
Polyhedral Tools for Control

Colin N. Jones
Pembroke College

Control Group

Department of Engineering

University of Cambridge

A thesis submitted for the degree of

Doctor of Philosophy

4th July 2005

To Karen

Abstract

Polyhedral operations play a central role in constrained control. One of the most fundamental

operations is that of projection, required both by addition and multiplication. This thesis

investigates projection and its relation to multi-parametric linear optimisation for the types

of problems that are of particular interest to the control community.

The first part of the thesis introduces an algorithm for the projection of polytopes in

halfspace form, called Equality Set Projection (ESP). ESP has the desirable property of

output sensitivity for non-degenerate polytopes. That is, a linear number of linear programs

are needed per output facet of the projection. It is demonstrated that ESP is particularly

well suited to control problems and comparative simulations are given, which greatly favour

ESP.

Part two is an investigation into the multi-parametric linear program (mpLP). The mpLP

has received a lot of attention in the control literature as certain model predictive control

problems can be posed as mpLPs and thereby pre-solved, eliminating the need for online

optimisation. The structure of the solution to the mpLP is studied and an approach is pre-

sented that eliminates degeneracy. This approach causes the control input to be continuous,

preventing chattering, which is a significant problem in control with a linear cost. Four

new enumeration methods are presented that have benefits for various control problems and

comparative simulations demonstrate that they outperform existing codes.

The third part studies the relationship between projection and multi-parametric linear

programs. It is shown that projections can be posed as mpLPs and mpLPs as projections,

demonstrating the fundamental nature of both of these problems.

The output of a multi-parametric linear program that has been solved for the MPC control

inputs offline is a piecewise linear controller defined over a union of polyhedra. The online work

is then to determine which region the current measured state is in and apply the appropriate

linear control law. This final part introduces a new method of searching for the appropriate

region by posing the problem as a nearest neighbour search. This search can be done in

logarithmic time and we demonstrate speed increases from 20Hz to 20kHz for a large example

system.

Proiacio ergo gradum accedo

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Jan Maciejowski, for his

support and encouragement over the course of this work. Without his guidance this research

would not have been possible and without his penchant for finding money none of my teas,

parties, BBQs or renovations would have happened.

Dr. Eric (Colin) Kerrigan has been an enormous help throughout this work both with the

technical and the ‘big picture’. His initial comment in my first year “come up with a better

way to compute projection, they’ll give you a PhD for that” has obviously had a significant

impact.

Thank you to Prof. Manfred Morari and to Dr. David Mayne for the chance to visit

their groups. Exposure to other students interested in the same problems has broadened my

knowledge of control and lead to many insights. In particular I would like to thank Pascal

Greider, Sasa Raković, Jorgen Spjøtvold and Dr. Komei Fukuda, whose valuable discussions

and insights were much appreciated.

A second thanks to Jan and Eric for organising the MPC group, whose diversity filled out

my knowledge of what real people do with control. Thank you to Dr. Danny Ralph and to

Dr. Paul Austin for demonstrating that I’m not just playing math, but that real people make

real money doing this.

Thanks to Dr. Mihai Huzmezan, whose idea it was that I should come to Cambridge and

for rounding up many of his old class mates to help make our ‘careers tea’ a success.

The PhD is not all academics - the control group was valued as much for its social aspects

as its knowledge of control (which is quite limited after a few pints anyway). A thank you

to all the guys (and girl), especially those of you who really suck at poker. Those new and

those who just never seem to leave: Frank, Paul, Oli, Paul, Nik, John, Chris and Dan.

Despite the pain and lack of sleep, the Pembroke boat club has been a fantastic way to not

turn into a ball while I wrote this thesis. Thanks to the crew and to Mr. Paul Wilkins who

vii

believed that an old git can pull with the rest of the pups. Pembroke has been a great college

over the years and the graduate parlour a great escape full of many unforgettable people.

No work is worthwhile without the comfort of a good family and friends. I am lucky

to have both who have supported me during this work. Thank you to my parents and to

my sister and her fiancé for their unwavering faith that this work could and would be done.

Thanks to Lee and Stacy, and Ian and Mette for getting me out of the country and into a

pub whenever it got too much. My new godson, Colin, and his parents Jeremy and Evelyn

have given me a glimpse at the future, and it looks good.

The final word is as always for my partner Karen, who has heard more about polytopes

than by rights anyone should have to endure. As there are not words enough, I’ll just say a

heartfelt thank you.

Finally, I would like to acknowledge the Government of Canada, the Prince’s Trust, Pem-

broke College and the Department of Engineering for their financial support during this work.

Colin N. Jones

Cambridge, 2005

viii

Declaration

As required by the University Statute, I hereby declare that this dissertation is not substan-

tially the same as any that I have submitted for a degree or diploma or other qualification

at any other university. This dissertation is the result of my own work and includes nothing

which is the outcome of work done in collaboration, except where specified explicitly in the

text.

I also declare that the length of this thesis is less than 65,000 words and that the number

of figures is less than 150.

