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Abstract

Most academic control schemes for MIMO systems assume all the control variables
are updated simultaneously. MPC outperforms other control strategies through its
ability to deal with constraints. This requires on-line optimization, hence compu-
tational complexity can become an issue when applying MPC to complex systems
with fast response times. The multiplexed MPC scheme described in this paper
solves the MPC problem for each subsystem sequentially, and updates subsystem
controls as soon as the solution is available, thus distributing the control moves
over a complete update cycle. The resulting computational speed-up allows faster
response to disturbances, which may result in improved performance, despite find-
ing sub-optimal solutions to the original problem. The multiplexed MPC scheme is
also closer to industrial practice in many cases. This paper presents initial stability
results for multiplexed MPC.
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1 Introduction

1.1 The basic idea

Model Predictive Control (MPC) has become an established control technol-
ogy in the petrochemical industry, and its use is currently being pioneered in
an increasingly wide range of process industries. It is also being proposed for
a range of higher bandwidth applications, such as ships (Perez et al., 2000),
aerospace (Murray et al., 2003) (Richards and How., 2003), and road vehicles
(Morari et al., 2003).

This paper is concerned with facilitating applications of MPC in which com-
putational complexity, in particular computation time, is likely to be an issue.
One can foresee that applications to embedded systems, with the MPC algo-
rithm implemented in a chip or an FPGA(Bleris et al., 2006) (Johanson et
al., 2006) (Ling et al., 2006), are likely to run up against this problem.

MPC operates by solving an optimisation problem on-line, in real time, in
order to decide how to update the control inputs (manipulated variables) at
the next update instant. All MPC theory to date, and as far as we know all
implementations, assumes that all the control inputs are updated at the same
instant (Maciejowski, 2002). Suppose that a given MPC control problem can
be solved in not less than T seconds, so that the smallest possible update
interval is T . The computational complexity of typical MPC problems, in-
cluding time requirements, tends to vary as O(m3), where m is the number of
control inputs. We propose to use MPC to update only one control variable
at a time, but to exploit the reduced complexity to update successive inputs
at intervals smaller than T , typically T/m. After m updates a fresh cycle of
updates begins, so that each whole cycle of updates repeats with cycle time T .
We call this scheme multiplexed MPC, or MMPC. We assume that fresh mea-
surements of the plant state are available at these reduced update intervals
T/m. The main motivation for this scheme is the belief that in many cases
the approximation involved in updating only one input at a time will be out-
weighed — as regards performance benefits — by the more rapid response to
disturbances, which this scheme makes possible. It is often the case that “do
something sooner” leads to better control than “do the optimal thing later”.
Figure 1 shows the pattern of input moves in the multiplexed MPC scheme
with m = 3, compared with the conventional scheme in which the three input
moves are synchronised. (We will refer to conventional MPC as synchronised
MPC, or SMPC in the rest of this report.)

A specific example of an application in which our scheme could be effective
is the roll stabilisation of ships. Typically rotatable fins are installed for the
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Fig. 1. Patterns of input moves for conventional ‘synchronised’ MPC (left), and for
the Multiplexed MPC (right) introduced in this paper.

specific purpose of opposing the rolling torque that arises from wave actions.
But the ship’s rudder can also produce a rolling torque, and so is available
as a second actuator for roll stabilisation (Perez et al., 2000). This is useful
for combatting the effects of unusually large waves, or for reducing the mean-
square roll angle in heavy seas, when the fins may be saturated in rate or angle,
and thus leads to an interest in designing a roll controller which uses both
actuators. If the interval between actuator actions is T , then the ship’s roll is
essentially uncontrolled during intervals of duration T . Now if the roll angle
is considered to be a band-limited stochastic process, such that its spectrum
Sφφ(ω) = 0 for ω > Ω, then the mean-square variation of the roll angle between
control actions is limited by T 2 (Papoulis, 1984):

E{[φ(t + T )− φ(t)]2} ≤ ΩT 2E{φ(t)2} (1)

Thus reducing T offers the possibility of reducing the controlled mean-square
roll angle. In order to reduce T the possibility of controlling the fins and the
rudder by means of our multiplexed MPC scheme could be considered.

