
A Learning Algorithm of CMAC Based on RLS

TING QIN, ZONGHAI CHEN, HAITAO ZHANG, SIFU LI, WEI XIANG
and MING LI
Department of Automation, University of Science and Technology of China, Hefei 230027,
China. e-mail:dragon@mail.ustc.edu.cn

Abstract. Conventionally, least mean square rule which can be named CMAC-LMS is used to

update the weights of CMAC. The convergence ability of CMAC-LMS is very sensitive to the
learning rate. Applying recursive least squares (RLS) algorithm to update the weights of
CMAC, we bring forward an algorithm named CMAC-RLS. And the convergence ability

of this algorithm is proved and analyzed. Finally, the application of CMAC-RLS to control
nonlinear plant is investigated. The simulation results show the good convergence perfor-
mance of CMAC-RLS. The results also reveal that the proposed CMAC-PID controller

can reject disturbance effectively, and control nonlinear time-varying plant adaptively.

Key words. CMAC, CMAC-PID controller, nonlinear plant, recursive least squares algorithm

Nomenclature

X the input space

Ac Conceptual Memory

Acj j the size of Conceptual Memory

Ap Physical Memory

Ap

�
�

�
� the size of Physical Memory

c the generalization factor

A� the number of the activated neurons

Q the levels of quantization

d the dimension of the input vector

jk the indicator of the kth input sample

nzposk the set to indicate the positions of those nonzero elements in jk without

hash-coding

ŷyk the estimated weight vector after the kth sample data is presented and

finished learning

l the learning rate

RMSE the root mean square errors

Pc; Ic;Dc the proportional, integral and derivative parameters

fp the filter parameter of the first order low-pass filter

upid the control input of the PID controller

ufpid the value after the control input of the PID controller is filtered

ucmac the control input of CMAC inverse controller

Neural Processing Letters 19: 49–61, 2004. 49
2004 Kluwer Academic Publishers. Printed in the Netherlands.

ufcmac the value after the control input of the CMAC inverse controller is filtered

uftotal the control input of the CMAC-PID controller

1. Introduction

CMAC, which stands for cerebellar model articulation controller, was first proposed

based on the model of human cerebellum by Albus [5, 6] three decades ago. The

higher-order CMAC with B-splines [13] or Gaussian [3] receptive field functions

can further improve the accuracy of function approximation. In 1992, Parks and

Miltizer [12] defined a Lyapunov function to prove that CMAC learning converges

to a limited cycle given that the learning rate equals to one. In the same year, Wong

and Siders [20] showed that CMAC learning is equivalent to solving a linear system

with a Gauss–Seidel iteration scheme. Lin and Chiang [4] showed us the different

convergence characteristics at different learning rate. Further research [2, 11] in

theoretical development also promotes the application. Because CMAC is capable

of fast learning and possesses good local generalization property, moreover, it is easy

to be realized in hardware [8] and software. In resent years, it has been successfully

applied in many fields, such as robotic control [15–18], machine control [9], pattern

recognition [14], and signal processing [1], etc.

Traditionally, CMAC uses LMS rule to update its weights. However, using this

learning algorithm, the convergence ability is very sensitive to the learning rate. Once

the learning rate is provided improperly, the convergence will worse off, sometimes

even to the extent of divergence. Based on RLS, we bring forward CMAC-RLS

different from CMAC-LMS which eliminates this shortcoming, and so it provides

a stable modeling algorithm for control adaptively on line.

The Letter is organized as follows. First, the mechanism of CMAC is briefly

introduced in Section 2; in Section 3, we will prove and analyze the convergence

characteristics of RLS even if the number of the sample is less than that of the

unknowns. And then RLS is applied to update the weights of CMAC. In Section 4,

implementing CMAC-RLS to control nonlinear plant on line is further studied.

Conclusion is given in Section 6. While a large number of notations are used in the

paper, we summarize them in the nomenclature for easier reference.