Colin N. Jones

Pembroke College

Cambridge

25 January, 2005

ix

Contents

1 Introduction 1

1.1 Outline . 4

1.2 Statement of Collaboration . 5

I Equality Set Projection 7

2 Introduction 9

2.1 Related Work . 10

2.2 Outline . 12

2.3 Acknowledgements . 12

3 Polytopic Projections and Equality Sets 13

3.1 Affine Sets and Polytopes . 13

3.2 Face Lattice . 16

3.3 Equality Sets of a Polytope . 19

3.4 Projection of a Polytope . 22

4 Equality Set Projection 27

4.1 Algorithm Outline . 27

4.2 Adjacency Oracle . 29

4.3 Ridge Oracle . 39

4.4 Shooting Oracle . 46

4.5 Complexity Analysis . 48

5 Extensions and Implementation Details 51

5.1 Degeneracy . 51

xi

CONTENTS

5.2 Calculation of the Affine Hull . 54

5.3 Projection of non Full-Dimensional Polytopes 54

5.4 Projection of Polytopes that do not Contain the Origin 56

6 Projection Examples 59

6.1 Random Polytopes . 59

6.2 Feasibility . 61

II Parametric Linear Programming 71

7 Introduction 73

7.1 Related Work . 74

7.2 Outline . 77

8 Geometry of the Simplex Method 79

8.1 Representation of Vertices: The Basis . 80

8.2 Pivoting and Polyhedral Skeletons . 80

8.3 Optimality Conditions . 81

8.4 Simplex Algorithm . 83

8.5 Degeneracy . 83

8.6 Simplex Algorithm with a Unique Optimal Basis 92

8.7 One-Dimensional Parametric Programming 95

8.8 Primal-Dual Pairs . 97

9 Parametric Linear Programming 99

9.1 Structure of the Solution . 99

9.2 The Optimiser . 106

9.3 Neighbourhood Problem . 109

9.4 Enumeration Algorithms . 113

10 mpLP Examples 133

10.1 Double Integrator . 135

10.2 Closed-Form MPC for Random 3D System 139

10.3 Closed-Form MPC for 4D System . 143

10.4 Degenerate Closed-Form MPC Example . 146

xii

CONTENTS

III Projection and Parametric Programming 149

11 Introduction 151

11.1 Outline . 151

12 mpLP via Projection 153

12.1 Degeneracy . 154

13 Projection via mpLP 159

14 Projection and mpLP Examples 165

14.1 mpLP via Projection . 165

14.2 Projection via mpLP . 168

IV Point Location Problem 175

15 Introduction 177

15.1 Outline . 178

15.2 Acknowledgements . 179

16 Logarithmic Point Location 181

16.1 Introduction . 181

16.2 Point Location and Nearest Neighbours . 182

16.3 Degeneracy . 185

16.4 Approximate Nearest Neighbour . 185

17 Point Location Examples 187

17.1 Double Integrator . 187

17.2 Large Random System . 188

17.3 Randomly Generated Regions . 188

V Conclusions and Future Research 191

18 Conclusions 193

18.1 Main Contributions . 193

18.2 Future Research . 195

Bibliography 197

Author Index 205

xiii

CONTENTS

Index 206

xiv

List of Figures

3.1 Face Lattice of a Cube . 18

3.2 Illustration of the ‘Diamond Property’ . 18

3.3 Illustration of Equality Sets . 20

3.4 Equality Set Lattice of a Cube . 22

4.1 Example Projection of a Cube . 31

4.2 ESP Procedure: Projection of a Cube . 32

4.3 Example Projection of a Cube: Search Path in Cube Face Lattice 33

4.4 Example of the Wrapping Map ρ . 34

4.5 Subsets of Er under the Wrapping Map ρ 36

4.6 Linear Optimisation Under the Wrapping Map ρ 36

5.1 Degenerate Projection Example: Recursive Method 52

5.2 Degenerate Projection Example: Perturbation Method 53

5.3 Example Projections that are Good/Bad for both Degeneracy Methods. . . 55

6.1 Comparative Simulation Results for Randomly Generated Polytopes 62

6.2 Feasible Region of the Double Integrator for N = 2 66

6.3 Feasible Region for Example 6.2.2 . 68

6.4 Feasible Set XF of Example 6.2.3 . 69

8.1 Example of Primal Degeneracy . 85

8.2 3D Example of Primal Degeneracy . 85

8.3 Lexicographic Perturbation P ε . 88

8.4 Maximum Number of Feasible and Lex-Feasible Representations of a Vertex

with Degree of Degeneracy σ . 89

xv

LIST OF FIGURES

8.5 Lexicographic Perturbation: Effect of Ordering 90

9.1 Illustration of the Geometry of the Epigraph and the Solution Complex . . 104

9.2 Example Epigraph and Solution Complex 105

9.3 Example Enumeration using the Basic Method 115

9.4 Example Enumeration using the Facet-Based Method. 118

9.5 Example Enumeration using the Primal-Dual Method. 124

9.6 Reverse Search Illustration . 127

9.7 Reverse Search Tree for a Polytope ET D whose Vertices are on a Sphere . . 128

9.8 Example Enumeration using the Reverse-Search Method. 129

10.1 Solution to Example 10.1 . 137

10.2 Time for a Single LP Pivot as a Function of Size 138

10.3 Method Comparison for Example 10.2 . 142

10.4 Method Comparison for Example 10.3 . 145

10.5 MPT Solution for Degenerate Example 10.4 146

10.6 RCMSolution for Degenerate Example 10.4 147

10.7 RCMSolution for Degenerate Example using Hybrid Toolbox [Bem03] . . . 148

10.8 Basic Solution (Alg 9.2) for Degenerate Example 10.4 148

12.1 Example of a Degenerate Multiparametric Linear Program 155

14.1 Projection of Q for Example 14.1.1 . 167

14.2 Solution for Example 14.2.1 . 170

14.3 Critical Regions found by MPT for Example 14.2.2 172

14.4 Solution Complex for Example 14.2.2 . 172

14.5 Normal Fan and Dual Polytope ET D for Example 14.2.2 173

14.6 Solution to Example 14.2.2 . 173

16.1 Example of a Random Voronoi Diagram . 183

17.1 Search Tree Construction for Example 17.1 188

17.2 Controller Partition for the Double Integrator 189

17.3 Comparison of ANN [AMN+98] (Solid lines) to [BBBM01] (Dashed lines) . 190

xvi

List of Tables

3.1 Face names of an n-dimensional polytope 17

6.1 Comparison of Projection Methods for the Calculation of the Feasible Region

for Example 6.2.2 . 67

10.1 Comparison of mpLP Methods for Example 10.2 141

10.2 Comparison of mpLP Methods for Example 10.2 using Redundancy Elimi-

nation Heuristic [Gri04] . 141

10.3 Comparison of mpLP Methods for Example 10.3 144

10.4 Comparison of mpLP Methods for Example 10.3 using Redundancy Elimi-

nation Heuristic [Gri04] . 144

14.1 Comparison of mpLP Methods for Example 10.2 167

14.2 Comparison of Projection and mpLP Methods for the Calculation of the

Feasible Region of Example 14.2.2 . 171

xvii

List of Algorithms

4.1 Equality Set Projection (ESP) . 30

4.2 Adjacency oracle (ESP) . 40

4.3 Ridge oracle (ESP) . 47

4.4 Shooting Oracle (ESP) . 49

8.1 Simplex Algorithm . 84

8.2 Simplex Algorithm with a Unique Optimiser 94

8.3 One-Dimensional Parametric Linear Program with a Unique Optimiser . . . 97

9.1 Facet Oracle . 112

9.2 Multiparametric Linear Programming: Basic Enumeration 116

9.3 Multiparametric Linear Programming: Facet-Based Enumeration 119

9.4 Primal-Dual: Compute Potential Facets . 122

9.5 Multiparametric Linear Programming: Primal-Dual Enumeration 123

9.6 Multiparametric Linear Programming: Reverse Search for Enumeration . . . 128

12.1 Multiparametric Linear Programming using a Projection Algorithm 157

13.1 Projection using a Multiparametric Linear Programming Algorithm 163

xix

Notation

Acronyms

LP Linear program

QP Quadratic program

mpLP Multi-parametric linear program

mpQP Multi-parametric quadratic program

MPC Model Predictive Control

ESP Equality Set Projection

Sets

R Set of real numbers

N Integers

R
n Set of real vectors of length n

R
n×m Set of real matrices of size n×m

NR The set of integers from 1 to R, NR , {1, . . . , R}, for R ∈ N

Algebraic Operators

Let A, B ∈ R
m×n be a matrices and E ⊆ Nm, F ⊆ Nn be sets.

xxi

NOTATION

null (A) Nullspace of A, null (A) , {x ∈ R
n | Ax = 0}

range (A) Columnspace of A, range (A) , {y ∈ R
m | ∃x ∈ R

n, y = Ax}
N(A) Matrix whose columns form an orthonormal basis for null (A)

R(A) Matrix whose columns form an orthonormal basis range (A)

A† Moore-Penrose pseudo-inverse

A⊗B Kronecker product of A and B

AE Matrix whose rows are the rows of A whose indices are in the set E

A\E Matrix whose rows are the rows of A whose indices are not in the set E

A?,F Matrix whose columns are the columns of A whose indices are in the set F

Set Operators

Let S and U be sets.

S\U Set difference, S\U = {x | x ∈ S, x 6∈ U}
S ⊂ U S is a strict subset of U

|S| Cardinality of S

Polyhedral Operators

Let P = {z |Az ≤ b} , A ∈ R
m×n be a polyhedron and E ⊆ Nm be a set.

πxP Projection of P onto the variables x, πxP , {x | ∃y, (x, y) ∈ P }
PE The polyhedron PE , {z |AEz = bE } ∩ P

Other

Let a, b ∈ R
n be vectors.

Im The identity matrix of size m

1 A vector of all ones

a ∝ b True if a is proportional to b, false otherwise

a Â 0 True if lexico positive, if a 6= 0 and if the first nonzero component of a is positive

a Â b True if a− b Â 0, false otherwise

xxii

Chapter 1
Introduction

Polyhedra have been studied for thousands of years, with many Greek mathematicians dedi-

cating their lives to unraveling their mysteries. While the tools used to study polyhedra have

changed over the years, they have remained vitally important to many branches of science

and engineering.

The literal translation from Greek of the word polyhedron is ‘many faced solid’. While

this is a fairly good description, a more useful mathematical definition is that a polyhedron is

the solution set for a system of simultaneous linear inequalities. Polyhedra have been used to

model everything from physical objects such as chairs or motorcycles to more abstract high-

dimensional mathematical concepts such as the financial markets or expert system intelligence.

To give a flavour of the types of objects that can be described using polyhedra and of the

operations that need to be done on them, we give the following tiny sampling of uses:

Force Closure It is surprisingly difficult to teach a robot to pick up an object. The ideal

situation is for the robot to place its fingers at points on the object such that there

is no direction that a force can be applied that will knock the object out of its hand.

This property is known as force closure. If the object has reasonably flat sides and is

convex, then all possible interactions between the robot’s fingers and the object can be

modelled as a polyhedron. The set of finger locations that provide force closure can

then be calculated by projecting this polyhedron onto the dimensions that represent

the robot’s fingers. [PSS+95]

Path Planning Getting from one side of a room to the other without running into anything

is another obvious robotics problem. Furniture is reasonably well described as objects

with flat faces, as are most robots. Good algorithms exist that allow the computation of

a path through the furniture without bumping into any of it. However, they generally

1

1. INTRODUCTION

assume that the robot is just a point. This assumption can be made valid by ‘adding’

the shape of the robot to the furniture. This method of adding two polyhedra together is

called Minkowski Addition, and can also be solved by computing a projection. [Cam85]

Theorem Proving Expert systems represent knowledge as rules of the form “If the price

of barley goes down by 4%, then beer will be 3% cheaper”. After collecting many such

statements, one may wish the query the system with questions of the form “Under what

circumstances should I buy more beer?”. While the answer to this particular question

is obvious (every chance you get), expressions of this type can be written as polyhedra

and the questions can be answered via a projection operation if we wish to know all

such circumstances or as a linear program (LP) if we want to know just one. [CLL00]

Visualisation 3D computer graphics and visualisation is a rapidly growing field, in large

part due to the ability to efficiently store and process polyhedral models. All modern

graphics cards represent the world in terms of flat surfaces, using thousands of triangles

to form shapes. Before these objects can be shown on the screen, they need to be

projected from three dimensions down to the two that can be displayed. [AGG03]

Financial Constraints One of the biggest uses of polyhedra in recent years is the repre-

sentation of financial constraints: “If I expect the cost of crude oil to follow a given

pattern in the next year and my production facilities have a given set of properties, how

much oil should I buy this month?”. Many financial systems can be well modelled as

polyhedral constraints, and optimising over these constraints to choose the best option

can often be posed as a linear programming problem. [TU03]

The common thread amongst the above examples is the projection operation. This is one

of the most fundamental operations that can be done on polyhedra as many basic functions

are equivalent to, or can be reduced to projection. For example, both additions (Minkowski

addition) and multiplications (rank deficient linear maps) can be computed using a projection

operation [Ker00].

Control of linear dynamic systems under state and input constraints is an open prob-

lem that is of primary importance. One of the best and most natural ways to model such

constraints is through the use of linear inequalities, or polyhedra. Working on constrained

control problems therefore requires operating on polyhedra. The following list provides an

idea of the types of control problems involving polyhedral theory that one may want to tackle

(examples of these problems can be found in [Ker00]):

Feasibility A given state is called feasible if there exists a sequence of control inputs such

that both the inputs and the future state of the system stays within given constraints.

2

This region is clearly of importance as it tells us the set of states to which we can

choose to drive the system without causing problems with constraints in the future. The

determination of all such states that have this property can be posed as a polyhedral

projection.

Invariance If there is an unknown persistent disturbance acting on a system, then it will

be impossible to regulate that system exactly to the origin. A natural question would

be “How close we can get to the origin for a given level of disturbance?” If a linear

control law is applied, then the smallest set of states around the origin that the system

is guaranteed to stay in is called the minimally invariant set and can be computed via

recursive projection operations.

Region of Attraction The region of attraction of a system is the set of states that can be

driven to the origin without violating any constraints. For example, we may wish to

know the maximum bank angle that an aircraft can achieve before there is insufficient

control authority to get it back flat and level. This too can be computed via a projection.

Reachability Analysis For safety critical systems an important question is one of reacha-

bility: “Does there exist a disturbance that could push the system into an unsafe state

from the current state?” Existence type questions such as this can often be directly

translated into projection.

Closed-form MPC The best existing approach for controlling systems with input and state

constraints is called model predictive control (MPC). Recent developments in the control

literature have demonstrated that MPC laws can be pre-solved offline using multi-

parametric programming (mpLP) techniques. In this thesis we show a very close link

between multi-parametric linear programming and projection; namely that an mpLP

algorithm can be used to solve a projection problem and a projection algorithm can be

used to solve a multi-parametric linear program.

Again, one can see that the common thread amongst the above problems is the projection

operation. While there are several methods available that can be used to compute projections,

none of them are well-suited to the structure of the problems that are generally seen in control.

In fact, current methods can at best handle small, toy problems and a significant improvement

is needed before sizeable systems can be computed. It is for these reasons that this thesis

focuses on new approaches to polyhedral projection algorithms and to the related field of linear

parametric programming that, while general, are particularly efficient for control problems.

3

1. INTRODUCTION

1.1 Outline

This thesis is seperated into five parts. The purpose and content of each is outlined as follows:

Part I: Equality Set Projection (ESP)

In this part we first give an introduction to polytopes and their related mathematics, which

is used throughout the thesis. A new algorithm for the projection of polytopes in halfspace

form is presented, dubbed Equality Set Projection (ESP). The correctness and completeness

of the algorithm are proven and its complexity is explored. This analysis demonstrates that

ESP is the first projection algorithm with the important property of output sensitivity for

non-degenerate polytopes. In other words, the complexity of the algorithm is a linear function

of the size of the output (number of facets in the projection). Comparative simulations are

run on examples that are of interest to control problems, in which ESP is demonstrated to

be many orders of magnitude faster than the existing state-of-the-art.

