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Outline of Talk

1. Motivating example (vehicle suspension).

2. A new mechanical element.

3. Positive-real functions and Brune synthesis.

4. Bott-Duffin method.

5. Darlington synthesis.

6. Minimum reactance synthesis.

7. Synthesis of resistive n-ports.

8. Vehicle suspension.

9. Synthesis with restricted complexity.

10. Motorcycle steering instabilities.
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Motivating Example – Vehicle Suspension

Performance objectives

1. Control vehicle body in the face of variable loads.

2. Insulate effect of road undulations (ride).

3. Minimise roll, pitch under braking, acceleration and

cornering (handling).
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Quarter-car Vehicle Model (conventional suspension)
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The Most General Passive Vehicle Suspension
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Replace the spring and damper with a

general positive-real impedance Z(s).

But is Z(s) physically realisable?
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Electrical-Mechanical Analogies

1. Force-Voltage Analogy.

voltage ↔ force

current ↔ velocity

Oldest analogy historically, cf. electromotive force.

2. Force-Current Analogy.

current ↔ force

voltage ↔ velocity

electrical ground ↔ mechanical ground

Independently proposed by: Darrieus (1929), Hähnle (1932), Firestone (1933).

Respects circuit “topology”, e.g. terminals, through- and across-variables.
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Standard Element Correspondences (Force-Current Analogy)

v = Ri resistor ↔ damper cv = F

v = L didt inductor ↔ spring kv = dF
dt

C dv
dt = i capacitor ↔ mass m dv

dt = F

PSfrag replacements v1
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ii

FF
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Mechanical

What are the terminals of the mass element?
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The Exceptional Nature of the Mass Element

Newton’s Second Law gives the following network interpretation of the mass

element:

• One terminal is the centre of mass,

• Other terminal is a fixed point in the inertial frame.

Hence, the mass element is analogous to a grounded capacitor.

Standard network symbol

for the mass element:PSfrag replacements

v1 = 0v2

F
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Table of usual correspondences
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Consequences for network synthesis

Two major problems with the use of the mass element for synthesis of

“black-box” mechanical impedances:

• An electrical circuit with ungrounded capacitors will not have a direct

mechanical analogue,

• Possibility of unreasonably large masses being required.

Question

Is it possible to construct a physical device such that

the relative acceleration between its endpoints is pro-

portional to the applied force?
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One method of realisation

PSfrag replacements
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Suppose the flywheel of mass m rotates by α radians per meter of relative

displacement between the terminals. Then:

F = (mα2) (v̇2 − v̇1)

(Assumes mass of gears, housing etc is negligible.)
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The Ideal Inerter

We define the Ideal Inerter to be a mechanical one-port device such

that the equal and opposite force applied at the nodes is

proportional to the relative acceleration between the nodes, i.e.

F = b(v̇2 − v̇1).

We call the constant b the inertance and its units are kilograms.

The ideal inerter can be approximated in the same sense that real springs,

dampers, inductors, etc approximate their mathematical ideals.

We can assume its mass is small.

M.C. Smith, Synthesis of Mechanical Networks: The Inerter,

IEEE Trans. on Automat. Contr., 47 (2002), pp. 1648–1662.
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A new correspondence for network synthesis
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Rack and pinion inerter

made at

Cambridge University

Engineering Department

mass ≈ 3.5 kg

inertance ≈ 725 kg

stroke ≈ 80 mm
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Damper-inerter series arrangement

with centring springs

PSfrag replacements
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Alternative Realisation of the Inerter

PSfrag replacements

screw nut flywheel
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Ballscrew inerter made at Cambridge University Engineering Department

Mass ≈ 1 kg, Inertance (adjustable) = 60–180 kg
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Electrical equivalent of quarter car model
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Positive-real functions

Definition. A function Z(s) is defined to be positive-real if one of the

following two equivalent conditions is satisfied:

1. Z(s) is analytic and Z(s) + Z(s)∗ ≥ 0 in Re(s) > 0.

2. Z(s) is analytic in Re(s) > 0, Z(jω) + Z(jω)∗ ≥ 0 for all ω at which

Z(jω) is finite, and any poles of Z(s) on the imaginary axis or at infinity

are simple and have a positive residue.
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Passivity Defined

Definition. A network is passive if for all admissible v, i which are square

integrable on (−∞, T ], ∫ T

−∞
v(t)i(t) dt ≥ 0.

Proposition. Consider a one-port electrical network for which the impedance

Z(s) exists and is real-rational. The network is passive if and only if Z(s) is

positive-real.

R.W. Newcomb, Linear Multiport Synthesis, McGraw-Hill, 1966.

