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ABSTRACT 
 
In this paper, we investigate the use of adaptive extended 
Luenberger state estimators for general nonlinear and 
possibly time-varying systems.  We identify the connection 
between the extended Luenberger observer and 
Grossberg’s additive model for dynamic neural networks.  
The association between dynamic neural networks and the 
Luenberger observer leads to an obvious modification on 
the proposed observer scheme that would allow handling 
state estimation for those systems whose dynamic 
equations are partially known or not known at all.  The 
performance of the adaptive observer is demonstrated on a 
number of systems including an LTI system, the Van der 
Pol oscillator, the Lorenz attractor and a realistic partial 
gasoline engine model. 
 
 

1. INTRODUCTION 
 

The potential of powerful mapping and representational 
capabilities of artificial neural network architectures has 
long been recognized in the neural network community [1].  
The introduction of backpropagation algorithm by 
Rumelhart et.al. enabled real-time applications of neural 
networks as adaptive systems [2].  Neural networks (NN) 
are being recognized in other fields of research including 
signal processing, communications, and control as valuable 
tools that offer simple solutions to difficult problems [3-5].  
Especially in the area of adaptive controls, neural networks 
have experienced an increased interest in the last decade, 
due to their inherent adaptability and universal 
approximation properties.  This interest was mainly ignited 
by the early works of Werbos, Shoureshi et.al., Narendra 
and Parthasarathy, Gupta and Rao, and Miller et.al. [6-10].  
Although these first attempts were mostly heuristic in 
nature, there has been a stream of publications inspired by 
the idea, involving deeper analyses [11-14].  These later 
works have mostly focused on the application of recurrent 
neural networks for system identification and observer 
design, as well as adaptive and robust controllers for 
general nonlinear systems.  
 

In [15], Puskorius and Feldkamp investigate the application 
of recurrent multiplayer perceptrons (MLP) to the control 
of nonlinear dynamical systems and propose an alternative 
training algorithm to update the dynamic weights of the 
network based on parameter-based extended Kalman filter 
(EKF) estimates.  Their simulation results with a number of 
nonlinear systems favor the use of EKF-based training 
algorithm over the conventional backpropagation.  Zhu 
et.al. focus on the application of dynamic recurrent neural 
networks (DRNN) as observers for nonlinear systems [11].  
They consider a class of single-input-single-output (SISO) 
nonlinear time-varying systems in their work, where they 
prove the boundedness of the observer error and the DRNN 
weights during adaptation using Lyapunov stability theory 
and the well-known universal approximation theorem for 
neural networks [1,11].  With an alternative approach, 
Wang and Wu exploit the multiplayer recurrent neural 
networks as matrix equation solvers and utilize this scheme 
to synthesize linear state observers in real-time by solving 
the Sylvester’s equation for pole placement [16]. 
 
There are also examples of static feedforward neural 
network applications to observer and controller design.  
Ahmed and Riyaz consider an off-line training scheme for 
a MLP based observer design for nonlinear systems. They 
note that although the NN observer requires more 
computation in the training phase, it is more computation-
efficient compared to the EKF in the implementation phase 
[17].  An interesting approach is presented in [13] by 
Vargas and Hemerly, where they employ linearly 
parametrized neural networks (LPNN) for the design of an 
adaptive observer for general nonlinear systems.  LPNN 
include a wide class of networks including radial-basis -
function (RBF) networks, adaptive fuzzy systems (with 
specific choices of rules and membership functions it can 
be shown that fuzzy systems are equivalent to RBF 
networks), and wavelet networks.  They use Lyapunov 
stability theory to prove the stability of the observer and 
the neural network weights and demonstrate the 
performance of the designed observer on a single-link 
robot manipulator model.  Fretheim et.al. on the other 
hand, utilize the feedforward MLP in the observer design 
problem with a little twist.  They formulate the problem as 
a multi-step prediction, and exploit the extrapolation 
capabilities of the MLP to obtain the state estimates [18].  