Part II: Parametric Linear Programming

Recent interest in multi-parametric programming in the control community has spawned

several algorithms for both linear (mpLP) and quadratic (mpQP) problems. However, the

properties of the algorithms in the presence of degeneracy are still poorly understood, which

has resulted in algorithms whose correctness cannot be guaranteed or, more importantly for

control problems, the continuity of the optimiser. In this part we explore this structure of

linear problems and propose a procedure that we prove ensures correctness, completeness

and continuity for degenerate problems, without sacrificing optimality. This procedure is

then incorporated into four enumeration methods, with varying properties depending on

the problem under consideration. Finally, simulation results demonstrate the favourable

performance of these algorithms over other available approaches.

Part III: Projection and Parametric Programming

This part explores links between projection and parametric linear programming. We demon-

strate that any projection algorithm can compute an mpLP and vice versa. This important

result joining these two problems opens up new possibilities for algorithms drawing from both

areas. Simulations demonstrate that for control problems, ESP and the algorithms presented

in Part II are still best for projection and mpLPs respectively.

4

1.2 STATEMENT OF COLLABORATION

Part IV: Point Location Problem

The recent interest in parametric programming in the control community is due to its ability

to solve model predictive control (MPC) problems offline. Traditionally, the implementation

of an MPC controller requires the solution of an optimisation problem at every sampling

instant, which has restricted the application of MPC to slower systems. However, posing the

MPC problem as an mpLP/QP breaks the state-space into a union of polyhedral regions,

such that in each region the optimal MPC control law is a simple linear controller, which has

been pre-computed. The online procedure then becomes one of determining the region that

contains the current measured state and then applying the appropriate control law; this is

the ‘point location problem’. However, if the number of regions is large, solving the point

location problem can be more time consuming than solving the original optimisation problem.

In this part we prove that the polyhedral regions for an mpLP are in fact a so-called power

diagram, which is a type of Voronoi diagram. Voronoi diagrams are an extremely common

construct both in nature and engineering. For example, the territorial patterns of some fish

and the determination of the transmitted signal on a radio are, both Voronoi diagrams. We

borrow an approach developed for searching large databases, called Approximate Nearest

Neighbours (ANN) [AMN+98] This allows the search of a power diagram in time logarithmic

in the number of regions and linear in the dimension. Through simulation we demonstrate

that this enables an increase of several orders of magnitude is possible in sampling rate.

Part V: Conclusions and Future Research

This final part summarises the key contributions of this thesis and discusses possible directions

for future research.

1.2 Statement of Collaboration

The following sections are work done in collaboration with other researchers:

Part I: Equality Set Projection (ESP)

The author would like to thank Pascal Greider for his valuable comments early in this work.

This part is based almost entirely on the following technical report:

C.N. Jones, E.C. Kerrigan and J.M. Maciejowski. Equality set projection: A

new algorithm for the projection of polytopes in halfspace representation. Tech-

5

1. INTRODUCTION

nical report CUED/F-INFENG/TR.463, Department of Engineering, Universtiy

of Cambridge, 2004.

Part IV: Point Location Problem

The work presented in this part is a collaborative effort with Pascal Grieder and Sasa Raković.

The text is based almost entirely on the following paper:

C.N. Jones, P. Grieder and S.V. Raković. A Logarithmic-Time Solution to the

Point Location Problem for Closed-Form Linear MPC. To appear in Proceedings

of the 16th IFAC World Congress, Prague, Czech Republic, 2005.

The examples in this part have been prepared with the MPT toolbox [KGBM04] and

Figure 17.3 was calculated using the ANN library [MA98].

6

Part I

Equality Set Projection

7

Chapter 2
Introduction

The calculation of the orthogonal projection of a polytope is a fundamental operation that

arises in many applications. For example, in control theory, projection is required for reacha-

bility analysis [Bla99] and in decision theory for the elimination of existential quantifiers [VSLS00].

It can be shown that the calculation of affine maps or Minkowski sums of polytopes are both

equivalent to orthogonal projection [Ker00], making a projection algorithm a necessary tool

for working with polytopes.

It is well known that polytopes can be represented in two forms: as the convex combination

of a finite number of vertices and as the intersection of a finite number of halfspaces. For

any d-dimensional polytope, represented as the intersection of q halfspaces, the number of

vertices required to describe the same polytope is O(qb d
2c) in the worst case. Polytopes that

exhibit an exponential relationship are common in various fields. For example, a hypercube

in d-dimensions can be described by 2d halfspaces or 2d vertices.

Vertex representation is appropriate in some applications, while in others halfspace is

preferred. In this thesis, we are interested in polytopes that are in halfspace representation

and whose projection should also be given in halfspace form, as this is the most common form

seen in linear constrained control problems. As we are given a polytope in halfspace form and

the vertex representation can be exponentially more complex, we ideally want the complexity

of the projection algorithm to depend only on the number of halfspaces, and never to compute

the vertices. As the effects of this exponential behaviour do not become significant until the

dimension of the problem is large, this algorithm is most suited to the projection of high

dimensional polytopes.

In this part we give a new algorithm, dubbed Equality Set Projection (ESP), for the

computation of the projection of a bounded polytope described as the intersection of a finite

number of halfspaces in arbitrary dimension. We do not make the assumption that the

9

2. INTRODUCTION

polytope is in general position or that the description is irredundant, although the description

of the projection returned by the algorithm is irredundant. It will be shown that for a polytope

of fixed size (dimension and number of halfspaces), ESP computes the projection using a

number of linear programs that is linear in the number of halfspaces in the projection.

2.1 Related Work

We briefly review the literature on projection methods and examine its relation to our work.

Current projection methods that can operate in general dimensions can be grouped into

three classes: Fourier elimination, block elimination and vertex based approaches. While

each approach can be effective for a particular class of polytopes, there is as yet no algorithm

whose complexity is a function of the number of halfspaces required to describe the projection.

Here, we give a brief overview of these approaches and their derivatives.

Fourier-Motzkin elimination was originally described by Fourier in 1824 and has been

improved many times since. This approach can be thought of as the analogue of Gaussian

elimination for linear inequalities. At each iteration of the algorithm the polytope is re-

cursively projected by one dimension until the desired dimension is reached. The primary

limitation of Fourier-Motzkin elimination is that it generates many redundant constraints at

each iteration. It is not practical to remove the redundancies at each step, although modi-

fications of the algorithm due to Černikov [Č63] in 1963 greatly improved the efficiency by

identifying many redundant constraints with very little added work. For some polytopes, algo-

rithms based on Fourier elimination can be efficient and recent work [JMSY93] has improved

the average case complexity for very sparse constraints. However, for a polytope described

by q halfspaces that is to be projected down by k dimensions, the time complexity of Fourier

elimination is O(q2k
), often making it unusable even for small problems.

In [PSS+95], a modification of Fourier’s method is proposed in which a set of k + 1

constraints is selected and all k dimensions of this set that are to be projected are removed

using Gaussian elimination. There are, however,
(

q

k + 1

)
sets of constraints that must be

considered, making this algorithm only suitable for very specific applications.

The second well known approach is block elimination. In this method a polyhedron is

defined called the projection cone [BP83]. The extreme rays of this cone can then be used

to find the defining halfspaces of the projection. While there exist efficient methods for

computing these extreme rays, such as the double description algorithm [FP96] or the reverse

search approach [AF92, AF96], this approach may generate a large, and possibly exponential,

number of redundant inequalities that need to be removed.

Recent work by Balas [Bal98] has shown that if certain invertibility conditions are sat-

10

2.1 RELATED WORK

isfied, then every extreme ray of the projection cone generates an irredundant constraint of

the projection. This observation has been extended to polytopes that do not satisfy these

conditions by the introduction of a transformation of the cone such that each ray of the pro-

jection of the transformed cone corresponds to a constraint of the projection of the polytope.

The limitation of this approach is that the calculation of the extreme rays of the projection

of the transformed cone may be very difficult, although it offers an important insight into the

structure of projection.

The final class of approaches covers a variety of methods that compute vertices of the

projection. While these approaches are suitable for a certain class of polytopes, we are

interested here in polytopes in which the vertices greatly outnumber the inequalities. As a

result, any approach that requires the enumeration of the vertices of either the polytope or

its projection can be as much as exponentially slower for this class than an approach that

considers only inequalities.

All vertices of the polytope can be computed using a vertex enumeration algorithm, each

vertex can then be trivially projected, before a convex hull algorithm is used to calculate

the inequality constraints of the projection. Vertex enumeration and convex hulls can be

computed using the same algorithms (for example, [BDH96, AF92, AF96, FP96, CL97, Cla,

BFM98a]). This approach can be efficient for polytopes with large numbers of redundant

inequalities or a small number of vertices. However, as there can be exponentially more

vertices than there are inequalities, the applicability is limited to polytopes with a small

vertex count.

A contour-tracking approach is proposed in [PSS+95] in which the skeleton of the projec-

tion is traced. The skeleton is formed from the vertices and the one-dimensional lines that

join them. The complexity is a linear function of the number of vertices of the projection

and as a result is suitable only when the number of vertices is small when compared to the

number of inequalities.

An approach, similar to that developed in this part, was outlined in [AZ96]. The purpose

was to compute both the vertex and half-space representation of the projection, although

the algorithm can be adapted to compute only the inequalities if desired. Three restrictive

assumptions are made, which we here relax. First, in [AZ96] it is assumed that the polytope

is in general position; while there exist standard techniques to ensure that this is the case for

general polytopes [EM90], no insight is given as to how they may be applied to this problem.

Second, it is implicitly assumed in [AZ96] that the description of the polytope is irredundant.

While this requirement is not necessarily prohibitive and can be satisfied by running as many

linear programs as there are constraints, it will greatly slow the algorithm if the dimension is

11

2. INTRODUCTION

large, or if there are many redundant inequalities. Finally, the assumption is made that every

face of the polytope that projects to a facet of the projection is of dimension d − 1. While

there is a class of polytopes for which this is the case, it is not true in general and we here

introduce two methods to handle this degenerate case.

Remark 2.1. Note that the condition we refer to in this part as “degenerate” is not a function

of just the polytope, but rather of the direction that the polytope is being projected. Any polytope

could be rotated such that the pre-image of one of the facets of the projection has a dimension

larger than d− 1.

2.2 Outline

The remainder of this part is organised as follows: Chapter 3 provides an introduction to

polytopes and their projections and introduces the notion of an equality set. Section 4.1

gives an outline of the ESP algorithm while Sections 4.2 through 4.4 provide the details. The

complexity of the algorithm is investigated in Section 4.5 and various extensions are discussed

in Chapter 5. Finally, both generic and control-specific numerical simulation comparisons

between ESP and existing approaches are reported in Chapter 6.

2.3 Acknowledgements

The author would like to thank Pascal Greider for his valuable comments early in this work.