B.D.O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis, Prentice-Hall, 1973.
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O. Brune showed that any (ratio-

nal) positive-real function could

be realised as the impedance

or admittance of a network

comprising resistors, capacitors,

inductors and transformers.

(1931)
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Minimum functions

A minimum function Z(s) is a positive-real function with no poles or zeros

on jR ∪ {∞} and with the real part of Z(jω) equal to 0 at one or more

frequencies.
PSfrag replacements

ReZ(jω)

0 ωω1 ω2
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Foster preamble for a positive-real Z(s)

Removal of poles/zeros on jR ∪ {∞}. e.g.

s2 + s+ 1

s+ 1
= s+

1

s+ 1
↑

lossless

↓
s2 + 1

s2 + 2s+ 1
=

(
2s

s2 + 1
+ 1

)−1

Can always reduce a positive-real Z(s) to a minimum function.
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The Brune cycle

Let Z(s) be a minimum function with Z(jω1) = jX1 (ω1 > 0).

Write L1 = X1/ω1 and Z1(s) = Z(s)− L1s.

Case 1. (L1 < 0)

PSfrag replacements

Z(s) Z1(s)

L1 < 0

(negative inductor!)

Z1(s) is positive-real. Let Y1(s) = 1/Z1(s). Therefore, we can write

Y2(s) = Y1(s)− 2K1s

s2 + ω2
1

for some K1 > 0.
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The Brune cycle (cont.)

Then:

PSfrag replacements

Z(s) Z2(s)

L1 < 0

L2 > 0

C2 > 0

where L2 = 1/2K1, C2 = 2K1/ω
2
1 and Z2 = 1/Y2.

Straightforward calculation shows that

Z2(s) = sL3+ Z3(s)
↑

proper

where L3 = −L1/(1 + 2K1L1). Since Z2(s) is positive-real, L3 > 0 and Z3(s)

is positive-real.
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The Brune cycle (cont.)

Then:

PSfrag replacements

Z(s) Z3(s)

L1 < 0

L2 > 0

L3 > 0

C2 > 0

To remove negative inductor:

PSfrag replacements

L1 L3M

Lp L2
Ls

Lp = L1 + L2

Ls = L2 + L3

M = L2

Some algebra shows that: Lp, Ls > 0 and M2

LpLs
= 1 (unity coupling

coefficient).
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The Brune cycle (cont.)

Realisation for completed cycle:
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M

Lp LsZ(s) Z3(s)
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The Brune cycle (cont.)

Case 2. (L1 > 0). As before Z1(s) = Z(s)− L1s

PSfrag replacements

Z(s) Z1(s)

L1 > 0

(no need for

negative inductor!)

Problem: Z1(s) is not positive-real!

Let’s press on and hope for the best!!

As before let Y1 = 1/Z1 and write

Y2(s) = Y1(s)− 2K1s

s2 + ω2
1

.

Despite the fact that Y1 is not positive-real we can show that K1 > 0.
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The Brune cycle (cont.)

Hence:

PSfrag replacements

Z(s) Z2(s)

L1 > 0

L2 > 0

C2 > 0

But still Z2(s) is not positive-real. Again we can check that

Z2(s) = sL3+ Z3(s)
↑

proper

where L3 = −L1/(1 + 2K1L1).

This time L3 < 0 and Z3(s) is positive-real.
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The Brune cycle (cont.)

So:

PSfrag replacements

Z(s) Z3(s)

L1 > 0

L2 > 0

L3 < 0

C2 > 0

As before we can transform to:
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M

Lp LsZ(s) Z3(s)

C2

where Lp, Ls > 0 and M2

LpLs
= 1 (unity coupling coefficient).
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R. Bott and R.J. Duffin showed

that transformers were un-

necessary in the synthesis of

positive-real functions. (1949)
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Richards’s transformation

Theorem. If Z(s) is positive-real then

R(s) =
kZ(s)− sZ(k)

kZ(k)− sZ(s)

is positive-real for any k > 0.

Proof.

Z(s) is p.r. ⇒ Y (s) =
Z(s)− Z(k)

Z(s) + Z(k)
is b.r. and Y (k) = 0

⇒ Y ′(s) =
k + s

k − sY (s) is b.r.

⇒ Z ′(s) =
1 + Y ′(s)
1− Y ′(s) is p.r.

R(s) = Z ′(s) after simplification.
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Bott-Duffin construction (cont.)

Idea: use Richards’s transformation to eliminate transformers from Brune

cycle.

As before, let Z(s) be a minimum function with Z(jω1) = jX1 (ω1 > 0).

Write L1 = X1/ω1.

Case 1. (L1 > 0)

Since Z(s) is a minimum function we can always find a k s.t. L1 = Z(k)/k.