2. Mechanism of CMAC

A schematic sketch of CMAC is illustrated in Figure 1. It can be regarded including

three mappings:

X �!
M

Ac ð1Þ

Ac �!
H

Ap ð2Þ

Ap �!
S

Y ð3Þ

50 TING QIN ET AL.

where X, Ac and Ap, Y are input space, the space of conceptual memory and the

space of physical memory and output space, respectively.

First, the input vector is quantized and then activates A� association neurons in Ac

(i.e., in Figure 1, A� ¼ 5) by (1). Without hash-coding, the weights attached to the

activated neurons in Ac are summed to produce the output.

If two input vectors are close, there will be overlap between their corresponding

activated neurons, such as x2 and x3. On the contrary, the neurons activated by input

vectors far away do not overlap, such as x1 and x2.

In view of a practical system, if the quantization is very fine, the size of the

conceptual memory may be too large (this is especially true for multidimensional

inputs) to implement. Albus solved this problem by hash coding the conceptual

memory into a small physical memory. The activated neurons in Ac will map the

neurons in Ap by (2). Hence, we sum the weights of the mapped neurons in Ap to

get the output.

A key parameter of CMAC is the generalization factor denoted by c. In general,

all the neurons activated by one input sample are in a A� hypercubic region and

A� ¼ ð2� c þ 1Þd ð4Þ

where d is the dimension of the input vector.

Given a set of sample data ðxk; ykÞ, where xk is the input vector and yk is

the desired output vector. We represent the neurons that xk activates by a vector of

characteristic function aik ð14 i4 Acj jÞ, where

aik ¼
1 the ith neuron inAc is activated by xk

0 otherwise

n
ð5Þ

Let us set n ¼ Acj j and call the vector of characteristic function indicator and

denote it as

jk ¼ ½a1k
; a2k

; . . . ; ank
�; ð6Þ

Figure 1. Basic skeleton of CMAC.

A LEARNING ALGORITHM OF CMAC BASED ON RLS 51

Form the matrix Ak ¼ jT
1 jT

2 � � � jT
k

� �T

k�n
; Yk ¼ y1 y2 � � � yk

� �T

k�1
: ð7Þ

Where k is the number of training samples. The goal of CMAC learning is to find

a weight vector yk such that

Akyk ¼ Yk ð8Þ

where yT
k ¼ ½w1k;w2k; . . . ;wnk� and represents the contents in Ac after the kth set of

sample data has been presented and the calculating is over.

Traditionally, the weight vector of CMAC is updated using the LMS rule. That is

yðiÞk ¼ yðiÞk�1 þ lð yk � jky
ðiÞ
k�1Þ=A� ð9Þ

where yi
k is the weight vector when the kth sample is presented in the ith iteration

(before updating), l is the learning rate.
It has been proved in reference [20] that on condition that no two different inputs

have the same indicators, yk can be calculated by AT
k ðAkAT

k Þ
�1Yk, and the result is

equal to the result calculated by CMAC-LMS, but there may be two inputs whose

corresponding indicators are the same, and therefore AkAT
k is not invertible.

However, under this circumstance we still have

yk ¼ Aþ
k Yk ð10Þ

where Aþ denote the Moore–Penrose inverse of A.

Hence we can see that if (8) represents compatible equations, yk is the minimum

norm solution of (8); and if (8) represents contradictory equations, yk is the

minimum norm least squares solution.

If hash-coding is used, Acj j in the description above should be changed to Ap

�
�

�
�.

3. CMAC-RLS Algorithm

3.1. CMAC-RLS WITHOUT HASH-CODING

The recursive least squares algorithm is described in reference [10], but it is restricted

to the case that the number of samples is more than that of the unknowns at least. By

mathematical analysis we will point out that the estimated values of the unknowns

converge to the minimum norm solution if the equations composed by the sample

data are compatible equations or minimum norm least squares solution in case that

they are contradictory equations.