This part is based almost entirely on the following technical report:

C.N. Jones, E.C. Kerrigan and J.M. Maciejowski. Equality set projection: A

new algorithm for the projection of polytopes in halfspace representation. Tech-

nical report CUED/F-INFENG/TR.463, Department of Engineering, Universtiy

of Cambridge, 2004.

12

Chapter 3
Polytopic Projections and Equality Sets

This section provides an overview of projections of polytopes. The notion of an equality set

will be introduced and the properties relevant to projection will be demonstrated.

3.1 Affine Sets and Polytopes

Vector spaces and the related notions of subspaces and affine sets are fundamental to any

discussion of polytopes and therefore we begin this introduction with a brief review of these

concepts.

A vector space V over the reals is a set of vectors z ∈ R
n that contains the origin and

is closed under vector addition and scalar multiplication. A subspace of a vector space V

is any subset of L ⊆ V that is itself also a vector space. Recall that L can be represented

in two common forms: as the set of all vectors satisfying a finite set of homogeneous linear

equations:

L = {z ∈ R
n | Az = 0} , for some A ∈ R

q×n (3.1)

or in terms of the span of a finite set of vectors vi ∈ R
n:

L = span {v1, . . . , vp} =

{
z ∈ R

n

∣∣∣∣∣ z =

p∑

i=1

λivi, λi ∈ R

}
. (3.2)

If the vectors vi are linearly independent, then the set {v1, . . . , vp} forms a basis for L.

The dimension of a subspace L ⊆ R
n, denoted dim L, is defined as the smallest number of

vectors whose span is L. Note that if the subspace is defined as in (3.1), then the dimension

can be calculated as dim L = n − rank A. If it is represented as in (3.2), then its dimension

13

3. POLYTOPIC PROJECTIONS AND EQUALITY SETS

is the maximum number of linearly independent vectors vi.

A subset M ⊆ R
n is called an affine set if (1 − λ)x + λy ∈ M for every x, y ∈ M and

λ ∈ R. Two affine sets M1 and M2 are said to be parallel if they can be written as

M1 = M2 + a, for some a ∈ R
n. (3.3)

Theorem 3.1. [Roc70, Thm 1.2] Each non-empty affine set M is parallel to a unique subspace

L. This L is given by

L = M −M = {x− y | x, y ∈M} .

Theorem 3.1 and (3.3) allow us to write every affine set M as a translate of a unique

subspace L

M = L + a, for some a ∈ R
n. (3.4)

The two representations of subspaces defined above give rise to two representations of

affine sets. Equation 3.1 gives the representation in terms of all solutions of a finite set of

linear equations:

M = L + a, for some a ∈ R
n

= {z ∈ R
n | Az = 0}+ a

= {z ∈ R
n | A(z − a) = 0}

= {z ∈ R
n | Az = b} , b , Aa. (3.5)

Affine sets of the form
{
z | aT z = b

}
, a ∈ R

n, b ∈ R, a 6= 0 are called hyperplanes. Equa-

tion 3.5 shows that all affine sets can be written as the intersection of a finite number of

hyperplanes.

Given a set S ⊆ R
n, the affine hull of S, denoted aff S, is the intersection of all affine

sets containing S. Clearly, the affine hull of an affine set is itself. It can be shown that the

affine hull of S consists of all the vectors y of the form y =
∑p

i=1 λivi, such that vi ∈ S and
∑p

i=1 λi = 1 [Roc70]. Equation 3.2 allows us to write any affine set as the affine hull of a

14

3.1 AFFINE SETS AND POLYTOPES

finite number of vectors:

M = L + a, for some a ∈ R
n

=

{
z ∈ R

n

∣∣∣∣∣ z =

p∑

i=1

λivi, λi ∈ R

}
+ a

=

{
z ∈ R

n

∣∣∣∣∣ z = a +

p∑

i=1

λivi, λi ∈ R

}

=

{
z ∈ R

n

∣∣∣∣∣ z = λp+1a +

p∑

i=1

λi(vi + a),

p+1∑

i=1

λi = 1, λi ∈ R

}

=

{
z ∈ R

n

∣∣∣∣∣ z =

p+1∑

i=1

λiµi,

p+1∑

i=1

λi = 1, λi ∈ R

}

= aff {µ1, . . . , µp+1} ,

where µi , vi + a, i = 1, . . . , p, µp+1 , a.

If z1, z2 ∈M , where M = L + a is an affine set, L is a subspace and a is a vector then z1

and z2 are called affinely independent if and only if z1−a and z2−a are linearly independent.

This allows the notion of dimension to be extended to affine sets as follows: the dimension of

an affine set M , denoted dim M , is defined as the dimension of the subspace which is parallel

to it, dim M , dim L if M = L + a, where L is a subspace.

A subset C ⊆ R
n is convex if (1 − λ)x + λy ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1.

Clearly, all affine sets are convex. The convex hull of a set S ⊆ R
n is the intersection of

all the convex sets containing S and is denoted conv S. The convex combination of a set of

vectors {v1, . . . , vp} is all points
∑p

i=1 λivi,
∑p

i=1 λi = 1, λi ≥ 0.

Theorem 3.2. [Roc70, Thm 2.3] For any S ⊂ R
n, conv S consists of all convex combinations

of the elements of S.

Corollary 3.3. [Roc70, Cor. 2.4] The convex hull of a finite subset {v1, . . . , vp} of R
n consists

of all vectors of the form
∑p

i=1 λivi, with λi ≥ 0,
∑p

i=1 λi = 1.

A closed halfspace is a convex set of the form
{
z ∈ R

n | aT z ≤ b
}

, a ∈ R
n, b ∈ R. Any

set that can be expressed as the intersection of a finite number of closed halfspaces is called

a polyhedral (convex) set:

P , {z ∈ R
n | Az ≤ b} , A ∈ R

q×n, b ∈ R
q.

15

3. POLYTOPIC PROJECTIONS AND EQUALITY SETS

The dimension of a polyhedron P is the dimension of its affine hull:

dim P , dim aff P. (3.6)

If a halfspace constraint can be removed from the description of P without changing the poly-

hedron, then it is called redundant. If the description of P contains no redundant constraints,

then it is called irredundant.

Note that while the convex hull of a set of points is always bounded, polyhedra may not

be. If a polyhedra is bounded, then it is called a polytope. Unless specified, throughout the

remainder of this part we shall assume that we are dealing with bounded polytopes.

The Minkowski-Weyl Theorem (Theorem 3.4 below) is fundamental as it allows a polytope

to be expressed in two forms: as the intersection of a finite number of halfspaces or as the

convex hull of a finite number of vectors.

Theorem 3.4. (Minkowski-Weyl) A subset P ⊂ R
n is the convex hull of a finite set of vectors

P = conv {v1, . . . , vp} , where each vi ∈ R
n,

if and only if it is a bounded intersection of halfspaces

P = {z ∈ R
n | Az ≤ b} , for some A ∈ R

q×n, b ∈ R
q.

Efficient methods exist for converting between one representation and the other, see [Fuk99]

for a survey. However, there can be an exponential relationship between the representations:

if an n−dimensional polytope can be described by the intersection of q halfspaces, it may take

up to O(qbn
2 c) vertices to formulate the convex hull. Similarly, if a polytope is given as the

convex hull of m vertices, an exponential number of halfspaces may be needed to describe the

same object. Many applications produce polytopes that exhibit this exponential relationship,

and they are very common in control. The projection method presented here operates only

on the polytope in halfspace form without computing the vertex representation and so is

particularly suited to polytopes that require a small number of halfspaces to describe them

but a very large number of points to formulate as a convex hull.

3.2 Face Lattice

In this section we recall a natural decomposition of polytopes: the face lattice.

16

3.2 FACE LATTICE

Table 3.1: Face names of an n-dimensional polytope
Dimension Name

(n− 1)-face Facet
(n− 2)-face Ridge
1-face Edge
0-face Vertex

Definition 3.5. (Face) [Zie95, Def. 2.1] F is a face of the polytope P ⊂ R
n if there exists a

hyperplane
{
z ∈ R

n | aT z = b
}
, where a ∈ R

n, b ∈ R, such that

F = P ∩
{
z ∈ R

n | aT z = b
}

and aT z ≤ b for all z ∈ P .

Note that ∅ and P are both faces of P (consider the hyperplanes
{
z | 0T z = 1

}
and

{
z | 0T z = 0

}
, respectively); all other faces are called proper faces.

Theorem 3.6. [Zie95, Prop. 2.2] Let P ⊂ R
n be a polytope and let F be a face of P :

1. The face F is a polytope.

2. Every intersection of faces of P is a face of P .

3. The faces of F are exactly the faces of P that are contained in F .

4. F = P ∩ aff F .

Note that as each face of a polytope is itself a polytope, the notion of dimensionality

applies to faces. If a face is of dimension p, then it is called a p-face. Faces of particular

dimensions have explicit names as shown in Table 3.1. Note that for a polytope in R
n,

the word face refers to a face of arbitrary dimension, while facet refers specifically to the

(n− 1)-faces.

Theorem 3.6 allows a natural partial ordering over the faces of a polytope based on

inclusion. If P is a polytope, then each face of P is itself a polytope whose faces are a subset

of P ’s faces. This allows us to draw a face lattice where each node represents a face of the

polytope and two nodes are connected if one of the corresponding faces is a subset of the

other. The lattice is organized vertically, such that faces of the same dimension appear at

the same level and the dimension increases up the diagram. An example lattice of a cube is

shown in Figure 3.1.

A property of the face lattice that is key to the projection method developed here is the

so-called diamond property :

17

3. POLYTOPIC PROJECTIONS AND EQUALITY SETS

Facets

Edges/Ridges

Vertices

Vertex

Edge

Facet
P

∅

Figure 3.1: Face Lattice of a Cube

Theorem 3.7. (Diamond property) [Zie95, Thm 2.7(iii)] If G and F are faces of a polytope

P and G ⊂ F with dim F − dim G = 2, then there are exactly two faces H1, H2 with the

property G ⊂ H1 ⊂ F and G ⊂ H2 ⊂ F .

Remark 3.8. The symbol ⊂ is used to mean strict subset. ⊆ will be used when the inclusion

is not strict.

Note that, as the name of the proposition implies, the four faces in Theorem 3.7 will ‘look

like’ a diamond, as shown in Figure 3.2.

F

G

H1H2

Figure 3.2: Illustration of the ‘Diamond Property’

The immediate implication of Theorem 3.7 is that any two facets ((n − 1)-faces) of a

polytope are either not joined in the face lattice or are connected by the inclusion of exactly

one ridge.

Two faces F1 and F2 of P are said to be adjacent if the intersection F1 ∩ F2 is a facet of

both.

18

3.3 EQUALITY SETS OF A POLYTOPE

3.3 Equality Sets of a Polytope

We now introduce the notion of the equality set, which is the method that will be used in this

paper for defining faces.

