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A non-linear state feedback algorithm based on an OFS (orthonormal functional series) model

combined with Volterra Functional Series is proposed to solve block-oriented non-linear

systems. This algorithm has excellent approximation ability for the variance of system time-

delay, and can guarantee the closed-loop robust stability and the zero steady-state error

property. In addition, it has lower online optimization computational load when dealing with

the hard input constraints in contrast to traditional NMPC (non-linear model predictive

control) based on the OFS model. The analyses of the stability and robustness of this algorithm

are put forward systemically, and the steady-state performance analysis is also given. Case

studies involving simulations on a Wiener-type non-linear system and temperature experi-

ments on a simulation chemical reactor are used to validate the efficiency and superiority of

this proposed algorithm.
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1. Introduction

During many real industrial processes such as distillation, pH neutralization control,
hydro-control and chemical reactions, there widely exists a type of so-called block-
oriented non-linear systems such as Wiener-type and Hammerstein-type non-linear
systems (Gómez and Baeyens, 2004; Henson, 1997). Wiener-type systems consist of a
linear dynamic element followed by a memory-less non-linear element, whereas,
Hammerstein-type systems contain the same elements in reverse order (Gómez and
Baeyens, 2004). In recent years, the control of these types of systems has become one of
the most important and difficult tasks in non-linear control field (Gómez and Baeyens,
2004; Henson, 1997).

Combined with Volterra series, the OFS model, which has some advantages such as
excellent approximation ability for the variances of the control plant’s time-delay
(Mäkilä, 1990) due to its similarity to Páde approximants, can be easily extended to the
field of non-linear predictive control of block-oriented non-linear systems with time-
delay. Zervos and Dumont (1988) proposed a novel linear model predictive control
(MPC) based on a Laguerre series and successfully applied the scheme to pH control
in an industrial bleach plant extraction stage in 1990 (Dumont et al. , 1990), which was
the first successful industrial application of OFS-based control algorithms. From 2000
to 2006, Zhang presented many successful industrial applications of Laguerre
functional series-based control algorithms on a high temperature semiconductor
diffusion furnace (Zhang et al., 2002), double water tanks (Zhang et al., 2004a) and a
heavy oil distillation column (Zhang et al., 2004b). Meanwhile, he has also made some
theoretical progresses in this field (Zhang et al., 2002, 2004a,b). Olivera et al. (2000)
extended the Laguerre functional series-based control algorithm to a constrained
robust one.

However, some strict conditions, which cannot always be fulfilled in real industrial
processes, must be imposed on most of the former OFS model-based non-linear model
predictive control (NMPC) algorithms (Campello et al. , 2004; Parker and Doyle 1998;
Parker, 2002) to guarantee closed-loop stability. Beside, these algorithms cannot
guarantee zero steady-state error property. Therefore, they must be improved to satisfy
the requirements of modern industrial production.

The main contributions of this paper are: 1) to propose an OFS model-based
adaptive non-linear state feedback control algorithm for block-oriented non-linear
systems; 2) to prove the stability of the closed-loop system both in time-domain and
frequency-domain; 3) to prove zero steady-state error property of the closed-loop
system determined by our algorithm; and 4) to successfully apply this algorithm to a
physical Hammerstein-typed non-linear system with long time-delay.

The paper is organized as follows: typical OFS models are introduced in the next
section. In section 3, the adaptive non-linear state feedback control algorithm with
hard input constraints is presented in detail. In section 4, the robust stability and
the steady-state performance analyses are given. Section 5 shows the simulations
and applications of this proposed algorithm. Finally, conclusions are drawn in
section 6.
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2. OFS Model theory

For any function f (x) � L2(R�) (square integrable space in positive real number set) can
be approximate by a complete orthornormal function series (OFS) with arbitrary
accuracy (Parker and Doyle, 1998). Pulse function, Laguerre function and Kautz
function are three typical orthonormal functions of 0,1 and 2 OFS order, respectively.

The S-transforms of Laguerre function are (Wahlberg and Mäkilä, 1996)

Fi(s; p)�
ffiffiffiffiffi
2p

p (s � p)i�1

(s � p)i
(1)

and the S-transforms of Kautz function are (Wahlberg and Mäkilä, 1996):

F2i�1(s; b; c)�

ffiffiffiffiffi
2b

p
s

s2 � bs � c

�
s2 � bs � c

s2 � bs � c

�i�1

;F2i(s; b; c)�

ffiffiffiffiffiffiffi
2bc

p

s2 � bs � c

�
s2 � bs � c

s2 � bs � c

�i�1

(2)

In (1) and (2), i�1; 2; � � � ;�; p�0; b�0; c�0

The advantages of the OFS model are

1) owing to its similarity to Páde approximants (Dumont et al., 1990), OFS models have
excellent approximation ability for the system’s varying time-delay and order;

2) extensions to multivariable schemes do not require interactive matrices (Wang et al .,
2004);

3) low sensitivity to the modelling parameters.