Ge et.al., in their contribution to neurocontrol, use RBF 
networks in an adaptive output feedback NN controller 
scheme, for which they provide proofs and simulation 
studies for bounded tracking errors given sufficiently large 
networks [12].  Another theoretical line of study, directly 
related to the subject is the neural network approach to 
obtain approximate realizations of an unknown dynamic 
system solely from its input-output history.  A recent result 
on this has been provided in [19].  In their work, 
Hovakimyan et.al. utilize a feedforward MLP in the 
prediction-framework to obtain a model of the unknown 
nonlinear dynamical system. 
 
Besides all the theoretical approaches to the subject matter, 
there are also a number of application-oriented studies on 
the use of neural networks in controls.  Most commonly 
investigated applications are observer and controller 
designs for robot manipulators [14,20], induction motors 
[21-23], synchronous motors [24,25] and finally air-fuel 
ratio (AFR) in gasoline engines [26,27,28].  In fact, the 
AFR problem has become more important recently as the 
need for more eco-friendly and fuel-efficient vehicles 
escalated. 
 
On the other side, some researchers followed a more 
conservative approach to nonlinear observer design.  
Mostly inspired by the idea of extended Kalman filtering, 
the Luenberger observer was extended to nonlinear 
systems and its convergence properties were studied 
[29,30].  These extensions, under the influence of the 
classical observer design theory, were focused on 
analytical design techniques of the nonlinear observer.  The 
main approach followed in this line of practice is to choose 
the observer gains such that the overall linearized error 
dynamics matrix consisting of the gain vector and the 
Jacobians of the state dynamics, and the output mapping 
has stable eigenvalues over a closed subset χ0 of the state 
space. For convergence, the state trajectory is constrained 
to remain in this subset at all times [29,30].  This procedure 
of analytic ELO design has been applied successfully to 
realistic nonlinear systems [29-33].  It has also been 
utilized in designing nonlinear state feedback stabilizers for 
nonlinear systems [34,35].  In contrast to this analytical 
design approach, in this paper, we investigate the 
performance of the adaptive system approach to nonlinear 
observer design. 
 
The organization of this paper is as follows.  In Section 2 
we briefly describe Grossberg’s additive model in the class 
of recurrent neural networks.  Section 3 presents the 
extensions to Luenberger observer scheme for applicability 
to nonlinear systems and provides the link between the 
proposed adaptive observer scheme and the additive model.  
Section 4 describes the backpropagation algorithm for the 
off-line training of the adaptive observer and Section 5 
explains the necessary simplifications required to obtain an 

on-line training rule and offers the on-line training 
algorithm.  Section 6 investigates the performance of the 
on-line trained adaptive observer on a variety of dynamical 
systems, including linear, nonlinear and chaotic systems.  
Also in Section 6 the application of the proposed adaptive 
observer scheme to a realistic partial engine model is 
considered.  This is an important example for accurate 
estimation of the engine states is imperative to efficient 
operation of the engine in terms of air-fuel ratio.  Finally, 
we present our conclusions and proposed future lines of 
research related to the topic. 
 
 
2. ADDITIVE MODEL FOR RECURRENT 

NEURAL NETWORKS 
 

The most widely used dynamic neural network is the so-
called additive model by Grossberg [36].  The state 
dynamics of the additive model is described by 
 

( ) )()()()( tIIWtxSWtxtx ⋅+⋅+⋅−= στ&        (1) 
 

Usually, the weights matrix multiplying the input vector 
)(tI  is chosen to be identity and the passive decay matrix 

τ  is a diagonal positive definite matrix and the 
interactions between states is provided through 

SW  and the 

nonlinearity of the neurons, (.)σ , but these are not 
necessities.  The biological motivation for the additive 
model provided by Sejnowski [37] served to the increased 
popularity of this structure in numerous applications.  The 
static MLP is just a special case of the additive model 
obtained by setting the time-derivative of the states to zero, 
thus imposing the staticity constraint on the states and 
restricting the weight matrix SW  to be strictly lower 

diagonal. In this case, the feedforward MLP is expressed as 
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where some of the states may be designated as the outputs 
of the MLP.  A special case of interest is when the 
nonlinearity of the neurons in (1) is chosen to be a linear 
function.  For the choice aa =)(σ , (1) reduces to a linear 
dynamic neural network whose dynamics are of the form 
 

( ) )()()( tIIWtxSWtx ⋅+⋅−= τ&            (3) 
 

In the following section we will point out how this relates 
to the classical Luenberger observer and thus provide an 
understanding of how the additive model in (1) connects to 
the extension that is proposed. 
 