The scheme which we investigate here is close to common industrial practice
in complex plants, where it is often impossible to update all the control in-
puts simultaneously, because of their sheer number, and the limitations of the
communications channels between the controller and the actuators.

Various generalizations of our scheme are possible. For example, subsets of
control inputs might be updated simultaneously, perhaps all the inputs in
each subset being associated with one subunit. Alternatively, sensor outputs
might become available one at a time (or one subset at a time), as in the com-
mon practice of “polling” sensors. A further generalization, albeit involving
a significantly harder problem, would be not to update each control input in

3



a fixed sequence, but to decide in real time which input (if any) needs up-
dating most urgently — one could call this just-in-time MPC ; note that this
would then resemble statistical process control (SPC), which is used widely in
manufacturing processes (Box and Luceno, 1997).

1.2 Related Work

Several works have been published which propose ‘decentralized MPC’ in the
sense that subsets of control inputs are updated by means of an MPC algo-
rithm. But these usually assume that several sets of such computations are
performed in parallel, on the basis of local measurements only, and that all the
control inputs are then updated simultaneously. In some applications, such as
formation flying of unmanned vehicles, it is assumed that the state vectors
of subunits (vehicles) are distinct, and that coupling between subunits occurs
only through constraints and performance measures. In (Venkat et al., 2004)
five different MPC-based schemes are proposed, of which four are decentral-
ized MPC schemes of some kind. Their schemes 4 and 5 are the closest to our
multiplexed scheme. In these schemes an MPC solution is solved iteratively for
each control input, but it is assumed that no new sensor information arrives
during the iteration, and that all the control inputs are updated simultane-
ously when the iterations have been completed.

As far as we are aware, the original feature of the scheme proposed in this pa-
per is that the inputs are updated sequentially, and that each control update
takes account of all the information available at that time, namely knowl-
edge of all updates already performed, and of the latest sensor outputs. The
distinction between previous proposals for decentralised MPC and our pro-
posal for multiplexed MPC is analogous to the distinction between the Jacobi
and the Gauss-Seidel iterative algorithms for solving a system of linear equa-
tions (Barrett et al., 1994). The Jacobi algorithm updates every variable using
values only from the previous iteration. The Gauss-Seidel algorithm, on the
other hand, immediately uses new values of those variables that have already
been updated within the current iteration. Multiplexed MPC shares this idea
with the Gauss-Seidel method; the move for the current actuator takes into
account moves already made by other actuators in the same cycle of iterations.

An alternative strategy for speeding up the computations involved in MPC is
off-line precomputation of the ‘pieces’ of the piecewise-affine controller which
is the optimal solution (Morari et al., 2003). But that is not feasible if the
number of ‘pieces’ required is excessively large, or if the constraints or the
plant model change relatively frequently.

The rest of this paper is organized as follows.
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In Section 2, two possible schemes for Multiplexed MPC are formulated. Sec-
tion 3 establishes the stability of these and other schemes. Section 4 gives
numerical simulation examples which compares the performance of MMPC
with SMPC. Finally, concluding remarks are given in Section 5. For complete-
ness, we include, in the appendix, derivation of the equivalent LQ problem for
SMPC.

2 Problem formulation

2.1 Preliminary

We consider the following discrete-time linear plant model in state-space form,
with state vector xk ∈ Rn and m (scalar) inputs u1,k, . . . , um,k:

xk+1 = Axk +
m∑

j=1

Bj∆uj,k (2)

where each Bj is a column vector and ∆uj,k = uj,k − uj,k−1. (This could be
generalised to the case where Bj ∈ Rn×pj and ∆uj,k ∈ Rpj , with

∑
j pj inputs.)