If P , {z ∈ R
n | Az ≤ b} is a polytope defined by the intersection of q halfspaces and

E ⊆ {1, . . . , q}, then AE is a matrix whose rows are the rows of A whose indices are in E.

Similarly, bE is the vector formed by the rows of b whose indices are in E. The relevant rows

of AE are taken in the same order as those of the matrix A. If E = {i} is a singleton, then we

write Ai for A{i}. The notation PE refers to the set PE , P ∩ {z | AEz = bE}.

Definition 3.9. (Equality Set) Let P , {z | Az ≤ b} be a polytope defined by the intersection

of q halfspaces, E ⊆ {1, . . . , q} and

G(E) , {i ∈ {1, . . . , q} | Aiz = bi, ∀z ∈ PE} .

The set E is an equality set of P if and only if E = G(E).

Remark 3.10. Note that this definition of an equality set is similar to the notion of an equal-

ity subsystem used in [BO98]. Whereas equality subsystems generally refer to any description

of the affine set that describes the affine hull of the face, equality sets describe this affine set

specifically in terms of all of the inequalities of P that are met with equality at all points in

the face.

To illustrate the idea of an equality set, consider the pyramid shown in Figure 3.3. Notice

that the set P{1,2,3} is the face, or more specifically, the vertex v, but that {1, 2, 3} is not an

equality set, since G({1, 2, 3}) = {1, 2, 3, 4}. There is only one equality set that defines the

face v, and that is {1, 2, 3, 4}.
The goal is to re-write the face lattice in terms of equality sets. First, the relationship

between equality sets and faces must be made explicit: there is a one-to-one mapping.

We begin with the following well-known result: equality sets define affine hulls.

Lemma 3.11. If E is an equality set of the polytope P , {z ∈ R
n | Az ≤ b}, then aff PE =

{z ∈ R
n | AEz = bE} and dim PE = n− rank AE.

Proof. The first result follows directly from Definition 3.9. The second result follows from (3.6)

and dim PE = dim aff PE = n− rank AE.

Lemma 3.12. (Uniqueness of Equality Sets) If E and B are equality sets of a polytope P ,

{z ∈ R
n | Az ≤ b}, then E = B if and only if PE = PB.

19

3. POLYTOPIC PROJECTIONS AND EQUALITY SETS

v

3

4

1 2

Figure 3.3: Illustration of Equality Sets

Proof. Clearly, if E = B, then PE = PB.

Assume that PE = PB. Since E and B are equality sets, E = G(E), B = G(B) and because

PE = PB we have

E = G(E) = {i | Aiz = bi, ∀z ∈ PE}
= {i | Aiz = bi, ∀z ∈ PB}
= G(B) = B.

Theorem 3.13 proves the assertion that there is a one-to-one mapping between equality

sets and faces.

Theorem 3.13. If E is an equality set of the polytope P , {z ∈ R
n | Az ≤ b}, then PE is a

face of P . Furthermore, if F is a face of P , then there exists a unique equality set E such

that F = PE.

Proof. If i ∈ E, then Aiz ≤ bi is true for all z ∈ P and therefore P ∩ {z ∈ R
n | Aiz = bi} is

a face by Definition 3.5. By Proposition 3.6(2), all intersections of faces are faces and thus

PE = P ∩i∈E {z ∈ R
n | Aiz = bi} is a face of P .

Recall from Proposition 3.6(1) that every face F of P is a polytope. The affine hull of a

polytope can be represented by the intersection of all halfspaces that are satisfied with equality

at all points in the polytope. Let the indices of those halfspaces be E; clearly E = G(E) and

20

3.3 EQUALITY SETS OF A POLYTOPE

E is an equality set. By Proposition 3.6(4) and using Lemma 3.11, F can be written as

F = P ∩ aff F

= P ∩ aff {z | AEz = bE}
= P ∩ aff PE

= PE.

Theorem 3.14 allows the ordering of the face lattice to be written as set inclusion on

equality sets.

Theorem 3.14. Let E and B be equality sets of P . The inclusion PE ⊂ PB holds if and only

if E ⊃ B.

Proof. Let the polytope be defined by the matrix A ∈ R
q×n and the vector b ∈ R

q: P ,

{x |Ax ≤ b}.
If E ⊃ B, we can write E = B ∪X for some X ⊆ {1, . . . , q} with X ∩ B = ∅ and therefore

PE = PB∪X

= PB ∩ PX

⊆ PB.

We now show that there exists an i in X that is not in B and therefore we have strict inclusion.

If i is in X then it is not in B because X ∩ B = ∅ and therefore by the definition of equality

set, there exists a z ∈ PB such that Aiz 6= bi, which implies that z 6∈ PX and hence we have

strict inclusion, i.e. PE ⊂ PB.

Assume that PE ⊂ PB. If i is in the equality set B, then for all z in PE, we have that

Aiz = bi because every point in PE must satisfy all constraints in PB. By definition, an equality

set contains all constraints that are satisfied with equality at all points in the polytope and

therefore i must be in the equality set E. It follows directly that E ⊃ B.

Theorems 3.13 and 3.14 allow the face lattice to be written in terms of equality sets. The

example of the cube lattice is shown again in Figure 3.4, but now in terms of equality sets.

21

3. POLYTOPIC PROJECTIONS AND EQUALITY SETS

∅

Facets

P

Edges/Ridges

Vertices

{1, 3} {1, 2} {2, 3} {1, 5} {3, 5} {4, 5} {1, 4} {2, 4} {3, 6} {2, 6} {5, 6} {4, 6}

{1} {2} {3} {4} {5} {6}

2
1

3

4

5

6

∅

{1, 2, 3} {1, 3, 5} {1, 4, 5} {1, 2, 4} {2, 3, 6} {3, 5, 6} {4, 5, 6} {2, 4, 6}

{1, 2, 3, 4, 5, 6}

Figure 3.4: Equality Set Lattice of a Cube

3.4 Projection of a Polytope

We now turn our attention to the main topic of this part: projection.

Definition 3.15. If P ⊂ R
d × R

k is a polytope then the projection of P onto R
d is πxP ,

{
x ∈ R

d | ∃y ∈ R
k, (x, y) ∈ P

}
.

Note that this definition of projection is also referred to as ‘projection along the coordinate

axes’ or ‘orthogonal projection’ in the literature.

The inputs to the algorithm presented in this report are the matrices C ∈ R
q×d and

D ∈ R
q×k and the vector b ∈ R

q, which define the polytope

P ,
{
(x, y) ∈ R

d × R
k | Cx + Dy ≤ b

}
. The goal is to compute a matrix G ∈ R

p×d and a

vector g ∈ R
p that define the projection of P onto R

d, πxP =
{
x ∈ R

d | Gx ≤ g
}
. Lemma 3.16

states that the projection of a polytope is a polytope, and hence can be expressed in the

required form, as the intersection of a finite number of halfspaces.

Lemma 3.16. [Zie95] If P ⊂ R
d × R

k is a polytope, then the projection of P onto R
d is a

polytope.

Lemma 3.17 allows the calculation of the dimension of a face of πxP , given its defining

equality set.

22

3.4 PROJECTION OF A POLYTOPE

Lemma 3.17. [BO98] If E is an equality set of the polytope

P =
{
(x, y) ∈ R

d × R
k | Cx + Dy ≤ b

}
, then

dim πxPE = dim PE − k + rank DE

= d + rank DE − rank
[

CE DE

]

Theorem 3.18 implies that if the affine hulls of each of the facets of the projection can be

found, and expressed in the form of linear equations, then we can directly find an appropriate

matrix G and a vector g such that πxP =
{
x ∈ R

d | Gx ≤ g
}
.

Theorem 3.18. [Web94, Theorem 3.2.1] If F1, . . . , Ft are the facets of a polytope P ∈ R
n,

0 ∈ P and aff Fi =
{
x ∈ R

n | aT
i x = bi

}
, where each ai ∈ R

n, bi ∈ R, then

P = aff P ∩





x ∈ R
n

∣∣∣∣∣∣∣∣




aT
1
...

aT
t


x ≤




b1

...

bt








,

where the sign of bi is chosen so that bi ≥ 0 for all i.

We now develop the theory required to compute the affine hulls of the facets of the

projection as a function of the polytope P . Lemma 3.19 and the related Corollary 3.20, show

that the faces of the projection πxP are projections of faces of the polytope P , which can be

expressed in terms of the equality sets of P .

Lemma 3.19. [Zie95, Lem. 7.10] If P ⊂ R
d × R

k is a polytope, then for every face F of

πxP , the preimage π−1
x F = {y ∈ P | πxy ∈ F} is a face of P .

Furthermore, if F and G are faces of πxP , then F ⊂ G holds if and only if π−1
x F ⊂ π−1

x G.

Corollary 3.20. If P ⊂ R
d × R

k is a polytope defined by the intersection of q halfspaces,

then for every face F of πxP , there exists a unique equality set E ⊆ {1, . . . , q} of P such that

the preimage π−1
x F = PE.

Furthermore, if F and G are faces of πxP such that π−1
x F = PE and π−1

x G = PB, where

E and B are equality sets of P , then F ⊂ G holds if and only if E ⊃ B.

Proof. Theorem 3.13 states that every face can be expressed as PE for a unique equality set

and therefore the first result follows from Proposition 3.19. The second result follows directly

from Theorem 3.14 and Lemma 3.19.

Lemma 3.21 shows that the projection of an affine hull is the affine hull of the projection.

23

3. POLYTOPIC PROJECTIONS AND EQUALITY SETS

Lemma 3.21. If P ⊂ R
d × R

k is a polytope then aff πxP = πxaff P .

Proof. We first show the inclusion aff πxP ⊆ πxaff P . If dim πxP = n, then aff πxP =

aff {x1, . . . , xn+1}, for some n + 1 affinely independent points, xi ∈ πxP . Since πxP is

the projection of P , for each xi, there exists a yi ∈ R
k such that (xi, yi) ∈ P , and therefore

xi ∈ {x | ∃y, (x, y) ∈ aff P} = πxaff P . It follows directly that the affine hull of {x1, . . . , xn+1}
is a subset of the projection of the affine hull of P ,

aff πxP ⊆ πxaff P.

We now show the inclusion aff πxP ⊇ πxaff P . If dim P = m, then

aff P = aff {(ξ1, υ1), . . . , (ξm+1, υm+1)}, for some m + 1 affinely independent points (ξi, υi) ∈
P . Hence,

πxaff P = πxaff {(ξ1, υ1), . . . , (ξm+1, υm+1)}

= aff

{
x

∣∣∣∣∣ ∃y,

[
x

y

]
=

m+1∑

i=1

λi

[
ξi

υi

]
,

m+1∑

i=1

λi = 1

}

= aff

{
x

∣∣∣∣∣x =

m+1∑

i=1

λiξi,

m+1∑

i=1

λi = 1, ∃y, y =

m+1∑

i=1

λiυi

}

= aff {ξ1, . . . , ξm+1}
⊆ aff πxP,

where the inclusion follows because ξi ∈ πxP for all i.