LEMMA 3.1.

lim
b!þ1

ð1=bIn þ ATAÞ
�1AT ¼ Aþ: ð11Þ

Where In is an n � n unit matrix and b is a positive number.

Proof. The procedure of the proof can be referred to reference [19]. &

LEMMA 3.2. Given an n � n matrix P with full rank and an m � n matrix A, if

P�1 þ ATA is invertible, then

52 TING QIN ET AL.

ðP�1 þ ATAÞ
�1

¼ P � PATðIm þ APATÞ
�1AP: ð12Þ

Proof. The procedure of the proof can be referred to reference [10].

THEOREM 3.1. In using the RLS Algorithm, the estimated values of the unknowns

converge to the minimum norm solution if the equations composed by sample data are

compatible equations or minimum norm least squares solution in case that they are

contradictory equations.

Proof. We define

P0 ¼ bIn ð13Þ

Pkþ1 ¼ ðP�1
0 þ AT

kþ1Akþ1Þ
�1

ð14Þ

ŷykþ1 ¼ Pkþ1A
T
kþ1Ykþ1: ð15Þ

Due to (11) and (10), we can conclude

8k; lim
b!þ1

ŷykþ1 ¼ lim
b!þ1

Pkþ1A
T
kþ1Ykþ1 ¼ lim

b!þ1
ðP�1

0 þ AT
kþ1Akþ1Þ

�1AT
kþ1Ykþ1

¼ Aþ
kþ1Ykþ1 ¼ ykþ1: ð16Þ

Hence, if b is set as some large constant in computer calculation, we can regard
that 8k, ŷykþ1 converges to ykþ1 and call ŷyk the estimated vector of yk.

With (7) and (14), Pkþ1 can also be expressed recursively as

Pkþ1 ¼ ðP�1
k þ jT

kþ1 � jkþ1Þ
�1

ð17Þ

According to (12), one can have

Pkþ1 ¼ Pk � PkjT
kþ1ð1þ jkþ1PkjT

kþ1Þ
�1jkþ1Pk ð18Þ

ŷykþ1 can also be expressed recursively as follows:

ŷykþ1 ¼ Pkþ1A
T
kþ1Ykþ1

¼ Pkþ1ðA
T
k Yk þ jT

kþ1ykþ1Þ

¼ fPk � PkjT
kþ1ð1þ jkþ1PkjT

kþ1Þ
�1jkþ1PkgðA

T
k Yk þ jT

kþ1ykþ1Þ

¼ PkAT
k Yk � PkjT

kþ1jkþ1ð1þ jkþ1PkjT
kþ1Þ

�1jkþ1PkAT
k Ykþ

þ PkjT
kþ1ykþ1 � PkjT

kþ1ð1þ jkþ1PkjT
kþ1Þ

�1jkþ1PkjT
kþ1ykþ1

¼ PkAT
k Yk � PkjT

kþ1ð1þ jkþ1PkjT
kþ1Þ

�1jkþ1PkAT
k Ykþ

þ PkjT
kþ1ykþ1ð1þ jkþ1PkjT

kþ1Þ
�1
ð1þ jkþ1PkjT

kþ1 � jkþ1PkjT
kþ1Þykþ1

¼ PkAT
k Yk � PkjT

kþ1ð1þ jkþ1PkjT
kþ1Þ

�1jkþ1PkAT
k Ykþ

þ PkjT
kþ1ykþ1ð1þ jkþ1PkjT

kþ1Þ
�1ykþ1

¼ ŷyk þ PkjT
kþ1ð1þ jkþ1PkjT

kþ1Þ
�1
ðykþ1�jkþ1ŷykÞ: ð19Þ

A LEARNING ALGORITHM OF CMAC BASED ON RLS 53

For convenience, we define

Lkþ1 ¼ PkjT
kþ1=ð1þ jkþ1PkjT

kþ1Þ: ð20Þ

Then taking (13), (18), (19) and (20) generates the following recursive learning

algorithm: The initial values of Pk and ŷyk are set as

P0 ¼ bIn ðb is set as some large constantÞ and ŷy0 ¼ 0; ð21Þ

8k; Lkþ1 ¼ PkjT
kþ1=ð1þ jkþ1PkjT

kþ1Þ; ð22Þ

Pkþ1 ¼ Pk � Lkþ1jkþ1Pk; ð23Þ

ŷykþ1 ¼ ŷyk þ Lkþ1ðykþ1 � jkþ1ŷykÞ; ð24Þ

Having said that, we are finally ready to propose the on-line CMAC-RLS learning

as follows:

