Fully funded studentship opportunities in Information Engineering

The following studentships will be available to start in October 2017. Full funding for fees and maintenance is available via EPSRC funds for UK and some EU students (see eligibility criteria here https://www.epsrc.ac.uk/skills/students/help/eligibility/).

Industrial top-up funding is available for some of the projects.

Supervisor	Project
Dr Guillaume Hennequin,	Reverse engineering robustness in neural circuits
Computational and Biological	
Learning Group	
gjeh2@cam.ac.uk	
Dr Miguel Hernandez Lobato,	Deep learning and Bayesian optimization
Machine Learning Group	The vast size of chemical space makes very challenging to search
jmh22@cam.ac.uk	for new relevant molecules (OLEDS, photovoltaics,
	pharmaceuticals, etc.). We aim to produce new intelligent
	systems that will accelerate this type of discovery processes by
	using deep learning and Bayesian optimization methods. Our
	contributions will be in the areas of generative modelling of
	data, Bayesian neural networks and approximate inference.
	http://www.jobs.cam.ac.uk/job/11988/
	Closing date: 4 January 2017
Dr Fumiya Iida, Biologically	Data-driven adaptation of physics simulation for control of
Inspired Robotics Laboratory	soft-body robots
fi224@cam.ac.uk	There has been an increasing interest in the use of soft
Please contact Dr lida for	deformable materials in robotic systems, though modelling,
more information	simulation and precise control of them are not trivial. This
	project explores the state-of-the-art simulation and machine
	learning techniques to handle mechanical dynamics of soft
	robots for better motion control.
	Top-up maintenance funding will be available from the industrial
	sponsor, The Mathworks
	Closing date: 31 January 2017
Dr Mate Lengyel,	Episodic memory for control
Computational and Biological	The aim of the project is to explore and quantify, by both
Learning Group	analytical and numerical techniques, the advantage of episodic
ml468@cam.ac.uk	memories in AI, and then use this analysis to understand the
	organisation of human memory into different systems, including
	episodic, semantic, and procedural memories.
	http://www.jobs.cam.ac.uk/job/12005/
	Closing date: 7 December 2016

	
Dr Timothy O'Leary, Control	Reverse-engineering invertebrate neural circuits
Group	In collaboration with a leading experimental invertebrate
tso24@cam.ac.uk	neurobiologists (Zlatic Group, HHMI Janelia & Department of
	Zoology at Cambridge) this project will develop real-time
	tracking and analysis methods for studying Drosophila larva
	nervous system function using an automated fluorescent
	microscope. We will use cutting-edge optogenetic tools to
	stimulate neural circuits and monitor neural activity and
	behaviour, then analyse and interpret experimental data using
	computational models of neural circuits.
	http://www.jobs.cam.ac.uk/job/12211/
	Closing date: 31 January 2017
Prof Carl Rasmussen, Machine	Probabilistic methods in time-series analysis and control
Learning Group	Probabilistic methods in time series analysis and control To
Contact Prof Rasmussen,	improve approximate Bayesian inference in non-linear dynamical
cer54@cam.ac.uk	systems, allowing for learning and control in the face of data
	scarcity, noise and uncertainty. Simultaneous solution to
	dynamics learning and control through experimental design.
	http://www.jobs.cam.ac.uk/job/11982/
	Closing date: 4 January 2017
Dr Sumeetpal Singh, Signal	Bayesian Data Assimilation in Very High-Dimensions
Processing and	Assimilating data into very high-dimensional probabilistic
Communications Laboratory	dynamical models and then simulating the assimilated model
	forward to make forecasts is a major computational challenge.
	This project aims to address this problem by drawing on recent
	advances in Monte Carlo based Bayesian inference, e.g. Particle
	Markov Chain Monte Carlo
	http://www.jobs.cam.ac.uk/job/11993/
	Closing date: 28 February 2017
Professor Malcolm C. Smith,	Vehicle dynamics, estimation and control for high-performance
Control Group	automobiles
Industrial supervisor: Dr Will	The aim of the research is to examine the performance limits
Hoult (McLaren Automotive)	and trade-offs in autonomous vehicle estimation and control
mcs@eng.cam.ac.uk	from a fundamental and applied perspective including the
	development of new algorithms to address key challenges. One
	particular focus of the work is on the estimation of key
	quantities that are important in vehicle control, e.g. the tyre
	forces that are being generated or are available, and that need
	to be estimated in highly dynamic situations. Track testing of
	promising approaches and algorithms on a high performance
	sports car is expected.
	Top-up maintenance funding will be available from the industrial
	sponsor, McLaren Automotive
	Closing date: 31 January 2017
	- · ·

Professor Malcolm C. Smith,	Dynamics and Control of Large Mechanical Structures
Control Group	The inerter is a new passive mechanical device whose use has
Industrial supervisor: Dr	been pioneered for suspension systems in the Formula One
Joachim Sihler (Schlumberger	industry. There is interest to apply such methods to large
Cambridge Research Ltd)	systems, e.g. earthquake damage mitigation in tall buildings,
mcs@eng.cam.ac.uk	space tethers, railway suspensions. The motivation for this
	project is the control of vibrations in very long high aspect ratio
	drillstrings, which cause costly damage to mechanical and
	electronic components of the drillstring. The research seeks both
	a general framework to apply advanced mechanical control
	methods to such problems and specific solutions for the
	motivating example. Opportunities exist for close collaboration
	with the industrial partner, access to advanced facilities, and
	experimental testing of promising methods resulting from the
	research. The project falls under the control engineering EPSRC
	research area, and has many common elements with other
	areas: complex dynamics, modelling of nonlinear effects,
	implementation constraints for control solutions.
	Top-up maintenance funding will be available from the industrial
	sponsor, Schlumberger Cambridge Research Closing date: 31 March 2017
Dr Richard E. Turner, Machine	New methods for one-shot learning using Bayesian deep
Learning Group	learning
Please contact Dr Turner,	The position will involve research with Dr. Richard E. Turner
ret26@cam.ac.uk, for more	developing new methods for one-shot learning using Bayesian
information	deep learning. One-shot learning involves making dramatic
	inductive leaps from just a single datapoint. The project will
	involve developing state-of-the-art technology based upon
	Bayesian neural networks, Gaussian Processes and new
	approximate inference techniques.
	http://www.jobs.cam.ac.uk/job/11978/
	Closing date: 4 January 2017
Dr Ramji Venkataramanan,	Message-Passing Algorithms and Data Compression
Signal Processing and Communications Laboratory	This project will explore the use of message-passing algorithms for finding good sparse approximations of high-dimensional
communications Laboratory	signals. In the simplest setting, the goal is to represent a vector
	by efficiently finding the best sparse linear combination of
	vectors from a given dictionary. The project will also investigate
	the application of these algorithms for lossy data compression.
	More details can be found at:
	http://www2.eng.cam.ac.uk/~rv285/phdopening2017.html
	http://www.jobs.cam.ac.uk/job/11975/
	Closing date: 31 January 2017
Prof Daniel Wolpert,	Deciding and revising: a unifying framework for decision
Computational and Biological	making and motor control
Learning Group	
wolpert@eng.cam.ac.uk	