Recall from Lemma 3.11 that equality sets define affine hulls, i.e.,

aff PE = {(x, y) | CEx + DEy = bE}, if P , {(x, y) | Cx + Dy ≤ b} and E is an equality set.

If E also has the property that πxPE is a facet of πxP , then Lemma 3.21 allows the affine hull

of the facet to be written as

aff πxPE = πxaff PE

= πxaff {(x, y) | CEx + DEy = bE}

Lemma 3.22 then provides a row of the matrix G and an element of the vector g:

aff πxPE =
{

x
∣∣∣N
(
DE

T
)T

CEx = N
(
DE

T
)T

bE

}
.

24

3.4 PROJECTION OF A POLYTOPE

Lemma 3.22. If M ,
{
(x, y) ∈ R

d × R
k |CEx + DEy = bE

}
is an affine set, then the pro-

jection of M onto R
d is

πxM =
{

x ∈ R
d
∣∣∣N
(
DE

T
)T

CEx = N
(
DE

T
)T

bE

}
.

Proof. This statement can be derived directly as follows:

πxM =
{

x ∈ R
d
∣∣∣ ∃y ∈ R

k, CEx + DEy = bE

}

=
{

x ∈ R
d |CEx− bE ∈ range (DE)

}

=
{

x ∈ R
d
∣∣∣N
(
DE

T
)T

(CEx− bE) = 0
}

(3.7)

=
{

x ∈ R
d
∣∣∣N
(
DE

T
)T

CEx = N
(
DE

T
)T

bE

}
,

where (3.7) follows because the column space of DE is orthogonal to its left nullspace.

The tools are now all in place to compute a matrix G and a vector g such that πxP =
{
x ∈ R

d | Gx ≤ g
}
, if all of the equality sets of the polytope P , which define faces PE that

project to facets of πxP , can be found. The algorithm that is presented in the remainder of

this part is an enumeration method that will find precisely these sets.

25

Chapter 4
Equality Set Projection

4.1 Algorithm Outline

The Equality Set Projection (ESP) algorithm computes the projection of polytopes that are

described in halfspace form and also expresses the projection in the same form. It is an

output sensitive algorithm, with a constant number of linear programs required per facet

of the projection in the absence of degeneracy, although, like most geometric algorithms,

it is worst-case exponential in its presence. It is therefore most suited for low facet-count,

high vertex-count polytopes. This section will outline the basic procedure for computing the

projection, while those following will present the details.

The input to the algorithm is the (bounded) polytope P , which is described by the inter-

section of q halfspaces. The data given to the algorithm are the matrices C ∈ R
q×d, D ∈ R

q×k

and b ∈ R
q that describe P as follows:

P ,

{
(x, y) ∈ R

d × R
k | Cx + Dy ≤ b

}
.

The assumption is not made that P is irredundant, although it generally reduces computation

time to remove redundancies before beginning. The goal is to compute the matrix G and the

vector g such that the axis-aligned projection of P onto the first d coordinates is given by the

irredundant description

πxP ,

{
x ∈ R

d | ∃y, (x, y) ∈ P
}

=
{

x ∈ R
d | Gx ≤ g

}
.

The assumption is made that πxP is full-dimensional in R
d and that the origin is in its

27

4. EQUALITY SET PROJECTION

interior. Note that this is guaranteed to be true if P is full-dimensional in R
d × R

k and the

origin is interior to it. The remainder of this section discusses the algorithm under these

assumptions and Sections 5.3 and 5.4 show how to apply the algorithm when a polytope does

not satisfy these requirements.

As discussed in Chapter 3, the matrix G and the vector g are formed from the affine hulls

of the facets of the projection. Each facet F of the projection πxP is defined by a unique

equality set E of P such that F = πxPE. Therefore, the algorithm is a search procedure for

finding these unique equality sets.

The ESP search procedure exploits the relationship between facets and ridges that is

captured by the Diamond Property (Theorem 3.7). The algorithm is initialized by discovering

a random facet F of πxP (Shooting Oracle). The equality sets that define faces of P that

project to the ridges of πxP that are subsets of F can then be computed (Ridge Oracle).

A list is maintained that has one element for every ridge discovered. This element consists

of two equality sets of P that define a ridge of the projection and one of its containing facets.

In each iteration, a ridge is selected from the list, along with its containing facet. Recall that

by the Diamond Property, each ridge is contained in exactly two facets. Therefore, given

the selected ridge-facet list element, the equality set of the second containing facet can be

computed (Adjacency Oracle). As before, the equality sets of all ridges of this new facet are

computed and inserted into the list.

Note that because of the Diamond Property, each ridge is visited exactly twice. Therefore,

by removing every ridge that appears in the list twice at the end of each iteration, we can

guarantee that the algorithm has no cycles and has a finite execution time. The iterative step

is repeated until the list is empty, at which time all facets will have been found.

Once all of the equality sets that define faces of P that project to facets of πxP have been

collected, the matrix G and the vector g can be computed as shown in Propositions 3.18 and

3.22. Theorem 4.1 proves that this procedure finds all facets of the projection and that it

terminates in finite time. It will be seen in the following sections that this statement can be

strengthened to polynomial time in the absence of degeneracy.

Theorem 4.1. The ESP algorithm returns all facets of the projection and terminates in finite

time.

Proof. Beginning from a random facet F of πxP , the ESP algorithm iteratively computes all

adjacent facets without re-visiting any facet. Every polytope has a finite number of faces

[Roc70, Thm. 19.1] and therefore ESP terminates in finite time.

It remains to be shown that all facets are visited. Given a facet F0, we define the set

F(F0) to be all facets Fn such that there exists a sequence of facets from F0 to Fn and Fi

28

4.2 ADJACENCY ORACLE

is adjacent to Fi+1, i = 0, . . . , n − 1. Given an initial starting facet F0, the ESP algorithm

clearly computes F(F0). Therefore, if F(F0) covers all facets for any choice of F0, then the

ESP algorithm will return all facets of the projection.

We define a graph H(F(F0)) whose vertices represent the facets of F(F0) and two ver-

tices of the graph are connected by an edge if the corresponding facets are adjacent. [Zie95,

Cor. 2.14] states that there exists a polytope P̃ such that H(F(F0)) is combinatorially equiv-

alent to the graph G(P̃) formed from the vertices and edges of P̃ . Balinski’s Theorem [Bal61]

states that G(P̃) is connected and therefore it follows that H(F(F0)) is connected and the

ESP algorithm returns all facets of the projection.

Three oracles are needed for this search procedure:

Adjacency Oracle (Eadj, aadj, badj) = ADJ((Er, ar, br), (E, af , bf))

This oracle takes two equality sets Er and E of P where πxPE =
{

x
∣∣∣ aT

f x = bf

}
∩ πxP

is a facet of πxP and πxPEr
=
{
x
∣∣ aT

r x = br

}
∩πxPE is a ridge with πxPE ⊃ πxPEr

. The

oracle returns the unique equality set Eadj such that πxPEadj ⊃ πxPEr
, Eadj 6= E.

Ridge Oracle (E1
r , . . . , E

m
r) = RDG(E, af , bf)

This oracle takes an equality set E of P where πxPE =
{

x
∣∣∣ aT

f x = bf

}
∩ πxP is a facet

of πxP and returns all equality sets Ei
r of P such that πxPEi

r
is a ridge of πxP and

πxPEi
r
⊂ πxPE.

Ray-shooting Oracle (E0, af , bf) = SHOOT (P)

This oracle returns a random equality set E0 of P such that πxPE0
=
{

x
∣∣∣ aT

f x = bf

}
∩

πxP is a facet of the projection.

These oracles are discussed in Sections 4.2, 4.3 and 4.4 respectively. ESP is described in

procedural form in Algorithm 4.1.

The algorithm is illustrated by the example of a cube in R
3 being projected to R

2 as

shown in Figure 4.1. The sequence shown in Figure 4.2 demonstrates the construction of the

top two levels of the lattice of the projection as the algorithm proceeds. The path that the

algorithm takes through the 3D cube lattice is shown in Figure 4.3.
ESP Procedure: Projection of a Cube

Step 1 corresponds to the beginning of the while loop in Algorithm 4.1

4.2 Adjacency Oracle

The goal of this section is to build the adjacency oracle

(Eadj, aadj, badj) = ADJ((Er, ar, br), (E, af , bf)) introduced in Section 4.1. The oracle takes

29

4. EQUALITY SET PROJECTION

Algorithm 4.1 Equality Set Projection (ESP)

Input: Polytope P ,
{

(x, y) ∈ R
d × R

k
∣∣ Cx + Dy ≤ b

}
whose projection is full-

dimensional and contains the origin in its interior.
Output: Matrix G and vector g such that

{
x ∈ R

d | Gx ≤ g
}

is an irredundant description
of πxP .
List E of all equality sets E of P such that πxPE is a facet of πxP .

Initialize ridge-facet list L with random facet.

1: L←− ∅
2: (E0, af , bf) = SHOOT (P) Section 4.4
3: Er ←− RDG(E0, af , bf) Section 4.3
4: for each element (Er, ar, br) in list Er do
5: Add element ((Er, ar, br), (E0, af , bf)) to list L
6: end for

Initialize matrix G, vector g and list E.

7: G←− aT
f , g ←− bf

8: E←− E0

Search for adjacent facets until the list L is empty.

9: while L 6= ∅ do
10: Choose an element ((Er, ar, br), (E, af , bf)) from list L
11: (Eadj, aadj, badj)←− ADJ((Er, ar, br), (E, af , bf)) Section 4.2
12: Er ←− RDG(Eadj, aadj, badj) Section 4.3
13: for each element (Er, ar, br) in list Er do
14: if there exists an element ((Ar, a1, b1), (A, a2, b2)) in list L such that Ar = Er then
15: Remove element ((Ar, a1, b1), (A, a2, b2)) from list L
16: else
17: Add element ((Er, ar, br), (E

adj, aadj, badj)) to list L
18: end if
19: end for

20: G←−
[

G
aT

adj

]
, g ←−

[
g

badj

]

21: E←−
(
E, Eadj

)

22: end while

Report projection.