 



3. NONLINEAR EXTENSION OF THE 
LUENBERGER OBSERVER 

 
A well-known result from linear system theory is that, for a 
linear time-invariant (LTI) system with the dynamics 
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with an observable (A,C) pair, a stable linear Luenberger 
observer, which is given by 
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can be designed by placing the poles of the observer at any 
desired location such that the error signals exhibit the 
desired dynamics [38].  The extension of the Luenberger 
observer to nonlinear systems is straightforward.  Given a 
nonlinear dynamical system, possible time-varying, whose 
equations are 
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the following observer scheme is utilized. 
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Although there is a solid theory behind the linear 
Luenberger observer in (5) and there are rigorous analytical 
methods of selecting the observer gain vector L , such 
results are not available for the extended version in (7), yet.  
However, as we will demonstrate in the following sections, 
there is a way to overcome this difficulty by letting L  
adapt on-line while the system is running. 
 
Regarding the link between the Luenberger observer 
structure and the additive model, we first point out the 
similarities between equations (3) and (5).  In fact, if we re-
express (5) in an alternative form, the connection becomes 
more visible.  For this, we will substitute the explicit 
expression for )(~ ty  in the estimated state dynamics and 

then group the signals )(tu  and )(ty  into a vector. 
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Cross comparing (3) and (8), we conclude  
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Thus, with proper adaptation, it is possible for the linear 
dynamical neural network to approximate a stable 
Luenberger observer for a linear system.  In fact, we can 
generalize this sentence to the connection between the 
additive model in (1) and the extended Luenberger 
observer (ELO) in (7), since with sufficient number of 
neurons and proper choice of weight matrices the additive 
model can approximate any function with an arbitrarily 
small error.  In fact, [19] demonstrates how approximately 
a neural network can learn the unknown system dynamics.  
In cases where a complete model of the dynamical system 
is not available, such approaches can be taken to obtain 
approximators of system models and substituted in the 
observer structure in proper places.  From this point on, 
however, we will assume that either the full system 
dynamic equations are known or a neural network has been 
trained to sufficient accuracy as described for this purpose.  
This is because; the main focus of this study is to 
determine the capabilities of the adaptive observer 
structure, not to investigate the function approximation 
capabilities of the mentioned additive model. 
 
 
4. BACKPROPAGATION ALGORITHM 

FOR EXTENDED LUENBERGER 
OBSERVER 

 
In this section, we will consider the discrete-time 
equivalent of the ELO for reasons of analytical simplicity 
in computing and evaluating the gradient for off-line 
adaptation.  In this context, the backpropogation refers to 
the backpropagation-in-time of the partial derivatives with 
respect to the observer gains.  The system and the observer 
we are considering are given by the following equations. 
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Suppose we want to train for L  such that the mean-square-

error (MSE) along a given training trajectory { } 1
0, −

=
N
iii yu  

is minimized.  We would like to remark at this point that 
MSE is not the sole possibility as the performance 
criterion.  In that case, the cost function and the gradient to 
optimize L  for the given training trajectory using steepest 



descent algorithm are given below in (12).  In fact, it has 
been previously shown that in many applications, 
information theoretic performance criteria outperform 
MSE and other second-order-statistics based criteria; 
mainly because second order statistics are not optimal 
anymore when the probability distributions involved are 
not Gaussian, and in order to achieve information-learning 
it requires more than just the second order statistics [39]. 
 
The gradient expression resembles the backpropagation of 
error in time that arises in the training of dynamical neural 
networks due to the dynamic observer structure.  If the 
system in (10) is observable and LTI, only a single training 
trajectory is sufficient to obtain a globally asymptotically 
stable observer (the proof is omitted here).  However, if 
this off-line mode training is assumed, then for nonlinear 
and time-varying systems, either the observer must be re-
trained at different points of the state-space or different 
observer gains trained for different locations in state-space 
or in time must be used switching from one observer to the 
other as the system moves in the state space. 
 