3. Algorithm

3.1 OFS model for dynamic linear system

Any stable linear system can be represented by an OFS model with sufficient accuracy
(Wang, 2004). After discretization, the state and output equations are (Dumont et al.,
1990; Zervos and Dumont, 1998):

F(k�1)�AF(k)�Bu(k) (3)

ym(k)�CTF(k) (4)

where F(k)� [f1(k); � � � ;fN(k)]T is the state vector of OFS model and CT � [c1; c2; � � � ; cN]
is the coefficient vector of OFS model. The expressions of matrices A , B for Laguere
model and Kautz model, which are computed offline, can be seen in Dumont et al.,
(1990).

3.2 OFS model for dynamic non-linear system

Single-input� single-output (SISO) time-invariant causal non-linear discrete system
y(k) with input u(t) � L2(R�) can be expressed by a Volterra functional series as:
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y(k)�h0�
X�
i�0

h1(i)u(k� i)�
X�
i�0

X�
j�0

h2(i; j)u(k� i)u(k� j)� � � � (5)

/h0; h1(t); h2(t1; t2) � � � are called zero-order kernel, first-order kernel, second-order
kernel, and so on. For a stable non-linear discrete system, the Volterra kernel of
each order belongs to an L2[R�] space, so it can be reproached by an N order OFS
model with sufficient accuracy, say

ym(k)�h0�
XN

n�1

cnfn(k)�
XN

n�1

XN

m�1

cnmfn(k)fm(k)� � � � (6)

where cn; cnm; � � � are coefficients of OFS, fn(k)�a
�

i�08n(i)u(k�i); (n�1; 2; � � � ;N) are
the states of OFS model, and 8n(i) is the nth element of OFS. Based on the non-linear
OFS model above, the system can be represented by state space as follows

F(k�1)�AF(k)�Bu(k)
ym(k)�c0�CTF(k)�FT(k)DF(k)� � � �

�
(7)

where/c0�h0;/C� [c1; � � � ; cN]T; and D� [cij]15i5N;15j5N: Because Volterra kernels can
be transferred to symmetric kernels, D is a Hermite matrix, in other words cij� cij

(i; j�1; � � � ;N):

3.3 Adaptive non-linear state feedback control algorithm with hard input constraints

The algorithm is deduced as follows:

Assume

u(k)�KF(k)�d(k) (8)

where the state feedback vector K satisfies that 1)/C�A�bK is Hurwitz, 2)
a

�

k�0F(k)TQF(k)�Ru(k)2 is minimized/d(k) is determined by the set point r substitute
(8) into (7) we have

F(k)� (zI�A�BK)�1Bd(k) (9)

Substitute (9) into (8), and let /t 0 �; in other words z 0 1; then we have

a0�a1d(k)�a2d(k)2�a3d(k)3� � � ��r (10)

where a0�C0;/a1�CT(I�A�BK)�1B a2�BT[(I�A�BK)�1]TD(I�A�BK)�1B; � � � ;
r is the set point. d (k) can be obtained by solving the polynomial equation (10);
accordingly, the control law u(k) can be obtained.

If the plant is not subject to hard input constraints, K can be computed offline.
Otherwise, K must be obtained by solving a quadratic optimization problem online. In
order to constitute the adaptive mechanism, we must update the non-linear OFS
model’s coefficients online. Assume
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u� [c0 c1 c2 � � � cN c11 c12 � � � c21 c22 � � � cNN] (11)

C(k)� [1 f1 f2 � � � fN f2
1 f1f2 � � � f2f1 f2

2 � � � f2
N

] (12)

thus

ym(k)�uTC(k): (13)

This is a linear regression form, so at each sampling period, the coefficients u can be
identified by RLSE (recursive least-square estimation) with a forgetting factor l online
(Ljung, 1999).

4. Theoretical analysis

4.1 Robust stability

Theorem 1. If the controlled plant satisfies the following three assumptions:

1) it is a linear system, a Hammerstein-typed non-linear system, or a Wiener-type non-linear
system;

2) the dynamic linear part of this plant is open-loop stable;

3) the static non-linear block of this plant is identically continuous; then, the closed-loop system
determined by control law (8)and (10) is asymptotically stable.