We assume that (A, [B1, . . . , Bm]) is stabilizable. For ease of notation, when
we drop the index j, we mean the complete B matrix and the input vector so
that the system (2) may be written as

xk+1 = Axk + B∆uk

The unique advantage of MPC, compared with other control strategies, is its
capacity to take account of constraints in a systematic manner. As usual in
MPC, we will suppose that constraints may exist on the input amplitudes,
‖uk‖∞ ≤ U , on the input moves, ‖∆uk‖∞ ≤ D, and on states, Mxk ≤ v.
(These can all be generalised substantially, so long as linear inequalities are
retained.)

We wish to devise a control strategy based on MPC which, at discrete-time
index k, changes only plant input (k mod m) + 1. In this paper, we consider
two alternative schemes for determining the appropriate plant inputs. In both
schemes, an increase of k by 1 corresponds to a time duration of T/m, where
T is the complete update cycle duration — see section 1.

We assume in both schemes that at time step k the complete state vector xk is
known exactly from measurements. We will consider only the regulation prob-
lem in detail, but tracking problems, especially those with non-zero constant
references, can be easily transformed into equivalent regulation problems.
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As we will be referring to the expression (k mod m) + 1 often in this paper,
it is convenient to introduce the indexing function

σ(k) = (k mod m) + 1 (3)

The constraint

∆uj,k+i = 0 if j 6= σ(k + i) (4)

then expresses our desired control updating pattern as shown in Fig. 1.1.

An alternative representation of the system described by (2), together with
the desired control updating pattern (4) is as a periodic linear system with
one input:

xk+1 = Axk + Bσ(k)∆ũk (5)

where ∆ũk = ∆uσ(k),k.

From this point onwards, we use this description of the plant and we exploit
known results on periodic systems.

The N -step prediction model for the system described by eq(5) is

~Xk+1 = Φxk + Gσ(k)∆~Uk

where

~Xk+1 =



xk+1

xk+2

...

xk+N


, ∆~Uk =



∆ũk

∆ũk+1

...

∆ũk+N−1



Φ =



A

A2

...

AN


, Gσ(k) =



Bσ(k) 0 . . . 0

ABσ(k) Bσ(k+1) . . . 0
...

. . .

AN−1Bσ(k) . . . ABσ(k+N−2) Bσ(k+N−1)


(6)

Let N = (Nu − 1)m + 1 where Nu is the control horizon, a design parameter
which will later be used to denote the number of control moves to be opti-
mized per input channel of the original system (2). Then we can re-write the
prediction model by grouping the control signals into m vectors as follows:

~Xk+1 = Φxk + g
σ(k)
1 ∆~uk,0 + g

σ(k)
2 ∆~uk,1 + . . . + gσ(k)

m ∆~uk,m−1
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where

∆~uk,0 =



∆ũk

∆ũk+m

...

∆ũk+(Nu−1)m



and for i = 1, 2, . . . ,m− 1,

∆~uk,i =



∆ũk+i

∆ũk+m+i

...

∆ũk+(Nu−2)m+i



and g
σ(k)
i , i = 1, . . . ,m is the i’th column of Gσ(k).

In this paper, we consider two MMPC schemes. In scheme 1, all the ∆~uk,i, i =
0, . . . ,m− 1 are decision variables at time step k. In scheme 2, the future tra-
jectory of only one input of system (2) is optimised, and we make assumptions
about the future behaviour of the other inputs. More precisely, in scheme 2,
only ∆~uk,0 is taken as the decision variable at time k, and appropriate as-
sumptions are made about ∆~uk,i, i = 1, . . . ,m− 1.

Scheme 2 has the advantage of reducing computational complexity — the
other inputs are treated like measured disturbances, in effect. Note that the
length of ∆~uk,0 is Nu while the length of ∆~uk,i for i = 1, . . . ,m− 1 is Nu − 1.
When Nu = 1, ∆~uσ(k),i, i = 1, . . . ,m − 1, become zero length vectors and
MMPC scheme 1 and scheme 2 are equivalent.