(1) Initialize the values of Pk and ŷyk by (21);

(2) Quantize xk when a new sample ðxk; ykÞ is presented;

(3) Compute jk by (5) and (6);

(4) Update the weight vector by (22), (23), (24);

(5) Go to (2) until the end.

It can be directly calculated that the time complexity of RLS for each iteration is

Oð Acj j3Þ.

Since the RLS derived above holds for any k, it implies that after the learning

using the first sample is finished, ŷy1 will converge to the minimum solution of the

equation composed of the first set of sample data.

Continuing this procedure, when the kth sample is presented and the recursive

learning is finished, ŷyk will converge to the minimum norm solution if the equations

formed by all the preceding k sample data are compatible equations or minimum

norm least squares solution in case that they are contradictory equations. And this

establishes Theorem 3.1.

Note that yk equals to the result learned by traditional LMS rule, and for any k, ŷyk

converges to yk, we can infer that the weight vector updated by CMAC-RLS conver-

ges to what is learned by CMAC-LMS at each step. However, CMAC-RLS is more

suitable for on-line learning. For RLS, we can regard Lkþ1 in (24) as the learning rate

which is obtained from the history data and varies at each step to guarantee the

convergence of CMAC-RLS.

The neurons in Ac activated by xk constitute a hypercube. Due to that charac-

teristic, we can simplify CMAC-RLS in order to reduce the time complexity.

Let us define nzposk as the set to indicate the positions of those nonzero elements

in jk, then the simplified algorithm can be described as follows:

ŷykþ1 ¼ ŷyk þ Lkþ1½ ykþ1 � jkþ1ðnzposkÞŷykðnzposkÞ� ð25Þ

54 TING QIN ET AL.

Lkþ1 ¼
Pkð:; nzposkÞjT

kþ1ðnzposkÞ

1þ jkþ1ðnzposkÞPkðnzposk; nzposkÞjT
kþ1ðnzposkÞ

ð26Þ

Pkþ1 ¼ Pk � Lkþ1jkþ1ðnzposkÞPkðnzposk; :Þ : ð27Þ

Remarks. If B is a matrix, Bðnzposk; :Þ represent the elements of B whose rows

are the elements of nzposk; Bð:; nzposkÞ represents the elements of B whose columns

are the elements of nzposk: Bðnzposk; nzposkÞ represents the elements of B whose

rows are the elements of nzposk and columns are the elements of nzposk.

If B is a vector, BðnzposkÞ represent the elements of B whose positions are the

elements of nzposk.

And it also can be easily derived that the time complexity of the simplified

algorithm is Oð Acj j2þðA�Þ
2 Acj jÞ. Generally, A�ð Þ

2 is less than Acj j, and thus the time

complexity is nearly reduced Acj j times compared with the original CMAC-

RLS algorithm.

To illustrate the simplified algorithm derived above, we will carry out a computer

simulation of the new scheme. The function we approximate is,

Figure 2. Local generalization ability of CMAC-RLS (a) t ¼ 90;RMSE ¼ 0:489, (b) t ¼ 40;

RMSE ¼ 0:082, (c) t ¼ 20;RMSE ¼ 0:033, (d) t ¼ 1;RMSE ¼ 1:202� 10�7.

A LEARNING ALGORITHM OF CMAC BASED ON RLS 55

y ¼ sinð2px=360Þ x 2 ½0; 360� ð28Þ

The parameters of CMAC are Q ¼ 360; Acj j ¼ 396; c ¼ 18.