[ ]
[ ]

L
JLL

yy
L

x
iuxhLiuxf

L
x

L
x

iuxhyy
L
J

yyyyJ

oldnew

nxnii

i
iixiix

i

N

i

i
iix

T
ii

N

i
ii

T
ii

∂
∂−=

⋅−+
∂

∂
−⋅−−=

∂
∂

∂
∂

−−=
∂
∂

−−=

−−

−
−−−−

−

=

−

=

∑

∑

η

1)~(

~
)1,,~()1,,~(

~

~
),,~()~(2

)~()~(

11

1
1111

1

0

1

0

    (12) 

 

where (.)xf  and (.)xh  represent the Jacobians of the 
corresponding functions with respect to the state vector, 
and nxn]1[  represents an all-ones square matrix of the size 
of the state vector.  
 
In extensive simulations, this algorithm, which uses batch-
training approach, was found ineffective in learning the 
dynamics and estimating the states of nonlinear systems, 
although it was very successful for LTI systems.  In any 
case, an off-line training requirement may impose too 
much restriction to the applicability of an adaptive system 
to many tasks requiring real-time operation and adaptation, 
therefore we would like to adopt an on-line training 
approach, thus avoid i) the requirement of off-line training, 
ii) the necessity of using multiple experts and switching.  
For these stated reasons, we modify the training approach 
from off-line to on-line, and employ Widrow’s stochastic 
gradient approach.  
 
 
 

5. WIDROW’S STOCHASTIC GRADIENT 
ADAPTATION FOR EXTENDED 
LUENBERGER OBSERVER 

 
When the instantaneous squared error is used as a 
stochastic approximation to MSE, the computed the 
gradient of this stochastic cost function with respect to the 
weights, one gets Widrow’s stochastic gradient for MSE 
[40].  Note that in computation of the stochastic gradient 
with respect to the weights of a recursive system Widrow 
suggests the designer approaches the problem with care 
and caution.  Although the cost function depends only on 
the instantaneous value of the error, due to the recursion 
the error still exhibits a backpropagation property and it is 
easy to oversee this.  In the case of the ELO, at time step 
k , one may use the actual gradient expression computed 
with full consideration of the recursive structure of the 
topology or use an approximate version of the gradient, 
which is very accurate if the learning rate is chosen to be a 
small value.  The former allows the use of larger learning 
rates, whereas the latter may go unstable for those same 
values of learning rates.  The stochastic cost function and 
its approximate gradient (without consideration of the 
recursive nature of the system) are simply computed using 
(13) and the current value of the observer gains.  For the 
full gradient expression that takes into account the 
recursive nature see Appendix A.  Note that if the learning 
rate is chosen small, their behaviors are the same. 
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where η  is the learning rate.   
 
It is a well-known fact that Widrow’s stochastic gradient 
algorithm makes the weights converge to the optimal MSE 
solution in the mean.  Furthermore, the LMS algorithm is a 
well understood and proven algorithm that is useful in real-
time adaptation problems [41] (yet, there are stochastic 
versions of the information theoretic adaptation criteria 
also, and in studies they are shown to exhibit all the 
advantageous properties of LMS and more [42]).    
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Fig. 1. LTI system states, estimates, and errors – noiseless 
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Fig. 2. LTI system states, estimates, and errors – 25dB  
 
 
6. ILLUSTRATIONS WITH BASIC 

CLASSES OF DYNAMICAL SYSTEMS 
 
In this section, we will demonstrate the high performance 
of the adaptive ELO trained real-time with the stochastic 
gradient on a variety of dynamical systems, namely an LTI 
system, the Van der Pol oscillator, and the Lorenz attractor. 
 
6.1 Linear Time-Invariant System 
 
In the first case study, we consider a SISO LTI system 
excited by white Gaussian noise (WGN).  The system 
matrices are given by 
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Two simulation results are presented, one with zero 
measurement noise and the other with WGN on the 
measurements. 
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Fig. 3. Van der Pol states, estimates, and errors – noiseless 
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Fig. 4. Van der Pol states, estimates, and errors – 25dB 
 
Notice in Fig. 1, where there is no measurement error, the 
(absolute value of the) state estimation errors decay 
exponentially, corresponding to an observer pole located 
inside the unit circle.  In the noisy measurements case, we 
observe that the estimation errors cannot reduce to below a 
level determined by the signal-to-noise-ratio (SNR) of the 
measurements.  
 