In scheme 1, although only one input is updated at any one time, the com-
putational complexity is the same as that of standard centralised MPC, since
the number of decision variables is the same. Thus scheme 1 is not likely to
be of much practical interest. We present it here for clarity and completeness.
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2.2 Scheme 1

Scheme 1 involves solving the following finite-time constrained linear periodic
control problem:

P(xk) : Minimise Jk = F (xk+N) +
∑N−1

i=0

(
‖xk+i+1‖2

q + ‖∆ũk+i‖2
r

)
wrt ∆~uk,i, (i = 0, 1, . . . ,m− 1)

s.t. ∆ũk+i ∈ U, (i = 0, 1, . . . , N − 1)

xk+i ∈ X, (i = 1, . . . , N)

xk+N+1 ∈ XI(Kσ(k))

xk+1 = Axk + Bσ(k)∆ũk

(7)

where F (xk+N) is a suitably chosen terminal cost, and X and U are compact
polyhedral sets containing the origin in their interior. XI(Kσ(k)) denotes the
set in which none of the constraints is active, and which is the maximum
positively invariant set (Blanchini, 1999) for the linear periodic system (5),
when a stabilizing linear periodic feedback controller Kσ(k) is applied, namely

xk ∈ XI(Kσ(k)) ⇒ Kσ(k)xk ∈ U and (A−Bσ(k)Kσ(k))xk ∈ XI(Kσ(k))

where XI(Kσ(k)) ⊂ X.

We denote the resulting optimizing control sequence as ∆uo(xk). Only the
first control ∆ũo

k in ∆uo(xk) is applied to the system at time k, so that we
apply the predictive control in the usual receding-horizon manner.
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2.3 Scheme 2

Scheme 2 involves solving the following finite-time constrained linear periodic
control problem:

Pσ(k)(xk) : Minimise Jk = F (xk+N) +
∑N−1

i=0

(
‖xk+i+1‖2

q + ‖∆ũk+i‖2
r

)
wrt ∆~uk,0

s.t. ∆ũk+i ∈ U, (i = 0, 1, . . . , N − 1)

xk+i ∈ X, (i = 1, . . . , N)

xk+N+1 ∈ XI(Kσ(k))

xk+1 = Axk + Bσ(k)∆ũk

assumptions about ∆~uk,i, (i = 1, . . . ,m− 1) are satisfied.

(8)

Some assumptions must be made about those inputs ∆~uk,i, (i = 1, . . . ,m −
1) which have already been planned but which have not yet been executed.
We will assume that all such planned decisions are known to the controller,
and that it assumes that they will be executed as planned. (This assumption
will usually be false, because new decisions will be made in the light of new
measurements.)

Thus, in Scheme 2, there are essentially m MPC controllers, operating in
sequence, in a cyclic manner. They share information, however, in the sense
that the complete plant state is available to each controller — although not at
the same times — and the currently planned future moves of each controller
are also available to all the others.

Remark 1 Different assumptions are possible here. We will assume that each
input is computed so as to optimise “its” cost over the prediction horizon, and
that after the end of the horizon each input is determined according to an
optimal linear state-feedback law.

3 Stability of MMPC

3.1 Unconstrained LQ optimal control of periodic systems

The following results on unconstrained infinite-time linear quadratic control
of periodic systems are known (Bittanti et al., 1988). Consider the plant (5)
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and the quadratic cost function

Jk =
∞∑
i=0

(
‖xk+i+1‖2

q + ‖∆ũk+i‖2
r

)
(9)

Then this cost is minimised by finding P̄i, i = 1, . . . ,m, the Symmetric, Peri-
odic and Positive Semidefinite (SPPS) solution of the following discrete-time
periodic Riccati equation (DPRE)

Pk = AT Pk+1A− AT Pk+1Bσ(k)(B
T
σ(k)Pk+1Bσ(k) + r)−1BT

σ(k)Pk+1A + q (10)

and setting
∆ũk = −Kσ(k)xk (11)

where
Kσ(k) = (BT

σ(k)P̄σ(k+1)Bσ(k) + r)−1BT
σ(k)P̄σ(k+1)A (12)

Remark 2 The set of periodic gains {Kj : j = 1, . . . ,m} is stabilising,
namely, the monodromy matrix

Ψ1 = ΦmΦm−1 . . . Φ2Φ1 (13)

has all its eigenvalues inside the unit circle, where

Φj = A−BjKj (14)

It is a standard fact that this is a necessary and sufficient condition for closed-
loop stability of a linear periodic system, and that the eigenvalues of the mon-
odromy matrix are invariant under cyclic permutations of the Φj matrices.