23: Report G, g and E

30

4.2 ADJACENCY ORACLE

{2, 4, 6}

{1, 2, 4}

{2, 4}
{6}

3

5

4

2

6

1

{1}

{3, 5}

{3, 5, 6}

{1, 3, 5}

Figure 4.1: Example Projection of a Cube

two equality sets E and Er ⊃ E that define a facet πxPE and a ridge πxPEr
of the projection

πxP . The unit normals ar and af are orthogonal and have the property that:

πxPE =
{
x
∣∣ aT

f x = bf

}
∩ πxP,

πxPEr
=
{
x
∣∣ aT

r x = br

}
∩ πxPE.

The goal is to compute an equality set Eadj ⊂ Er such that πxPEadj is the facet of the projection

that is adjacent to the given facet πxPE and that contains the given ridge πxPEr
. Note that

this facet is guaranteed to exist and to be unique by the Diamond Property (Theorem 3.7).

In this section we will show that the equality set of the adjacent facet is given by Eadj ,

{i ∈ Er | Cix
? + Diy

? = bi}, where (x?, y?) is the optimum of the LP

(x?, y?) = argmax
x,y

aT
r x

subject to CEr
x + DEr

y ≤ bEr

aT
f x = bf (1− δ),

where δ is a positive number. The remainder of this section is dedicated to proving this claim.

We will first show that as the adjacent facet must contain the given ridge, its affine hull

31

4. EQUALITY SET PROJECTION

πxP

{3, 5}

πxP

{3, 5}

{3, 5, 6} {1, 3, 5}

Step 1: {3, 5} = SHOOT Step 2: ({3, 5, 6} , {1, 3, 5}) = RDG({3, 5})
List : L = (({3, 5, 6} , {3, 5}), ({1, 3, 5} , {3, 5}))

πxP

{3, 5} {1}

{3, 5, 6} {1, 3, 5}

πxP

{3, 5} {1}

{3, 5, 6} {1, 3, 5} {1, 2, 4}

Step 3: {1} = ADJ({1, 3, 5} , {3, 5}) Step 4: ({1, 3, 5} , (1, 2, 4)) = RDG({1})
List : L = (({3, 5, 6} , {3, 5}), ({1, 3, 5} , {3, 5}), ({1, 3, 5} , {1}), ({1, 2, 4} , {1}))

πxP

{3, 5} {1} {6}

{3, 5, 6} {1, 3, 5} {1, 2, 4}

πxP

{3, 5} {1} {6}

{3, 5, 6} {1, 3, 5} {1, 2, 4} {2, 4, 6}

Step 5: {6} = ADJ({3, 5} , {3, 5, 6}) Step 6: ({3, 5, 6} , {2, 4, 6}) = RDG({6})
List : L = (({3, 5, 6} , {3, 5}), ({1, 2, 4} , {1}), ({3, 5, 6} , {6}), ({2, 4, 6} , {6})),

πxP

{3, 5} {1} {6} {2, 4}

{3, 5, 6} {1, 3, 5} {1, 2, 4} {2, 4, 6}

πxP

{3, 5} {1} {6} {2, 4}

{3, 5, 6} {1, 3, 5} {1, 2, 4} {2, 4, 6}

Step 7: {2, 4} = ADJ({2, 4, 6} , {6}) Step 8: ({1, 2, 4} , {2, 4, 6}) = RDG({2, 4})
List : L = (({1, 2, 4} , {1}), ({2, 4, 6} , {6}), ({1, 2, 4} , {2, 4}), ({2, 4, 6} , {2, 4})) = ∅

Figure 4.2: ESP Procedure: Projection of a Cube
Step 1: corresponds to the beginning of the while loop in Algorithm 4.1

32

4.2 ADJACENCY ORACLE

{1, 3} {1, 2} {2, 3} {1, 5} {3, 5} {4, 5} {1, 4} {2, 4} {3, 6} {2, 6} {5, 6} {4, 6}

{1} {2} {3} {4} {5} {6}

∅

{1, 2, 3} {1, 3, 5} {1, 4, 5} {1, 2, 4} {2, 3, 6} {3, 5, 6} {4, 5, 6} {2, 4, 6}

{1, 2, 3, 4, 5, 6}

Figure 4.3: Example Projection of a Cube: Search Path in Cube Face Lattice

can differ in only one degree of freedom from that of the given facet. We will introduce a

linear mapping that will allow us to formulate the search over this degree of freedom as a

linear program in order to determine a point on the affine hull of the adjacent facet. From

this point we will then compute the equality set of the adjacent facet.

Similarly to [FLL00], we define an affine transformation ρ that maps R
d to R

2:

ρ : R
d −→ R

2, x 7−→
[

aT
r

−aT
f

]
(x− x0), (4.1)

where x0 is any point in the affine hull of the given ridge aff πxPEr
.

The mapping ρ takes every point in the polytope πxP to a two dimensional space such

that all points in the affine hull of the facet πxPE are mapped to the first axis and all points

in the affine hull of the ridge aff πxPEr
are mapped to the origin. The map is depicted in

Figure 4.4 for a polytope that is projected to R
3. For convenience, we will refer to the first

axis as α and the second as β.

Remark 4.2. It is assumed that the normal af is given such that the ray λaf will intersect

the affine hull of πxPE for a positive value of λ and ar is outward facing from the facet πxPE.

These requirements are satisfied if af and ar are obtained from the ESP algorithm.

33

4. EQUALITY SET PROJECTION

Ridge

Known
Facet
πxPE

Known
Facet

ρ(πxPE)

Ridge
ρ(πxPEr

)

af
ar

πxPEr

Interior
of

Polytope

θ

Adjacent
Facet

ρ(aff πxPEadj)Adjacent
Facet
πxPEadj

ar

(α, β)

ρ

af

Figure 4.4: Example of the Wrapping Map ρ

Under these assumptions, the facet πxPE is mapped to the negative α-axis and the interior

of the polytope is strictly above the α-axis as shown in Figure 4.4. Note that because the

polytope πxP is convex, the angle that the adjacent facet makes with πxPE must be less than

180◦, or equivalently all points (α, β) ∈ ρ(πxPEadj) must have β ≥ 0.

We will now show that the affine hull of the adjacent facet aff πxPEadj will form a line

going through the origin under the mapping ρ and furthermore, all points in the polytope are

mapped to the left of this line. First, the following lemma is needed.

Lemma 4.3. If R is a ridge, F ⊃ R is a facet and aff R =

{
x

∣∣∣∣
[

af ar

]T
(x− x0) = 0

}
,

then there exists a γ ∈ R such that aff F =

{
x

∣∣∣∣∣
[

1 γ
] [aT

r

−aT
f

]
(x− x0) = 0

}
.

Proof. F is a facet and therefore only one equality is needed to describe its affine hull:

aff F =
{
x | aT (x− x0) = 0

}
, for some a ∈ R

d.

The ridge R is a subset of F and therefore for every x in the affine hull of R, x must be

in the affine hull of F :

[
af ar

]T
(x− x0) = 0 ⇒ aT (x− x0) = 0.

34

4.2 ADJACENCY ORACLE

This is equivalent to x being in the affine hull of the facet if x− x0 is in the left-nullspace of[
af ar

]
:

x− x0 ∈ N

([
af ar

]T)
⇒ aT (x− x0) = 0.

Finally, we can see that a must be perpendicular to the left-nullspace of
[

af ar

]
, or

equivalently, in its rowspace:

a = ar − γaf .

From Lemma 4.3 and (4.1) we can see that

ρ(aff F) =
{

ρ(x)
∣∣∣
[

1 γ
]
ρ(x) = 0

}

= {(α, β) |α + γβ = 0}

and therefore under the mapping ρ, all points on the affine hull of the adjacent facet will

be mapped to a line through the origin. The goal is now to determine which equality set

Eadj ⊂ Er defines this line.

Each subset B of Er defines a polytope πxPB that, by Corollary 3.20, is a superset of the

given ridge πxPB ⊇ πxPEr
and correspondingly, the affine hull contains the affine hull of the

given ridge aff πxPB ⊇ aff πxPEr
. Therefore, under ρ, the affine hull of πxPB will either map

to the origin, or to a line through the origin. Each of these lines forms an angle with the

negative α−axis as shown in Figure 4.5. Since the portion of each of these lines that lies

above the α−axis must be internal to the projection of the polytope, the largest angle θ made

with the negative α−axis must define the adjacent facet.

Remark 4.4. The simplest approach to finding the adjacent facet would be to compute the

projection πxaff PB for each B ⊂ Er and then calculate the angle that it makes with πxaff PE.

While this would be linear for a non-degenerate facet, it becomes combinatorial in the case of

degeneracy and so the LP approach presented here is preferred.

Remark 4.5. The adjacent facet can now be described in terms of the angle θ ∈ (0, π) between

the adjacent facet and the given facet πxPE or by a point (α, β) ∈ R × R>0 on the adjacent

facet under the mapping ρ. Note that the affine mapping ρ is conformal and therefore the

angle θ defined under the mapping ρ is the true angle between the two facets.

The search for the largest angle is formulated as a maximisation over α while fixing β to be

a positive value; for convenience, we here choose β = δbf , where δ is a small positive number.

35

4. EQUALITY SET PROJECTION

Interior
of

Polytope

θ

Adjacent
Facet

ρ(aff πxPEadj)

af

ar

(α, β)

πxPB

Figure 4.5: Subsets of Er under the Wrapping Map ρ

β0
α

Adjacent
Facet

ρ(πxPEadj)

af

ar

θ

Figure 4.6: Linear Optimisation Under the Wrapping Map ρ

36

4.2 ADJACENCY ORACLE

From Figure 4.6 this is clearly equivalent to maximizing θ. In the following linear program

we search for a point (x, y) in the polytope P and define the projection of this point (which

is just x) under the mapping ρ as (α, β) , ρ(x). We can then maximize α and constrain β to

be δbf . The appropriate maximization is:

maximise
x,y

α

subject to (x, y) ∈ P[
α

β

]
= ρ(x)

β = δbf .

(4.2)

From the definition of the mapping ρ (4.1) and recalling that aT
f x0 = bf we can re-write

LP (4.2) as follows:

J? = maximise
x,y

aT
r x

subject to CEr
x + DEr

y ≤ bEr

aT
f x = bf (1− δ).

(4.3)

Remark 4.6. Notice that in LP (4.3) only the constraints Er are used to represent (x, y) ∈ P .

From Corollary 3.20 we know that the equality set of the adjacent facet must be a subset of

Er and therefore for efficiency we include only these constraints. As all constraints that are

not active on the ridge have been removed from the system, the inequality system in LP (4.3)

becomes an unbounded polyhedron and therefore any positive value of δ is acceptable.

We now show how to compute the equality set of the adjacent facet from the optimizer of

LP (4.3). First, the following lemma is needed.

Lemma 4.7. If (x?, y?) is an optimizer of LP (4.3) and E? = {i ∈ Er | Cix
? + Diy

? = bi},
then E? is an equality set of P , πxPE? ⊃ πxPEr

and dim πxPE? = d− 1.