Define t as the sampling interval. The simulation results are illustrated below:

From the simulations above, we can see that even if the number of samples is less

than that of unknowns, CMAC still has good local generalization ability around the

sample data. And it is obvious that the more evenly the samples scatter, the better

the generalization ability is.

3.2. CMAC-RLS WITH HASH-CODING

It is mentioned in reference [21] that different hash-coding will affect the accuracy of

modeling differently. Next we will show the effect of CMAC-RLS combined with

hash-coding.

Similarly, the time complexity of CMAC-RLS with hash-coding is Oð Ap

�
�

�
�
3
Þ.

The address of conceptual memory ranges from 1 to Acj j, and the address of phy-

sical memory ranges from 1 to Ap

�
�

�
�, then the hash-coding function HðkÞ must satisfy

14HðkÞ4 Ap

�� ��; 814 k4 Acj j: ð29Þ

Hash-coding function is chosen the same as one in reference [21]:

HðkÞ ¼ 1þ fix Ap

�� �� F

w
k

� �
mod 1

� �	

; w ¼ 230; F ¼ 663608941 ð30Þ

The parameters are adopted as: Q ¼ 360; c ¼ 18; Acj j ¼ 396; Ap

�
�

�
� is 107 or 200.

Compared with the simulations in reference [21], it is concluded that hash-

coding affects the same on CMAC-RLS as on traditional CMAC-LMS. And

hash-coding will reduce CMAC’s approximation ability. Also, the smaller Ap

�
�

�
� is,

the worse the approximation ability is.

Figure 3. Effect of CMAC-RLS with hash-coding: (a) Ap

�
�

�
� ¼ 107;RMSE ¼ 0:077; (b) Ap

�
�

�
� ¼ 200;

RMSE ¼ 0:041.

56 TING QIN ET AL.

4. Implement CMAC-RLS on Nonlinear Control

In the previous sections, we have stated that CMAC-RLS is very suitable for

modeling on line. Next we will examine this ability by applying it to control non-

linear plant. The plant is chosen as:

yðk þ 1Þ ¼ 0:5yðkÞ2uðkÞ þ 0:5 sin ½yðkÞ� þ uðkÞ ð31Þ

s:t: � 14 u4 1; �14 y4 1:

First, we conduct an experiment to generate 100 training input/output pairs with

excitation signal which is random with uniform amplitude distribution in the interval

[�0.5 0.5] and at the same time train CMAC using CMAC-RLS on line.

Subsequently we will begin to model and control simultaneously on line.

Because the coarse quantization will result in quantization errors, model inaccu-

racy is supposed to exist. It is shown in the left panel of Figure 4 that if only the

CMAC inverse controller is used, it merely adjusts the output near the reference

and the static error exists. Sometimes the output may have small-amplitude oscilla-

tion near the reference and the controller also exhibits a oscillatory state.

It is known that feedback control can reduce the model inaccuracy, so a fixed

parameter proportional-integral-derivative (PID) feedback controller is incorpora-

ted with the CMAC inverse controller in parallel, which is designed as a CMAC-

PID [7] controller. And in order to reduce the small-amplitude oscillation, first order

low-pass filters are added to filter both the control input of the CMAC inverse

controller and the control input of the PID controller. The final controller design

is depicted in Figure 5.

The first order low-pass filters are described as

ufcmacðkÞ ¼ ð1� fpÞ � ucmacðkÞ þ fp � ufcmacðk � 1Þ ð32Þ

ufpidðkÞ ¼ ð1� fpÞ � upidðkÞ þ fp � ufpidðk � 1Þ ð33Þ

Figure 4. Comparison of the two controllers: (a) Performance of the CMAC inverse controller;

(b) Performance of the CMAC-PID controller.

A LEARNING ALGORITHM OF CMAC BASED ON RLS 57

The parameters are adopted as: Q ¼ 30; c ¼ 6;Pc ¼ 2; Ic ¼ 0:3;Dc ¼ 0; fp ¼ 0:7.