6.2 Van der Pol Oscillator 
 
The second case study is a simple autonomous nonlinear 
system.  The Van der Pol oscillator dynamics, discretized 
using the first order difference approximation are 
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where we took the sampling time 1.0=T  and the 
parameter 5.0=µ .  The system output is assumed to be 
the first state variable. 
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Fig. 5. Lorenz  states, estimates, and errors – noiseless 
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Fig. 6. Lorenz states, estimates, and errors – 25dB 
 
Fig. 3 and Fig. 4 show simulation results for the Van der 
Pol oscillator.  Notice that the characteristic behavior of the 
error remains and on the average, error decays 
exponentially when there is no noise and converges to a 
fixed value determined by the SNR when there is noise. 
 
6.3 Lorenz Attractor 
 
The Van der Pol oscillator states converge to a limit cycle 
and one suspects if this periodicity help the observer 
exhibit good performance in any way.  In order to clear 
such doubts, we test the observer scheme on a chaotic 
system that has very high Lyapunov exponents, thus 
without any correctional terms, the slightest difference in 
initial conditions will lead to a very large divergence in the 
state trajectories.  The Lorenz attractor dynamics, when 
discretized using the first order difference approximation 
for derivative, become 
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Fig. 7. Engine states, estimates, and errors – noiseless 
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Fig. 8. Engine states, estimates, and errors – 25dB 
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where the sampling time is taken as 01.0=T  and the 

parameters are chosen to be 3/8,28,10 === brσ .  
The system output is assumed to be the first state variable.  
Fig. 5 and Fig. 6 show simulation results for the Lorenz 
attractor.  Once again, in this chaotic system case study, the 
adaptive observer performs successfully.  Note that the 
adaptive observer utilizes the linear correction term offered 
by the output error efficiently and by adapting its weights 
suitably, tracks the actual state vector accurately after an 
initial transient phase. 
 
6.3 Realistic Engine Manifold Model 
 
Mean value engine models are used to design AFR control 
systems in gasoline engines. These models are based on 



physical principles and some empirical correlations. They 
describe engine dynamics with limited bandwidth, 
equivalent to considering the mean behavior of state 
variables over an engine cycle. A mean value model can be 
constructed either in time-domain or in crank-angle 
domain. It is also possible transform a time-domain model 
to crank-angle domain model or vice-versa by using the 
following the relationship 

N
ddt
6

θ=          (17) 

where N is the engine speed in RPM and ? is crank angle in 
degrees. In the following a discrete mean value engine 
manifold model will be introduced in crank-angle domain. 
Similar models can be found in [27,43]. 
 
The intake manifold is placed between the throttle and the 
intake port. A two-state intake manifold model can be 
obtained from the conservation of energy and the mass in 
the manifold as  
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where Pm is the manifold pressure, Tm is the manifold 
temperature, Vm is the manifold volume, ? is the specific 
heat ratio for air, ht is the heat transfer coefficient, Tw is the 
manifold wall temperature, R is the specific gas constant 
for air, Tamb  is the ambient air temperature, atm& is the 

throttle air flow rate, acm& is the air flow rate to cylinder and 
Ts is the sampling time.  
 
For a complete model of the engine for AFR control, fuel 
and sensor dynamics as well as the delays in measurements 
associated with sensors should be introduced to the model.  
However, we will not consider these extensions in this 
example.  In the above two state model, the manifold 
pressure is assumed to be the measured output.  Fig. 7 
illustrates the states, estimations and errors for the noise-
free measurements, where the throttle angle, the input, 
varies as a sinusoid with additive white noise in time.  Note 
that the errors decay exponentially on the average.  Fig. 8, 
on the other hand, shows the results for the case where the 
measurements are corrupted with additive white noise.  In 
that case, the estimation errors, as expected, decay to a 
value determined by the noise power in the measurements. 
 

Although not reported here, the adaptive ELO is 
successfully applied to the complete engine model with 
eight states for the AFR control problem and it is observed 
that the observer-controller scheme manages to maintain 
the AFR at the optimal value, the stoichimoetric AFR. 
 
