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Abstract

An effective modeling method for nonlinear distributed parameter systems (DPSs) is critical for both physical system

analysis and industrial engineering. In this paper, we propose a novel DPS modeling approach, in which a high-order

nonlinear Volterra series is used to separate the time/space variables. With almost no additional computational

complexity, the modeling accuracy is improved more than 20 times in average comparing with the traditional method.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Most of the physical processes (e.g. thermal diffusion process [1–7], thermal radiation process [8],
distributed quantum systems [9,10], concentration distribution process [11–13], crystal growth process [1,6],
etc.) are nonlinear distributed parameter systems (DPSs) with boundary conditions determined by the system
structure. Thus, it is an urgent task to design an effective modeling method for nonlinear DPSs. The key
problem in the design of nonlinear-DPS modeling method is how to separate the time/space variables. Some
modeling approaches are previously proposed: these include the Karhunen–Loève (KL) approach [1,4,14,15],
the spectrum analysis [16], the singular value decomposition (SVD) combined with the Galerkin’s method
[1,17], and so on. Among them, the KL approach is the most extensively studied and the most widely applied
one. In this approach, the output Tðz; tÞ is expanded as

Tðz; tÞ ¼
XN

i¼1

ciðzÞliðtÞ9CðzÞLðtÞ, (1)

where z and t are the space and time variables, respectively. This operation can be implemented by spatial
basis fciðzÞg combined with time-domain coefficients fliðtÞg, or time-domain basis fliðtÞg combined with spatial
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coefficients fciðzÞg. The basis could be Jacobi series [18], orthonormal functional series (OFS, such as Laguerre
series [18,19], Kautz series [18], etc.), spline functional series [20], trigonometric functional series, or some
others. However, no matter how elaborately the basis is designed, the infinite-dimensional nature of DPSs
does not allow being accurately modeled with small number of truncation length N of the basis series.
Moreover, the nonlinear nature of the DPSs will even increase this modeling difficulty. Thus for nonlinear
DPSs’ modeling, the extending of N to a sufficiently large number is generally required, which would definitely
increase the computational burden. Consequently, in order to improve the efficiency of the modeling
algorithms, many former efforts focused on designing suitable time-domain basis fliðtÞg or spatial basis fciðzÞg

according to the prior knowledge of the DPSs [1,14]. In addition, some scholars also presented neural
networks to model the nonlinearities of transitional flows and distributed reacting systems based on proper
orthogonal decomposition and Galerkin’s method [21,22]. However, if the prior knowledge is unavailable or
inadequate, the general design methods of the bases are very limited so far. On the other hand, the
conventional finite difference and finite element method often lead to very high-order ODEs which are
inappropriate for dynamical analysis and real-time implementation [22]. Another conventional approach,
spectral method [16], is popularly used for modeling DPSs because it may result in very low-dimensional ODE
systems. However, it requires a regular boundary condition [1,23].

Thus, in this paper, we argue that the linear separation is a bottleneck to better modeling performance, and
to introduce some kinds of nonlinear terms may sharply enhance the performance, since they have the
capability to compensate the residuals of the linear separation.

2. The implement of nonlinear space/time separation

For nonlinear lumping systems, if their dependencies on past inputs decrease rapidly enough with time, their
input/output relationship can be precisely described by Volterra series [24–28], which is a generalization of the
convolution description of linear time-invariant to time-invariant nonlinear operators. This kind of system is
called fading memory nonlinear system (FMNS) [25], which is well-behaved in the sense that it will not exhibit
multiple steady states or other related phenomena like chaotic responses. Fortunately, most industrial
processes are FMNSs. Accordingly, one can naturally extend the concept of Volterra series from lumping
systems to DPSs by allowing each kernel to contain both time variable t and space variable z, and then design
the time/space separation method via the so-called distributed Volterra series (see Fig. 1 for the mechanism of
this modeling method). Firstly, the system output can be represented by

Tðz; tÞ ¼ h0ðzÞ þ

Z 1
0

h1ðz; t1Þuðt� t1Þdt1 þ
Z 1
0

Z 1
0

h2ðz; t1; t2Þuðt� t1Þuðt� t2Þdt1 dt2 þ � � � , (2)
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Fig. 1. The sketch map of OFS-Volterra modeling for nonlinear DPS.
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where hiðz; t1; . . . ; tiÞ is the ith order distributed Volterra kernel. Then denote fiðtÞ as the ith order OFS and
liðtÞ ¼

