m×m(s) we define the extended
matrix Cauchy index γ (F(s)) to be the difference between the number of jumps in
the eigenvalues of F(s) from −∞ to +∞ less the number of jumps in the eigenvalues
of F(s) from +∞ to −∞ as s increases from a point a through +∞ and then from
−∞ to a again, for any a ∈ which is not a pole of F(s).

We remark that γ (F(s)) is well defined since the eigenvalues of F(s) are defined by
algebraic functions [5], and since F(s) has real eigenvalues for any real s, the local
power series defining them will not possess fractional powers, hence we can define
an extended Cauchy index for each eigenvalue individually and then take the sum.
Definition 12 coincides with the extended Cauchy index of Definition 5 in the
scalar case. Furthermore, if F(s) ∈ m×m

p (s) then γ (F(s)) coincides with the matrix
Cauchy index defined in [4]. Using results in [4] it is straightforward to show the
following generalisation of Lemma 6.

Lemma 13. Let F(s),F1(s),F2(s) ∈ m×m(s) be symmetric. Then

1. γ (F(s)) = −γ �F−1(s)� when F−1(s) exists.
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2. If F(s) = F1(s)+F2(s) and δ (F(s)) = δ (F1(s))+δ (F2(s)) then γ (F(s)) =
γ (F1(s))+γ (F2(s)).

Similar to the scalar case there is a correspondence between the matrix extended
Cauchy index and a matrix Bezoutian. If F(s) is a symmetric matrix with a left
matrix factorisation F(s) = B−1(s)A(s) (A(s) and B(s) need not be left coprime)
then, consistently with [4], we define the matrix Bezoutian B(B,A) as the symmetric
matrix with block entries Bi j satisfying

B(z)A�(w)−A(z)B�(w) =
n
�
i=1

n
�
i=1
Bi jzi−1(z−w)w j−1.

This definition coincides with the definition in Section 6 in the scalar case. If
F(s) ∈ m×m

p (s) is symmetric and with left matrix factorisation F(s) = B−1(s)A(s)
then, from [1] we have

δ (F(s)) = r(B(B,A)) ,

and from [4] we obtain
γ (F(s)) = σ (B(B,A)) .

We remark that these properties hold irrespective of whether B(s) and A(s) are left
coprime. If F(s) is not proper then consider the transformation φ(s) in (33) for any
α which is not a pole of F(s). Then the function F̂(s) = F �φ−1(s)� ∈ m×m

p (s) and
we have δ �F̂(s)� = δ (F(s)). Since φ(s) is a monotonically decreasing function
of s except at s = α , and φ(s) is rational and bounded at s =∞, it follows that
γ �F̂(s)� = −γ (F(s)). Suppose in addition that F(s) has a left matrix factorisation
F(s) = B−1(s)A(s) and let n be the maximum of the degrees of the entries in the
matrices A(s) and B(s). It follows that F̂(s) has a left matrix factorisation F̂(s) =
B̂−1(s)Â(s) where

B̂(z)Â�(w)− Â(z)B̂�(w)
= (z−1)n �B�φ−1(z)�A� �φ−1(w)�−A�φ−1(z)�B� �φ−1(w)��(w−1)n .

Then it is straightforward to verify that

z�B�B̂, Â�w = −2α ẑ�B(B,A)ŵ,

for all z, w, where

z� = �1, z, �, zn−1� ,
w� = �1, w, �, wn−1� ,

ẑ� = (z−1)n−1 �1, α z+1
z−1 , �, �α

z+1
z−1�

n−1� ,

ŵ� = (w−1)n−1 �1, α w+1
w−1 , �, �α

w+1
w−1�

n−1� .
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It may be verified that ŵ = T1T2w and ẑ = T1T2z for

T1 =

�������������

1 0 � 0 0
α 21α � 0 0
...

...
. . .

...
...

αn−2 �n−2
1 �21αn−2 � 2n−2αn−2 0

αn−1 �n−1
1 �21αn−1 � �n−1

n−2�2n−2αn−1 2n−1αn−1

�������������

,

T2 =

�������������

(−1)n−1 �n−1
1 �(−1)n−2 � �n−1

n−2�(−1) 1
(−1)n−2 �n−2

1 �(−1)n−3 � 1 0
...

...
...