Remark 3 In (Bittanti et al., 1988) conditions are established for the exis-
tence of the optimal solution, which generalise the familiar conditions for the
existence of solutions to LQ problems for LTI systems. In this paper we shall
assume that such conditions are satisfied.

3.2 Stability of MMPC schemes

Proposition 1 MMPC schemes 1 and 2, obtained by solving the finite-time
constrained linear periodic optimal control problems (7) and (8), respectively,
give closed-loop stability if the problems are well-posed, and if F (xk+N) is the
value function of the unconstrained infinite horizon periodic optimal control
problem, namely if

F (xk+N) = min∆ũ{
∑∞

i=N

(
‖xk+i+1‖2

q + ‖∆ũk+i‖2
r

)
| xk+1 = Axk + Bσ(k)∆ũk}

= xT
k+N P̄σ(k+N)xk+N

(15)
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where P̄σ(k+N) is defined in section 3.1.

Proof:
According to (Mayne et al., 2000, page 797), if the following four conditions
hold:

(1) state constraints satisfied in terminal constraint set
(2) control constraints satisfied in terminal constraint set
(3) the terminal constraint set is positively invariant under a local controller
(4) the terminal cost is a local Lyapunov function

then closed loop stability is obtained.

In our set up, conditions (1)–(3) are satisfied by assumption since xk+N+1 ∈
XI(Kσ(k)). We have only to check that condition (4) is satisfied, namely that
F (xk+N+1)− F (xk+N) ≤ 0.

Now according to (Bittanti et al., 1988) F (xk+N) as defined in (15) is the
value function of the unconstrained infinite horizon (periodic) optimal control
problem. As a consequence

F (xk+N) = F (xk+N+1) + ‖xk+N+1‖2
q + ‖∆ũk+N+1‖2

r (16)

Hence

F (xk+N+1)− F (xk+N) = −‖xk+N‖2
q − ‖∆ũk+N‖2

r ≤ 0 (17)

with equality satisfied if and only if xk+N = ∆ũk+N = 0. This shows that
F (·) is a Lyapunov function in some neighbourhood of 0, in particular for
x ∈ XI(Kσ(k)). �

Note that the terminal cost used in scheme 2 is the same as that used in
scheme 1. However, the value functions of the two problems P and Pσ(k) are
different, because they have different sets of decision variables.

It can be seen that this result, and its proof, depend only on using an ap-
propriate terminal cost F (·), and not at all on the details of the constrained
optimization over the horizon of length N . Consequently the result and its
proof hold for any other MMPC scheme which involves constrained optimiza-
tion over a finite horizon, providing that the terminal cost is given by (15).
For example, for a particular 3-input system, it may be beneficial to update
the inputs in the sequence (1, 2, 1, 3, 1, 2, 1, 3, . . .), thus updating one of the
inputs twice as often as the others. The stability of such a scheme is proved
by the argument used above, providing that the sequencing function σ(·) is
redefined appropriately.

However, the proof depends on the constrained optimization being feasible at
each step, and the feasibility at any particular time step depends on the details
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of the constrained optimization problem that is being solved. (But note that
with a perfect model and in the absence of disturbances, if feasible solutions
are obtained over an initial period, then feasibility is assured thereafter.)

4 An Example

In this section, we give a numerical simulation example to illustrate the pro-
posed MMPC schemes. In particular, we focus on the disturbance rejection
performance and compare it with the conventional ‘synchronised MPC’ (SMPC)
scheme. The simulations were carried out with the plant modelled in continuous-
time and the controller modelled in discrete-time.