Proof. Let the dynamic linear block of this plant be represented by the state-space
equations (Yu, 2002)

X(k�1)� (A0�DA0)X(k)�(B0�DB0)u(k) (14)

DA0 and Db0 are uncertain matrices, assume that they have the standard formulations

[DA0 DB0]�D0F0[EA EB] (15)

where D0;EA;EB are constant matrices, which represent the structure of system’s
uncertainty, F0 is an alterable matrix which satisfies FT

0 F05 I:
The control law is shown in (8) and (10), in which d(k) is independent of L(K) and

X(K). By using this control law, we can obtain the following closed-loop state
equations

X(k�1)
F(k�1)

� �
�

A0�DA0 (B0�Db0)K
0 A�BK

� �
� X(k)
F(k)

� �
�

(B0�DB0)d(k)
Bd(k)

� �
(16)

Because the linear part is open-loop stable, (A0�DA0) is always Hurwitz. Furthermore,
our control algorithm guarantees that (A�/BK) is Hurwitz at each sampling period.

Consequently, the closed-loop state matrix
A0�DA0 (B0�DB0)K

0 A�BK

� �
is Hurwitz. So

the linear dynamic block is closed-loop stable. In addition, from the assumptions 3)
and the definitions of Hammerstein-type and Wiener-type systems, the non-linear

Y:/Arnold/TM/articles/TM170OA/tm170oa.3d[x] Tuesday, 30th May 2006 15:0:51

Zhang et al. 5



UNCORRECTED P
ROOF

block of the controlled plant is static and identically continuous, which cannot
affect the closed-loop stability property, so the closed-loop system is asymptotically
stable. I

In the frequency domain, Agamennoni et al. (1990) has also presented a
methodology to characterize the uncertainty description of nominal stable, time-
invariant linear control systems based on frequency response measurement by using a
Laguerre functional model. Based on the robust theorem of Agamennoni et al. , (1990),
and noting that the memoryless non-linear block of the block-oriented non-linear
cannot affect the closed-loop stability, we can easily obtain the robust stability theorem
of our proposed algorithm in the frequency domain.

4.2 Steady-state error analysis

Lemma 1 (Campello et al., 2004). Assume a non-linear time-invariant stable system can be
represented by a Laguerre�Volterra model with mth-order Volterra kernel, and the truncation
length of the Laguerre functional series is No. In addition, the time-scaling factor P of Laguerre
series (1) is given by

p�
2Q1;m � 1 � Q2;m

2Q1;m � 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q1;mQ2;m � Q2

2;m � 2Q2;m

q (17)

Then, the square norm of the error resulting from the truncation of the series expansion satisfies

kemk
2
5

Jm

m(No � 1)
(18)

where em� lim
t0�

[y(t)�ym(t)] . The definitions of Q1;m;Q2;m; Jm;m,/No can be referred to

Campello et al., (2004).

Theorem 2. The conditions are the same as Lemma 1, and the control law is given by (8) and
(10), then the upper bound of the square norm of the steady-state error satisfies:

kek2
5

Jm

m(No � 1)
(19)

where e� lim
t0�

[y(t)�r(t)], and r(t) is the set point (output reference) signal.

Proof: From Lemma 1, we have kemk
2� lim

t0�
[y(t)�ym(t)]5

Jm

m(No � 1)
:

If the control law (8) and (10) is applied to system, then the output of Laguerre
functional model can track the set point curve without error (Chen, 1999)

lim
t0�

[ym(t)�r(t)]�0 (20)
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Therefore, the steady-state error

e� lim
t0�

[y(t)�r(t)]� lim
t0�

[y(t)�ym(t)�ym(t)�r(t)]

� lim
t0�

[y(t)�ym(t)]� lim
t0�

[ym(t)�r(t)]�em

thus

kek2
5

Jm

m(No � 1)
:

I

5. Simulations and applications

5.1 Wiener-type non-linear system with uncertainties

X(k�1)�A0X(k)�b0u(k) (21)

h(k�d)�C0X(k); y(k)� f [h(k)]�h4(k)�3h3(k) (22)

where

A0�
0:0579 0:8132
0:3529 0:0099

� �
; b0�

1
0

� �
;C0� [10]

system time-delay d�/3, and in the 500th epoch, d is changed into 5.
The set point curve is a square wave curve with amplitudes 20 and 10. Figure 1

shows the comparison of the performances of the following three different control
algorithms. The output and control variable curves are shown in the left and right
figures respectively.

A typical NMPC algorithm based on an NAARX (Henson, 1997) model, which is a
special class of NARMAX models. Parameters: prediction horizon P�/7, control
horizon M�/5, scalar non-linearities are set as polynomials, and the input and out
memories are set to be 5 and 3, respectively.

A traditional non-linear NMPC (Parker and Doyle, 1998) based on a Laguerre�
Volterra model. Parameters: P�/7, M�/1, N�/10, l�/ 0.98, P�/ 3, T�/2.

Our proposed algorithm determined by (8) and (10). Parameters: Volterra functional
series order /rv�2; the other parameters are the same as algorithm b.