R1
0 fiðtÞuðt� tÞdt as the ith order OFS filter output. Since ffiðtÞg forms a complete orthonormal set in

functional space l2, each kernel can be approximately represented as

h1ðz; t1Þ ¼
XN

k¼1

ckðzÞfkðt1Þ,

h2ðz; t1; t2Þ ¼
XN

n¼1

XN

m¼1

cnmðzÞfnðt1Þfmðt2Þ,

� � � ð3Þ

where ckðzÞ and cnmðzÞ are spatial coefficients. Then, the input/output relationship can be written as (see Eq. (1)
for comparison)

Tðz; tÞ ¼ c0ðzÞ þ CðzÞLðtÞ þ LTðtÞDðzÞLðtÞ þ � � � , (4)

where LðtÞ ¼ ½l1ðtÞ � � � lN ðtÞ�
T, CðzÞ ¼ ½c1ðzÞ � � � cNðzÞ�, and DðzÞ ¼ ½cijðzÞ�N�N .

To obtain the spatial coefficients, firstly we pre-compute all the OFS kernels according to the polynomial
iterations [18] or the following state equation:

Lðtþ 1Þ ¼ ALðtÞ þ BuðtÞ, (5)

where uðtÞ is the system input, and A and B are pre-optimized matrices (see Ref. [29] for details). Then the
input/output relationship Eq. (4) is represented by a linear regressive form, and these spatial coefficients
c0ðzÞ;CðzÞ;DðzÞ; . . . can be obtained by using the least-square estimation combined with spline interpolation
[20]. Finally, the model is obtained by synthesizing the OFS kernels and the spatial coefficients according to
Eq. (4).

Fig. 2 shows the operation details of this modeling method. The first order OFS filter is the Laguerre series,
in which

G0ðq
�1Þ ¼

q�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

1� q�1a
; G1ðq

�1Þ ¼
q�1 � a

1� q�1a
, (6)

where a is the time-scaling constant and q�1 is the one-step backward shifting operator (i.e.,
q�1uðtÞ ¼ uðt� 1Þ). The second order OFS filter is the Kautz Series, in which G0ðq

�1Þ and G1ðq
�1Þ are

second order transfer functions. Analogically, Heuberger et al. [30] introduced the higher-order OFS model.
As the order increases, OFS model can handle more complex dynamics.

ARTICLE IN PRESS

Fig. 2. Operation details of OFS-Volterra modeling.
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3. Numerical results

Consider a long, thin rod in a reactor as shown in Fig. 3. The reactor is fed with pure species A and a zeroth
order exothermic catalytic reaction of the form A! B takes place in the rod. Since the reaction is exothermic,
a cooling medium that is in contact with the rod is used for cooling. Assume the density, heat capacity,
conductivity and temperature are all constant, and species A is superfluous in the furnace, then the
mathematical model which describes the spatiotemporal evolution of the rod temperature consists of the
following parabolic partial differential equation:

qT

qt
¼

q2T

qz2
þ bTe

�g=ð1þzÞ � bTe
�g þ buðbðzÞuðtÞ � TÞ, (7)

which subjects to the Dirichlet boundary conditions

Tð0; tÞ ¼ 0; Tðp; tÞ ¼ 0; Tðz; 0Þ ¼ 0, (8)

where Tðz; tÞ, bðzÞ, bT , bu, g, and u denote the temperature in the reactor (output), the actuator distribution
function, the heat of reaction, the heat transfer coefficient, the activation energy, and the temperature of the
cooling medium (input), respectively. Here we set bT ¼ 50:0, bu ¼ 2:0, and g ¼ 4:0. In the numerical
calculation, without loss of generality, we set bðzÞ ¼ 1, and uðtÞ ¼ ½1:4; 1:4; 1:4; 1:4�. The order of Volterra
series is two, the OFS is chosen as one-order Laguerre series [18] with a ¼ 0:6, and the truncation length is
given N ¼ 4.

The system output is shown in Fig. 4. Denote by eðz; tÞ the modeling error, that is, the difference between
system output and modeling result at the point ðz; tÞ. Figs. 5 and 6 exhibit the modeling errors of the
traditional and the present methods, respectively. Clearly, the method proposed here has remarkably smaller
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Fig. 3. The sketch map of catalytic rod.