Therefore:

R(s) =
kZ(s)− sZ(k)

kZ(k)− sZ(s)

has a zero at s = jω1.
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Bott-Duffin construction (cont.)

We now write:

Z(s) =
kZ(k)R(s) + Z(k)s

k + sR(s)

=
kZ(k)R(s)

k + sR(s)
+

Z(k)s

k + sR(s)

=
1

1
Z(k)R(s) + s

kZ(k)

+
1

k
Z(k)s + R(s)

Z(k)

.
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Bott-Duffin construction (cont.)

Z(s) =
1

1
Z(k)R(s) + s

kZ(k)

+
1

k
Z(k)s + R(s)

Z(k)
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Bott-Duffin construction (cont.)

We can write: 1
Z(k)R(s) = const× s

s2+ω2
1

+ 1
R1(s) etc.

PSfrag replacements
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Example — restricted degree

Proposition. Consider the real-rational function

Yb(s) = k
a0s

2 + a1s+ 1

s(d0s2 + d1s+ 1)

where d0, d1 ≥ 0 and k > 0. Then Yb(s) is positive real if only if the following

three inequalities hold:

β1 := a0d1 − a1d0 ≥ 0,

β2 := a0 − d0 ≥ 0,

β3 := a1 − d1 ≥ 0.
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Brune Realisation Procedure for Yb(s)

Foster preamble always sufficient to complete the realisation if β1, β2 > 0.

(No Brune or Bott-Duffin cycle is required).

A continued fraction expansion is obtained:

Yb(s) = k
a0s

2 + a1s+ 1

s(d0s2 + d1s+ 1)

=
k

s
+

1
s

kb
+

1

c3 +
1

1

c4
+

1

b2s

where kb =
kβ2

d0
, c3 = kβ3, c4 =

kβ4

β1
, b2 =

kβ4

β2
and

β4 := β2
2 − β1β3.

PSfrag replacements
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Darlington Synthesis

Realisation in Darlington form:

a lossless two-port terminated

in a single resistor.

PSfrag replacements

I1 I2

V1 V2

R Ω
Z1(s) Lossless

network

For a lossless two-port with impedance:

Z =


 Z11 Z12

Z12 Z22




we find

Z1(s) = Z11
R−1(Z11Z22 − Z2

12)/Z11 + 1

R−1Z22 + 1
.
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Writing

Z1 =
m1 + n1

m2 + n2
=

n1

m2

m1/n1 + 1

n2/m2 + 1
,

where m1, m2 are polynomials of even powers of s and n1, n2 are polynomials

of odd powers of s, suggests the identification:

Z11 =
n1

m2
, Z22 = R

n2

m2
, Z12 =

√
R

√
n1n2 −m1m2

m2
.

Augmentation factors are necessary to ensure a rational square root.

Once Z(s) has been found, we then write:

Z(s) = sC1 +
s

s2 + α2
C2 + · · ·

where C1 and C2 are non-negative definite constant matrices.
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Darlington Synthesis (cont.)

Each term in the sum is realised in the form of a T-circuit and a series

connection of all the elementary two-ports is then made:
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Electrical and mechanical realisations of the admittance Yb(s)
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Minimum reactance synthesis

PSfrag replacements
Z(s)

Nondynamic

Network

X

sL1

1
sC1

Let L1 = · · · = C1 = · · · = 1. If

M =


 M11 M12

M21 M22




is the hybrid matrix of X, i.e.

 v1

i2


 = M


 i1

v2


 ,

then

Z(s) = M11−M12(sI+M22)−1M21.

D.C. Youla and P. Tissi, “N-Port Synthesis via Reactance Extraction, Part I”, IEEE
International Convention Record, 183–205, 1966.
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Minimum reactance synthesis

Conversely, if we can find a state-space realisation Z(s) = C(sI −A)−1B +D

such that the constant matrix

M =


 D −C
B −A




has the properties

M +M ′ ≥ 0,

diag{I,Σ}M = Mdiag{I,Σ}

where Σ is a diagonal matrix with diagonal entries +1 or −1. Then M is the

hybrid matrix of the nondynamic network terminated with inductors or

capacitors, which realises Z(s).

A construction is possible using the positive-real lemma and matrix

factorisations.

B.D.O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis, Prentice-Hall, 1973.
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Synthesis of resistive n-ports

Let R be a symmetric n× n matrix.

A necessary and sufficient condition for R to be realisable as the driving-point

impedance of a network comprising resistors and transformers only is that it

is non-negative definite.

No necessary and sufficient condition is known in the case that transformers

are not available.

A general necessary condition is known: that the matrix is paramount.1

A matrix is defined to be the paramount if each principal minor of the matrix

is not less than the absolute value of any minor built from the same rows.