From the control performances based on our algorithm and on traditional one, we
can conclude that, when controlling a wiener-type system, algorithm c can eliminate
steady-state error while algorithm b cannot. In addition, compared with algorithm a,
algorithm c has much smaller overshoots and shorter response times. Moreover, when
the plant’s time-delay is varying, the vibration intensity and the modulating time of
algorithm c are much smaller than the algorithm b, which validates algorithm c’s
excellent adaptability for system time-delay. The control performances on a Hammer-
stein-type system can also validate the feasibility and superiority of algorithm c.
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5.2 Temperature control of a simulating reactor with a cold water jacket

As Figure 2 shown, fluxes Qi; (i�1; � � � ; 4); are adjusted by valves Ri; (i�1; � � � ; 4);
respectively. The controlled variable is the temperature y of the inner tank, and the
control variable is the current u of the electrically heated wire, which fulfils 45u520
and/jDuj52: The water levels of the inner tank and the jacket are h1 and h2,

respectively. There are two PT thermal resistance sensors (WZP-270S-typed), whose
accuracy is 9/0.18C, to measure the temperatures of the tank’s hot water and the
jacket’s cold water, respectively. Because of to its intrinsic mechanism, this system can
be approximated by a Hammerstein-type non-linear system with long time-delay,
hard input constraints and uncertainties.

Figure 1 Control performances on Wiener-typed system

Figure 2 Control system of simulating reactor with cold water
jacket
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The controllable silicon’s conduction angle is adjusted to heat up the heated wire.
Q2 and h1 are initially set to be 60 L/h and 200 mm respectively. Control
performances of our algorithm on this system are shown in Figure 3. In the upper
figure, the solid curve is the system’s output to trace the double-step of 608C and
658C, while the dashed curve is the system’s output to trace the double-step of 328C
and 388C. The corresponding control variable curves are shown in the lower figure.
In the course of tracing 658C, we purposely reduce the flow passing through the cold
water jacket from 60 to 50 L/h in the 1300th second, which corresponds to a
disturbance of the plant’s characteristic. Control parameters are set as: , N�/7, l�/

0.98, P�/2.5 , T�/2.
Experimental results show that the steady-state error is smaller than 9/0.38C, the

overshoots are smaller than 9/28C, and the modulating times are lesson than 200 s as
well. Therefore, for a physical Hammerstein-type non-linear system, with long time-
delay, hard input constraints and uncertainties, our algorithm shows great adaptability
and can effectively eliminate steady-state error.

6. Conclusions

The OFS model is very suitable for dealing with systems’ varying time-delay, which
widely exists in modern industrial engineering. Accordingly, combining it with a
Volterra series, we constructed a non-linear OFS model as the internal model of our
adaptive control algorithm to solve block-oriented non-linear systems with time-delay.
Because the system matrix of the OFS model can be computed offline, a stable state
feedback vector based on an OFS filter is used to design a stable control law. Added
to an offset value, this state feedback control law can be used to track set point
curves without error. In this way, an adaptive non-linear algorithm is designed for

Figure 3 Temperature control performance of the proposed
algorithm
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block-oriented non-linear systems. To support this algorithm, we presented the
theoretical analyses of stability, robustness and steady-state performance systemically.

Finally, simulations on a Wiener-type non-linear system, and experiments on a time-
varying Hammerstein-type non-linear process (a chemical rector’s temperature
control system) are shown, which have long time-delay, hard input constraints and
uncertainties. A large amount of control results validate the feasibility and superiority
of our proposed algorithm.
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approximation of stable linear dynamical
systems using Laguerre and Kautz Func-
tions. Automatica 32, 693�708.

Wang L.P. 2004: Discrete model predictive
controller design using Laguerre functions,
Journal of Process Control 14, 131�42.

Yu L. 2002: Robust control- LMI processing
method . Tsinghua University Press, 86�88.

Zervos, C.C. and Dumont, G.Y. 1988: Determi-
nistic adaptive control based on Laguerre
series representation, International Journal of
Control 48, 2333�59.

Zhang, H.T., Chen, Z.H. and Li, S.F. 2004a:
Multi-variable system’s Laguerre predictive
control algorithm and the improvement for
this algorithm. Journal of Control Engineering
of China 11, 55�58.

Zhang, H.T., Chen, Z.H. and Qin T. 2004b: An
Laguerre function model adaptive predi-
ctive control based on a chaos neural net-
work for heavy oil distillation column.
Journal of Information and Control of China 33,
13�17.

Zhang, H.T., Xu, Z.F. and Li, S.F. 2002: An
adaptive predictive control based on La-
guerre function model for diffusion furnace.
Journal of System Engineering and Electronics of
China 24, 54�57.

Y:/Arnold/TM/articles/TM170OA/tm170oa.3d[x] Tuesday, 30th May 2006 15:0:52

10 Block-oriented non-linear systems