Fig. 4. Color online: System output.
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error than that of the traditional one. To provide a vivid contrast between these two methods, we calculate
the integral of absolute error (IAE,

R
jeðz; tÞj dz) and time-weighted absolute errors (ITAE,

R
tjeðz; tÞjdt),

which are two standard error indexes to evaluate modeling performances of DPS and can be considered
as the modeling errors along the temporal dimension t and the spatial dimension z. As are shown in Figs. 7
and 8, both the IAE and ITAE of the present method is reduced by 420 times comparing with those of the
traditional one, which strongly demonstrates the advantage of the present method. Actually, to obtain the
shapes of IAE and ITAE, one can cut the error surfaces of Figs. 5 and 6 along the temporal coordinate t

and the spatial dimension z. In addition, we calculate the average of absolute modeling error
1=
RR

dzdt
RR
jeðz; tÞjdz dt. From Fig. 9, it is found that, in comparison with the traditional method, the

modeling accuracy of the present one is enhanced by 14–32 times with less than 15% increase of the
consumed time. It should be noted that the modeling accuracy would increase along with the increase of
the Volterra series order Nv, however, the computational complexity will increase too. For lumping
systems, this fact has been proved, and for DPSs, this fact is also validated by experimental results [24]. So a
tradeoff between the modeling accuracy and the computational complexity must be made. That is why here we
set the order Nv ¼ 2.

ARTICLE IN PRESS

Fig. 5. Color online: Modeling error of the traditional method.

Fig. 6. Color online: Modeling error of the present method.
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Fig. 8. ITAEs of the traditional method (left) and the present method (right).

Fig. 7. IAEs of the traditional method (left) and the present method (right).

Fig. 9. Ratios of the consumed time t2=t1 (left) and the average of absolute modeling error je1j=je2j (right) vs the truncation length N. The

subscripts 1 and 2 denote the cases of the traditional and the present methods, respectively. The CPU time by using traditional method for

N 2 ½3; 9� is in the interval ½100 s; 160 s�. All the numerical calculations are implemented by using a personal computer with CPU: 1.8G,

RAM: 256M, OS: Windows XP, and software platform: MATLAB 6.5.
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4. Conclusion and discussion

Modeling method for nonlinear DPS plays an important role in physical system analysis and industrial
engineering. Unfortunately, there exits two essential difficulties in this issue, (a) distributed nature due to time-
space coupled, which causes different temperature responses at different locations; (b) nonlinear complexity

from varying working point—different dynamics obtained even at the same location for a large change of
working points. Owing to these difficulties, previous modeling methods via linear time/spatial separation
techniques (e.g. KL approach, spectrum analysis, SVD-Galerkin technique, etc.) cannot yield satisfying
modeling performance, especially for DPSs with severe nonlinearity. The modeling error is caused by the
nonlinear residue of the linear time/space separation. Thus, it is natural to expect that a nonlinear time/space
separation method may yield better modeling performance.

To validate this supposition, we design a novel modeling method by extending the concept of lumping
Volterra series to the distributed scenario. As shown in Fig. 10, the nonlinear DPS is first decomposed into
kernels, upon which the time-space separation is carried out. These two decompositions will gradually
separate the complexity and provide a better modeling platform. The time/space separation will be handled by
a novel KL Volterra method instead of the conventional KL method, the time-domain complexity by the
OFS-based learning, and the spatial complexity by the curve fitting techniques (e.g. spline interpolation) or
intelligent learning algorithms (e.g. neural network, fuzzy system, etc.). This novel method is applied on a
benchmark nonlinear DPS of industrial process, a catalytic rod. It is found that the modeling accuracy has
been remarkably improved comparing with the traditional method, with almost no additional computational
complexity. The underlying reason may be that the high-order Volterra kernel can compensate the residuals of
the linear separation. In addition, we have applied this method to another two benchmark nonlinear DPSs, a
rapid thermal chemical vapor deposition process [1], and a Czochralski crystal growth process [1]. The
corresponding results also strongly suggest that the nonlinear time/space separation can greatly enhance the
modeling accuracy.

Although its superiority has been demonstrated, the KL Volterra method is just a first attempt aiming at the
motivation of nonlinear time/space separation. Thanks to its excellent modeling efficiency, this novel method
is definitely a promising one for both physical system analysis and industrial engineering. We believe that our
work can enlighten the readers on this interesting subject.
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