The performance of the CMAC-PID controller is illustrated in the right panel of

Figure 4, and we can see that it tracks the square-wave reference very well. The static

error is eliminated and the oscillation vanishes. In the steady process we can see that

the control signal of the PID controller almost reaches zero, whereas it can not be

removed, because the CMAC inverse controller merely roughly adjust the output

as displayed in the left panel of Figure 4, and the PID controller will adjust the

output precisely. The CMAC-PID controller demonstrates a significantly better

performance than the CMAC inverse controller alone.

In industrial engineering, the constant disturbance is often used to act on a plant

to examine the controller’s robustness. Consequently, at the 200th step we add a con-

stant disturbance which is 0.1 to the output of the plant. It is displayed in Figure 6

that once the disturbance is added, the PID controller responses immediately. At the

beginning the individual contribution to the total control signal from PID controller

Figure 6. Effect if the constant disturbance is added.

Figure 5. Design of CMAC-PID controller.

58 TING QIN ET AL.

is more. After a period of 50 seconds or so, the reference tracking is nearly achieved.

But subsequently, CMAC is still trained on line to adapt to the new model. It can be

seen that ufcmac still decreases and ufpid increases gradually, whereas their sum does

not change so that the output remain unchanged. Generally speaking, this controller

has good capability of rejecting external disturbances.

In order to examine the conroller’s adaptive ability, we apply the neruo-PID

controller to control nonlinear time-varying plant. At the 200th step the plant

model changes from (31) to

yðk þ 1Þ ¼ 0:5yðkÞ2uðkÞ þ 0:3 sin½yðkÞ� þ uðkÞ ð34Þ

Figure 7 shows the similar occurrence as illustrated in Figure 6. At the 200th step,

ufpid changes first. And after that moment, the weights of CMAC are updated

continuously on line to adapt to the new plant model gradually. So we can see that

ufcmac increases and ufpid decreases. But after the reference is tracked, their sum,

uftotal does not change and the output still track the reference very well. This further

demonstrates the good adaptive ability of the CMAC-PID controller.

It is shown both in Figures 6 and 7, when the plant model varies due to something

unpredicted, the CMAC-PID controller can respond quickly to track the desired

output. Just considering the internal interaction of the CMAC-PID controller, we

can find that the PID controller provide time for CMAC to be trained on line.

And accompanying with the training of CMAC, CMAC continuously approximates

the new plant model; the effect of CMAC inverse controller is enhancing and the

effect of the PID controller is reduced gradually. This also shows the advantage of

the integration of the PID controller and the CMAC inverse controller.

In addition, this controller has another advantage that CMAC only requires

coarse quantization so that the time complexity will be reduced.

Figure 7. Effect if the plant varies with time.

A LEARNING ALGORITHM OF CMAC BASED ON RLS 59

We carry out all the simulations in Matlab on a PC whose CPU is Pentium 4 and

RAM is 256M, and find out that the period for each iteration of RLS is about 1.5

seconds.

5. Conclusion

CMAC is a neural network that has good ability in local generalization, and RLS is

an algorithm which can guarantee global optimum. Implementing RLS to update the

weights of CMAC, we present a convergent and adaptive algorithm, CMAC-RLS.

And the results obtained also give us a better understanding of CMAC. Then we

use CMAC inverse controller as a rough adjustment controller, PID as a refined

adjustment controller to control nonlinear system. The simulations results testify

that the proposed CMAC-PID controller is a robust and adaptive controller.

Acknowledgement

This work is supported by the national ‘985’high-level university fund, the youth

fund of USTC and Hefei key science and technology plan.

References

1. Kolcz, A. and Allinson, N. M.: Application of the CMAC input encoding scheme in
the N-tuple approximation network, IEE Proc. Comput. Digital Techniques, 141 (1994),
177–183.