The plant has a continuous-time model y1(s)

y2(s)

 =

 1
7s+1

1
3s+1

2
8s+1

1
4s+1


 u1(s)

u2(s)

 (18)

Although simple, such dynamics are representative of what is commonly en-
countered in, e.g. multiple chamber or multi-zone temperature control prob-
lems, where the temperatures of the individual chamber/zone need to be
controlled independently in the presence of thermal interactions between the
chambers/zone. A possible approach is to perform multivariable control de-
sign, but this may lead to a large centralised controller if the number of cham-
bers/zones is large. An alternative is to employ decentralised control where
each chamber is assigned a SISO controller suitably de-tuned to account for
the inter-loop interactions. Here we propose the multiplexed MPC approach
as a compromise between these two extremes.

The plant has two inputs and hence m = 2 for this example. We chose the
sampling time to be T = 1s. More specifically, for SMPC, the states were
measured at time interval of 1s and both u1 and u2 were changed at the same
time and held constant over a period of 1s. For MMPC schemes, the states
were measured at T/m = 0.5s with u1 and u2 alternatively applied at 0.5s
intervals, but each held constant over a period of T = 1s (see Fig 1.1), i.e. u1

is updated at times (0, 1s, . . .) and u2 is updated at times (0.5s, 1.5s, . . .).

We designed the SMPC for this plant with the usual set-up: the control moves
{∆u1,k, . . . , ∆um,k} all applied at the same time instant but held constant
over period T . To make the comparison with MMPC meaningful, the terminal
cost for SMPC was determined using the same cost function as that of MMPC,
i.e. by summing up the state and control moves at every T/m period, which
corresponds to increment of k by 1. More precisely, the terminal cost for SMPC
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is determined by the following LQ problem:

min
∆u

∞∑
i=0

‖xk+i+1‖2
q + ‖∆uk+i‖2

R̄

subject to system (2), with ∆uk+i = 0, i 6= 0, m, . . . and R̄ = diag(r, . . . , r).

The terminal cost for SMPC can be determined from the equivalent LQ prob-
lem with the following cost function (see appendix for a derivation and the
definition of the symbols used):

JSMPC =
∞∑

j=0

‖xk+jm‖2
Q + ‖∆uk+jm‖2

R + 2xT
k+jmS∆uk+jm

where xk+(j+1)m = Amxk+jm+Am−1B∆uk+jm, Q̄ = diag(q, . . . , q), Q = ĀT Q̄Ā,
R = B̄T Q̄B̄ + R̄ and S = ĀT Q̄B̄.

Fig. 2 shows the simulation result when a unit step input disturbance was
introduced at time 5.1s, i.e. just after input 1 has been updated. The upper half
of the figure compares the closed-loop responses between SMPC and MMPC
schemes 1 and 2, with the design parameter Nu = 5. It can be seen that due to
a faster reaction time, the MMPC schemes were more effective in reducing the
peak overshoot at the plant outputs, although there were larger undershoots
for the MMPC schemes. The lower half of the figure shows MMPC scheme 2 for
Nu = 1, . . . , 5. With increasing Nu the peak on the output after a disturbance
is reduced but the undershoot increases.

Fig. 3 shows the same simulation scenario when input constraints of |u1| ≤ 1.1
and |u2| ≤ 1.1 were added. It can be seen that the undershoot in MMPC
scheme 2 has been significantly reduced. Again, increasing Nu in MMPC
scheme 2 has the effect of reducing the peak overshoot at the plant outputs.

MMPC are periodic control schemes, thus their performance depends on the
time at which the disturbance occurs. Fig 4 and 5 show a similar set of sim-
ulation results but when the input disturbance occurs at time 5.6s, i.e. just
after input 2 has been updated. From Fig. 4, it can be seen that MMPC has
little advantage in the y1 channel, while still offering some advantage in the y2

channel. Again, we notice that increasing Nu in MMPC scheme 2 has the effect
of reducing the peak overshoot at the plant outputs, and adding constraints
on the inputs helps to reduce the undershoots.