 
7. CONCLUSIONS 
 
The early works of Kalman and his contemporaries on the 
subject of observability and controllability of linear time-
invariant systems form the basis of linear system theory.  
Their profound theory provides a deep understanding of 
linear system dynamics and offers analytical solutions to 
many problems, including state estimation, which is also 
the topic of the present study.  However, in reality 
engineers have to face the difficulties that are associated 
with nonlinear systems, which are not tackled in the 
accomplished theory of linear systems.  In order to 
overcome these difficulties, many solutions have been 
proposed.  These solutions mainly concentrated around 
extensions through linearization of nonlinear systems at 
operating points or application of adaptive/learning 
systems, with the main focus being on neural networks due 
to their inherent approximation and adaptability properties.   
 
In this paper, we suggested the use of an adaptive extended 
Luenberger observer structure.  Luenberger observer has a 
solid theory behind it for the case of linear time-invariant 
systems.  The extension suggested allowed the use of the 
topology for nonlinear and time-varying systems without 
the necessity to solve for complicated analytical 
expressions.  We had tested the performance of the 
adaptive extended Luenberger filter on a variety of systems 
ranging from chaotic to realistic models.  It was found out 
that the proposed adaptive scheme was extremely 
successful in asymptotically estimating the states of the 
systems under examination when the system dynamic 
equations were completely known to the designer and was 
determined to be robust to noisy measurements.  One 
advantage of this scheme over other adaptive methods is 
that the correction terms involved are linear and the 
structure of the observer is very simple.  As a consequence 
the adaptation rules are extremely simple and require much 
less computation.   
 
The connection established between Grossberg’s additive 
model and the proposed adaptive observer scheme pointed 
out a direction of development.  It became evident that by 
utilizing properly trained neural networks, with methods 
whose examples are present in the literature, in substitution 
for the actual state dynamics and the output mappings, one 
can achieve stable adaptive observers also for systems 
whose dynamic equations are not completely known to the 
designer.  In that case, however, it is clear and expected 
that there will be a degradation in the performance of the 



observer as the function approximation errors will prevent 
state estimation errors from asymptotically converging to 
zero. 
 
The presented work did not deal with the observability 
conditions that will govern the success and applicability of 
asymptotic observers for a particular given system.  For 
that, there exists a vast literature on nonlinear observability 
and controllability to which the reader is referred. 
 
As a future line of study, we will look into the convergence 
and stability properties of the proposed adaptive observer 
scheme and aim for an analytical proof of the convergence 
of estimation errors to zero in the general nonlinear system 
case and set the conditions for the stability of the proposed 
observer.  One item we know which affects the stability of 
the adaptive observer is the learning rate of the adaptation 
rule.  Simulations pointed out that the observer tends to go 
unstable if very large learning rates are employed. 
  
Acknowledgments:  This work was partially supported by 
the NSF grant ECS-9900394. The second author’s research 
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APPENDIX A 
 
In the main text, an accurate approximation to the actual 
gradient expression is provided.  That expression is close to 
the actual gradient, which will be presented in this 
appendix when the step size in steepest descent is small.  
The advantage of using the approximate gradient is that it 
is computationally much more simple, whereas it requires 
the use of smaller step size values for stability of the 
weights. 
 
Suppose we assign a time index to each gain vector during 
the adaptation process in the following manner (we will 
drop the input and time variables from the expressions for 
simplicity). 
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The instantaneous cost function is given by 
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We compute the gradient of the cost function in (A.2) with 

respect to the observer gains kL  at time instant k as  
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Here we use the chain rule to express 
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Notice that when the step size is small, the second term on 
the right hand side of (A.4) will be approximately identity.  
This is the approximation that links this actual gradient 
expression to the approximate one given in (13).  Now we 
can use the steepest descent update rule to detemine this 
second derivative.  The matrix we seek is the inverse of 
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In summary, the actual gradient expression, which must 
take into account the recursive nature of the system, can be 
computed by iterating the equations presented in (A.3-5).  
They allow the use of larger learning rates, thus provide 
faster convergence rates at the cost of increased 
computational requirements. 
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