...
−1 1 � 0 0
1 0 � 0 0

�������������

,

where (k
r ) = k!�(r!(k− r)!). It follows that

B�B̂, Â� = (T1T2)� (−2αB(B,A))(T1T2) ,

and hence γ (F(s)) = −γ �F̂(s)� = −σ �B�B̂, Â�� = σ (B(B,A)) and δ (F(s)) =
δ �F̂(s)� = r�B�B̂, Â�� = r(B(B,A)). We have shown the following.

Lemma 14. Let F(s) ∈ m×m(s) be symmetric with left matrix factorisation F(s) =
B−1(s)A(s). Then

δ (F(s)) = r(B(B,A)) ,
γ (F(s)) = σ (B(B,A)) .

We conclude by considering the case when a hybrid matrix description of the be-
haviour of N is available. By rearranging equation (32) we find

(I−ΣeS(s))�vα
iβ
� = (I+ΣeS(s))� iα

vβ
� ,

where iα , vα are the Laplace-transformed vectors of current and voltage across the
first m1 ports, iβ , vβ are the Laplace-transformed vectors of current and voltage
across the remaining m2 ports, and Σe = �Im1 +̇− Im2�. Hence providing the pertinent
inverse exists we have

�vα
iβ
� =M(s)� iα

vβ
� , (36)

where
M(s)Σe = −Σe+2(Σe−S(s))−1 ,

which is symmetric. Such a Σe is commonly referred to as an external signature
matrix, e.g. [19]. From the properties of the McMillan degree [3, Section 3.6] we
have

δ (M(s)Σe) = δ (S(s)) = δ �Ŝ(s)� ,
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and from Lemma 13 and the previous discussion it is straightforward to verify that

γ (M(s)Σe) = γ (S(s)) = −γ �Ŝ(s)� .

Combining this with Lemma 14 and Theorem 11 we obtain the following theorem
which holds irrespective of whether the network is minimally reactive or whether
A(s) and B(s) are left coprime.

Theorem 15. Let M(s) be the hybrid matrix of an m-port reciprocal network contain-
ing exactly p inductors and q capacitors, with current excitation at the first m1 ports
and voltage excitation at the remaining m2 ports as in (36), and let Σe = �Im1 +̇− Im2�.
Then M(s)Σe ∈ m×m(s) is symmetric and, with M(s)Σe written as a left matrix
factorisation M(s)Σe = B−1(s)A(s), we have

q ≥ 1
2
(δ (M(s)Σe)+γ (M(s)Σe)) = π (B(B,A)) ,

p ≥ 1
2
(δ (M(s)Σe)−γ (M(s)Σe)) = ν (B(B,A)) .

10 Notes
1. (Networks with only one kind of reactive element). It follows from Theorem 7
that any minimally reactive reciprocal one-port network which contains only one
kind of reactive element has an impedance function Z(s) ∈ (s) which satisfies
γ (Z(s)) = ±δ(Z(s)). This implies that the poles and zeros of Z(s) are real and
interlace each other. This is a well-known property of networks with only one kind
of reactive element [18]. It is also well-known that any such impedance function can
be realised without the aid of transformers in the Cauer and Foster canonical forms.
2. (Poles and zeros of impedance functions). More generally than in 1. Theorem 7
allows connections to be drawn between pole and zero locations of an impedance
function Z(s) and the number of inductors and capacitors in any minimally reactive
reciprocal realisation of Z(s). In particular, knowledge of all real axis poles and
zeros and their multiplicities (including those at infinity) is sufficient to compute the
extended Cauchy Index of a positive-real function.
3. (Mechanical networks). The results in this paper apply equally to mechanical net-
works comprising springs, dampers, inerters and levers with a direct correspondence
being provided by the force-current analogy [17].
4. (Identification). The role of the Cauchy index of a proper rational function,
equivalently the signature of the corresponding Hankel matrix, is well known in the
subject of identification. In [11] it is shown that the 2n-dimensional parameter space
of a strictly proper rational function is divided into n+1 connected regions in which
there are no pole-zero cancellations, with each such region being characterised by the
Cauchy index, and the disconnected regions being separated by rational functions of
lower McMillan degree. The original observation is credited to R.W. Brockett [11].
5. (Balanced model order reduction). The Cauchy index of a proper rational function
F(s) = d+c(sI−A)−1 b is also equal to the signature of the cross-gramian matrices
Wco(T) = ∫

�
0 eAtbceAtdt for T ≥ 0, and provides insight into the effects of balanced

model order reduction on the structural properties of the function [6].
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