It is also known that paramountcy is sufficient for the case of n ≤ 3.2

1I. Cederbaum, “Conditions for the Impedance and Admittance Matrices of n-ports without

Ideal Transformers”, IEE Monograph No. 276R, 245–251, 1958.
2P. Slepian and L. Weinberg, ”Synthesis applications of paramount and dominant matrices”,

Proc. National Electron. Conf., vol. 14, Chicago, Illinois, Oct. 611-630, 1958.
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Simple Suspension Struts
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Performance Measures

Assume:

Road Profile Spectrum = κ|n|−2 (m3/cycle)

where κ = 5× 10−7 m3cycle−1 = road roughness parameter. Define:

J1 = E
[
z̈2
s(t)

]
ride comfort

= r.m.s. body vertical acceleration
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Optimisation of J1 (ride comfort)
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(a) Optimal J1 (b) Percentage improvement in J1

Key: layout S1 (bold), layout S2 (dashed), layout S3 (dot-dashed), and

layout S4 (solid).

M.C. Smith and F-C. Wang, 2004, Performance Benefits in Passive Vehicle Sus-

pensions Employing Inerters, Vehicle System Dynamics, 42, 235–257.
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Control synthesis formulation
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Ride comfort: w = zr, z = żs

Performance measure: J1 = const.× ‖Tẑr→sẑs‖2
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Bilinear Matrix Inequality (BMI) formulation

Let K(s) = Ck(sI − Ak)−1Bk +Dk and Tẑr→sẑs = Ccl(sI −Acl)−1Bcl.

Theorem. There exists a positive real controller K(s) such that

‖Tẑr→sẑs‖2 < ν and Acl is stable, if and only if the following problem is

feasible for some Xcl > 0, Xk > 0, Q, ν2 and Ak, Bk, Ck, Dk of compatible

dimensions:

A

T
clXcl +XclAcl XclBcl

BTclXcl −I


< 0,


Xcl CTcl

Ccl Q


> 0, tr(Q) < ν2,


A

T
kXk +XkAk XkBk − CTk
BTk Xk − Ck −DT

k −Dk


 < 0.

C. Papageorgiou and M.C. Smith, 2006, Positive real synthesis using matrix inequalities for mechanical

networks: application to vehicle suspension, IEEE Trans. on Contr. Syst. Tech., 14, 423–435.
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A special problem

What class of positive-real functions Z(s) can be realised using one damper,

one inerter, any number of springs and no transformers?

PSfrag replacements

Z(s) X

c

b

Leads to the question: when can X be realised as a network of springs?
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Theorem. Let

Y (s) =
(R2R3 −R2

6) s3 +R3 s
2 +R2 s+ 1

s(detRs3 + (R1R3 −R2
5) s2 + (R1R2 −R2

4) s+R1)
, (1)

where R :=




R1 R4 R5

R4 R2 R6

R5 R6 R3


 is non-negative definite.

A positive-real function Y (s) can be realised as the driving-point admittance

of a network comprising one damper, one inerter, any number of springs and

no transformers if and only if Y (s) can be written in the form of (1) and there

exists an invertible diagonal matrix D = diag{1, x, y} such that DRD is

paramount.

An explicit set of inequalities can be found which are necessary and sufficient

for the existence of x and y.

M.Z.Q. Chen and M.C. Smith, Mechanical networks comprising one damper and one inerter, in preparation.
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Collaboration with Imperial College

Application to motorcycle stability.

At high speed motorcycles can experience significant steering instabilities.

Observe: Paul Orritt at the 1999 Manx Grand Prix
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Weave and Wobble oscillations

Steering dampers improve wobble (6–9 Hz) and worsen weave (2–4 Hz).

Simulations show that steering inerters have, roughly, the opposite effect to

the damper. Root-loci (with speed the varied parameter):

Steering damper root-locus Steering inerter root-locus
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Can the advantages be combined?

S. Evangelou, D.J.N. Limebeer, R.S. Sharp and M.C. Smith, 2006, Steering compensation for high-

performance motorcycles, Transactions of ASME, J. of Applied Mechanics, 73, to appear.
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Solution — a steering compensator

... consisting of a network of dampers, inerters and springs.

Needs to behave like an inerter at weave frequencies and like a damper at

wobble frequencies.

PSfrag replacements
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Prototype designed by N.E. Houghton and manufactured in the Cambridge University

Engineering Department.
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Conclusion

• A new mechanical element called the “inerter” was introduced which is

the true network dual of the spring.

• The inerter allows classical electrical network synthesis to be mapped

exactly onto mechanical networks.

• Applications of the inerter: vehicle suspension, motorcycle steering and

vibration absorption.

• Economy of realisation is an important problem for mechanical network

synthesis.

• The problem of minimal realisation of positive-real functions remains

unsolved.
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