2. He, C. Xu, L. and Zhang, Y.: Learning convergence of CMAC algorithm, Neural
Processing Letters 14 (2001), 61–74.

3. Chiang, C.-T. and Lin, C.-S.: CMAC with general basis functions, Neural Networks, 9
(1996), 1199–1211.

4. Lin, C.-S. and Chiang, C.-T.: Learning convergence of CMAC technique, IEEE Trans.
on Neural Networks, 8 (1997), 1281–1292.

5. Albus, J. S.: A new approach to manipulator control: The cerebellar model articulation

controller (CMAC), Trans. ASME, J. Dyanmic Syst., Meas. Contr., 97 (1975), 220–227.
6. Albus, J. S.: Data storage in the cerebellar model articulation controller(CMAC), Trans.

ASME J. Dynamics Syst. Means. Contr., 97 (1975), 228–233.

7. Chang, G.-C., Lub, J.-J., Liao, G.-D., Lai, J.-S., Cheng, C.-K., Kuo, B.-L. and Kuo, T.-S.:
A neuro-control system for the knee joint position control with quadriceps stimulation,
IEEE Trans. Rehab. Eng., 5 (1997), 2–11.

8. Ker, J.-S., Kuo, Y.-H. and Liu, B.-D.: Hardware realization of higher-order CMAC
model for color calibration, Proc. of IEEE International Conference on Neural Networks,
Perth, WA, Austrialia (11/27/1995–12/01/1995), (1656–1661).

9. Koo, K.-M. and Kim, J.-H.: CMAC based control of nonlinear mechanical system, Proc.

of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control,
and Instrumentation, Taipei, Taiwan, Aug 5–10, (1996), 1954–1959.

10. Ljung, L. and Soderstrom, T.: Theory and Practice of Recursive Identification, The MIT

Press, 1983, pp 16–21.
11. Liu, H., Xu, X. and Zhang, Z.: An improved CMAC neural network algorithm, Acta

Automatica Sinica, 23 (1997), 482–488.

60 TING QIN ET AL.

12. Parks, P. C. and Militzer, J.: Convergence properties of associative memory storage for

learning control system, Automation and Remote Control, 50 (1989), 254–286.
13. Lane, S. H. Handelman, D. A. and Gelfand, J. J.: Theory and development of higher-

order CMAC neural networks, IEEE Control Systems Magazine, 12 (1992), 23–30.

14. Manglevhedakar, S.: An adaptive hierarchical model for computer vision, Thesis,
Louisiana State UNiv. 1986.

15. Miller, W. T., Latham, P. J. and Scalera, S. M.: Bipedal Gait Adaptation for Walking

with Dynamic Balance, Proc of the 1991 American Controls Conference, Boston, MA, 2
(1991), 1603–1608.

16. Miller, W. T., Glanz, F. H. and Kraft, L. G.: Application of a general learning algorithm
to the control of robotic manipulators, Int. J. of Robotics Research, 6 (1987), 84–98.

17. Miller, W. T.: Real-time application of neural networks for sensor-based control of robots
with vision, IEEE Transactions on Systems, Man and Cybernetics, 19 (1989), 825–831.

18. Miller, W. T., Hewes, R. P., Glanz, F. H. and Kraft, L. G.: Real-time dynamic control of

an industrial manipulator using a neural-network-based learning controller, IEEE Trans.
on robotics and automation, 6 (1990), 1–9.

19. Wu, X.: Matrix Theory, Tongji Universitiy Press, 1994.

20. Wong, Y.-F. and Siders, A.: Learning convergence in the cerebellar model articulation
controller, IEEE Trans. on Neural Networks, 3, (1992), 115–121.

21. Wang, Z.-Q. Schiano, J. L. and Ginsberg, M.: Hash-Coding in CMAC Neural Networks,
Proc. of IEEE International Conference on Neural Networks, Washington, DC, USA, June

3–6 (1996), 1698–1703.

A LEARNING ALGORITHM OF CMAC BASED ON RLS 61