In this example MMPC gives better performance than SMPC, as judged by
recovery from step disturbances. This cannot be expected to be true always.
But even if the performance is worse than that of SMPC, MMPC scheme 2
offers considerably lower computational complexity, which might make it the
more desirable control algorithm.
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5 Conclusion

In this work, two versions of a novel control scheme known as Multiplexed
MPC were proposed. The second of these is expected to be of practical bene-
fit because it offers reduced computational complexity. Both of our proposed
MMPC schemes have been proved to be nominally stable. The nominal sta-
bility of a large class of other multiplexed MPC schemes follows by the same
argument as we used in this paper.

It is interesting, and potentially important, to observe that the assumption
of equal intervals between the updates of plant inputs is not essential to our
proposal. Any pattern of update intervals can be supported, providing that it
repeats in subsequent update cycles.

Some performance benefit over conventional MPC can be obtained as a re-
sult of faster reactions to disturbances, despite suboptimal solutions being
obtained. This has been demonstrated by an example. However, the closed
loop disturbance rejection performance under MMPC is time varying because
of the periodic nature of the control scheme.
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A Derivation of the Equivalent LQ Problem for SMPC

First, denote Q̄ = diag(q, . . . , q) and

x̄k+jm =



xk+jm+1

xk+jm+2

...

xk+jm+m


= Āxk+jm + B̄∆uk+jm

where
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Ā =



A

A2

...

Am


, B̄ =



B

AB
...

Am−1B



Next, perform the following manipulations to the SMPC cost function:

JSMPC =
∞∑
i=0

‖xk+i+1‖2
q + ‖∆uk+i‖2

R̄

=
∞∑

j=0

m−1∑
i=0

(‖xk+jm+i+1‖2
q + ‖∆uk+jm+i‖2

R̄)

=
∞∑

j=0

‖x̄k+jm‖2
Q̄ + ‖∆uk+jm‖2

R̄

=
∞∑

j=0

‖Āxk+jm + B̄∆uk+jm‖2
Q̄ + ‖∆uk+jm‖2

R̄

=
∞∑

j=0

‖xk+jm‖2
ĀT Q̄Ā + ‖∆uk+jm‖2

B̄T Q̄B̄+R̄ + 2xT
k+jmĀT Q̄B̄∆uk+jm

=
∞∑

j=0

‖xk+jm‖2
Q + ‖∆uk+jm‖2

R + 2xT
k+jmS∆uk+jm

where

Q = ĀT Q̄Ā, R = B̄T Q̄B̄ + R̄, and S = ĀT Q̄B̄

and note that
xk+(j+1)m = Amxk+jm + Am−1B∆uk+jm.
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Fig. 2. Disturbance at 5.1s, no constraint. SMPC(dash), MMPC scheme 1(dash-dot),
MMPC scheme 2(solid)
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Fig. 3. Disturbance at 5.1s, with constraint. SMPC(dash), MMPC
scheme 1(dash-dot), MMPC scheme 2(solid)

18



0 5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

se
tp

t 1
 a

nd
 y

1

Time
0 5 10 15 20

−0.1

0

0.1

0.2

0.3

0.4

se
tp

t 2
 a

nd
 y

2

Time

0 5 10 15 20
−1.5

−1

−0.5

0

co
nt

ro
l s

ig
na

l, 
u1

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

co
nt

ro
l s

ig
na

l, 
u2

Disturbance at 5.6s, Nu=5, SMPC(g−−), MMPC1(r−.),MMPC2(b−)

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

se
tp

t 1
 a

nd
 y

1

Time
0 5 10 15 20

−0.1

0

0.1

0.2

0.3

0.4

se
tp

t 2
 a

nd
 y

2

Time

0 5 10 15 20
−1.5

−1

−0.5

0

co
nt

ro
l s

ig
na

l, 
u1

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

co
nt

ro
l s

ig
na

l, 
u2

MMPC2, Disturbance at 5.6s, Nu=1:5, No Constraint

Fig. 4. Disturbance at 5.6s, no constraint. SMPC(dash), MMPC scheme 1(dash-dot),
MMPC scheme 2(solid) 19
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