Proof. E? is clearly an equality set by Definition 3.9.

We first show that E? ⊂ Er. Since LP (4.3) contains only the constraints Er, we have

E? ⊆ Er. To show proper inclusion we recall that the ridge πxPEr
is mapped to the origin

under the map ρ, however the constraint β > 0 implies that (x?, y?) is not zero and therefore

not on the affine hull of PEr
. It follows that Er 6= E?.

From Theorem 3.14, E? ⊂ Er implies that PE? ⊃ PEr
and therefore πxPE? ⊇ πxPEr

. By

construction, x? ∈ aff πxPE? and x? 6∈ πxPEr
and therefore πxPE? ⊃ πxPEr

.

It follows that dim πxPE? > dim πxPEr
= d− 2. dim πxPE? is d if and only if E? = ∅. From

the constraints in LP (4.3), we can see that this is the case only if x? = ∞. However, the

37

4. EQUALITY SET PROJECTION

polytope P is bounded and the angle between any two faces is less that 180◦ by convexity,

and therefore x? <∞ and dim πxPE? = d− 1.

Recall that P is bounded, and therefore the primal optimizer exists and is finite, although

it may be non-unique. If the optimizer of LP (4.3) is unique, then we can compute the

equality set of the adjacent facet directly using the following proposition. Note that a primal

degenerate solution still provides a unique optimizer.

Theorem 4.8. If (x?, y?) is a unique optimal point of LP (4.3) and

E? = {i ∈ Er | Cix
? + Diy

? = bi}, then E? is an equality set, dim PE? = d − 1 and πxPE? ⊃
πxPEr

is a facet of πxP .

Proof. By construction, the affine hull of πxPE? is the affine hull of the adjacent facet. We

now have that the adjacent facet is given by F = (aff πxPE?) ∩ πxP . Clearly, if F = πxPE? ,

then πxPE? is a facet.

By construction, the point x? is in the interior of F . Since the optimal point is unique,

there is only one y = y? such that (x?, y) is in the interior of π−1
x F and therefore the equality

set of π−1
x F is given by B = {i |Cix

? + Diy
? = bi } = E?. It follows that F = πxPB = πxPE?

and πxPE? is a facet of πxP .

The solution is said to be dual-degenerate if there are multiple optimizers. In this situation

Theorem 4.8 does not apply and more work is needed to compute the equality set of the

adjacent facet. Recall that by construction, the projection of any point (x?, y?) that is an

optimizer of LP (4.3) is on the affine hull of the adjacent facet, x? ∈ aff πxPEadj . Therefore,

given any optimizer (x?, y?) we can compute the affine hull of the adjacent facet aff πxPEadj

from Lemma 4.3, which states that it has the form:

aff πxPEadj =
{
x
∣∣ (ar − γaf)T (x− x0) = 0

}

=
{
x
∣∣ (ar − γaf)T x = br − γbf

}
,

for some γ ∈ R. The optimal point x? is on the affine hull of the adjacent facet and therefore

we can compute γ from the above equation as:

γ =
aT

r x? − br

aT
f x? − bf

. (4.4)

Remark 4.9. Note that most commercial LP solvers will return an arbitrary optimizer

(x?, y?) in the case of dual-degeneracy.

38

4.3 RIDGE ORACLE

Remark 4.10. A test for the recognition of dual-degeneracy using an LP is given in [Mur83,

Theorem 4.14].

Finally, the equality set that defines the adjacent facet must be derived from the equation

for its affine hull. The face PEadj can be written as the pre-image of πxPEadj :

PEadj = π−1
x πxPEadj = P ∩

{
x
∣∣ (ar − γaf)T x = br − γbf

}
. (4.5)

By definition the constraints of P that are everywhere active in PEadj form the equality set

Eadj. A method for computing these constraints for a given polytope is given in Section 5.2,

which will provide the desired set, Eadj.

Algorithm 4.2 summarizes the procedure discussed in this section.

4.3 Ridge Oracle

The oracle Er = RDG(E, af , bf) introduced in Section 4.1 will be developed here. The oracle

takes as input an equality set E that defines a facet πxPE of the projection πxP . The unit

vector af and the scalar bf also define the facet as πxPE =
{

x
∣∣∣ aT

f x = bf

}
∩πxP . The oracle

returns the equality sets of the ridges of the projection πxP that are subsets of the given facet

πxPE.

Recall that every face of a polytope is itself a polytope and therefore πxPE can be written

in the form πxPE =
{

x
∣∣∣ aT

f x = bf

}
∩ {x |Υx ≤ υ} for some Υ ∈ R

p×d and υ ∈ R
p. The

ridges of the projection that are subsets of the given facet πxPE are then given by the facets

of the polytope πxPE, which can be written as πxPE ∩{x |Υix = υi }, for i = 1, . . . , p. In this

section we will show that if the dimension of the face PE is d− 1, then such an Υ and υ can

be found directly, otherwise a low-dimensional projection is required.

We begin by computing expressions for the given face of the polytope PE and its projection

πxPE. In Section 4.3.1, we show how to compute the equality sets of the ridges directly if the

dimension of the face PE is d−1 and then Section 4.3.2 handles the general case. The general

case requires a recursive call to the ESP algorithm that reduces the dimension to which we

are projecting at each step. Therefore in order to ensure that this recursion terminates, in

Section 4.3.3 we present a method of computing the ridges directly when projecting to 1D.

Lemma 4.11. If E is an equality set of P such that πxPE is a facet of πxP and dim PE =

39

4. EQUALITY SET PROJECTION

Algorithm 4.2 Adjacency oracle (ESP)

Input: Polytope P and equality sets Er and E such that πxPEr
is a ridge and πxPE is a

facet of πxP and Er ⊃ E.
Orthogonal unit vectors af and ar and scalars bf and br such that aff πxPE ={

x
∣∣∣ aT

f x = bf

}
and aff πxPEr

=
{
x
∣∣ aT

r x = br

}
∩ aff πxPE.

Output: Equality set Eadj such that πxPEadj is a facet of πxP and πxPEr
⊂ πxPEadj

Compute a point on the affine hull of the adjacent facet.

1: Compute

(x?, y?) = arg max
x,y

aT
r x

subject to CEr
x + DEr

y ≤ bEr

aT
f x = bf (1− δ)

Compute the equality set of the adjacent facet.

2: if LP is not dual degenerate then
3: Eadj ←− {i ∈ Er | Cix

? + Diy
? = bi}

4: else
5: γ ←− aT

r x?−br

aT
f

x?−bf
(4.4)

6: Compute the equality set Eadj of Section 5.2

{
(x, y) | CEr

x + DEr
y ≤ bEr

, (ar − γaf)T x = br − γbf

}
.

7: end if

Compute affine hull of adjacent facet.

8:
[

aT
adj badj

]
←− N

(
DEadj

T
)T [

CEadj bEadj

]
Lemma 3.22

Normalise and ensure halfspace contains origin.

9:
[

aT
adj badj

]
←− sign badj

‖aadj‖
2

[
aT

adj badj

]

Report adjacent facet.

10: Report
(
Eadj, aadj, badj

)

40

4.3 RIDGE ORACLE

d− 1 + n, then the rank of DE is k − n and

PE =





(x, y)

∣∣∣∣∣∣∣∣
∃ỹ,

aT
f x = bf ,

Sx + Lỹ ≤ t,

y = N(DE)ỹ + DE
†(bE − CEx)





,

where Ec , {1, . . . , q} \E, and

S , CEc −DEcDE
†CE, L , DEcN(DE), t , bEc −DEcDE

†bE,

where DE
† is the Moore-Penrose pseudo-inverse of DE.

Proof. The definition of PE is

PE =

{
(x, y)

∣∣∣∣∣
CEx + DEy = bE,

CEcx + DEcy ≤ bEc

}
. (4.6)

Let
[

Û Ũ
] [Σ 0

0 0

] [
V̂ Ṽ

]T
, DE be the singular value decomposition of DE and

introduce the change of variables V̂ ŷ + Ṽ ỹ , y. Multiplying by
[

Û Ũ
]T

, the affine hull of

PE can be written as the two equations:

ÛT CEx + Σŷ = ÛT bE (4.7)

ŨT CEx = ŨT bE (4.8)

Recalling that Ũ is equal to N
(
DE

T
)

we see from Lemma 3.22 that (4.8) defines the affine hull

of the projection: aT
f x = bf . Solving (4.7) for ŷ and substituting into (4.6) gives the desired

result:

PE =





(x, y)

∣∣∣∣∣∣∣∣

aT
f x = bf ,
(
CEc −DEcDE

†CE

)
x + DEc Ṽ ỹ ≤ bEc −DEcDE

†bE,

y = Ṽ ỹ + DE
†(bE − CEx)





,

where we notice that the pseudo-inverse DE
† is given by V̂ Σ−1ÛT .

It remains to be shown that the rank of DE is k − n. Lemma 3.17 gives the dimension of

the projection πxPE as:

dim πxPE = dim PE − k + rank DE. (4.9)

41

4. EQUALITY SET PROJECTION

πxPE is a facet and therefore the dimension of πxPE is d − 1 and the dimension of PE has

been assumed to be d − 1 + n, and therefore solving (4.9) provides the desired relation:

rank DE = k − n.

Corollary 4.12. If E is an equality set of P such that πxPE is a facet of πxP and dim PE =

d− 1 + n, then

πxPE =
{
x
∣∣ ∃ỹ ∈ R

n, Sx + Lỹ ≤ t, aT
f x = bf

}
,

where af , bf , S, L,and t are as defined in Lemma 4.11.

Proof. Follows directly from Lemma 4.11.

Note that if n = 0, Corollary 4.12 gives an explicit expression for πxPE since ỹ ∈ R
0.

We now distinguish two cases and the following sections present methods for computing the

ridges for n = 0 and n > 0 respectively.

Remark 4.13. From Theorem 4.8, the dimension of the face PE is d − 1 if and only if the

LP in (4.3) is not dual-degenerate.

4.3.1 Case 1: dim PE = d− 1

In this section the assumption is made that the dimension of the face PE is d − 1. From

Corollary 4.12 we can see that the facet is given by πxPE =
{

x
∣∣∣Sx ≤ t, aT

f x = bf

}
. We first

prove that all facets of πxPE (ridges of πxP) can be written as πxPE∪{i} for some i in Ec. We

then show how to select only those indices i that correspond to facets of πxPE (ridges of πxP)

and finally, how to construct the equality sets for each.

Lemma 4.14. If E is an equality set of P such that πxPE is a facet of πxP and dim PE = d−1,

then for all i ∈ Ec,

πxPE∪{i} =

{
x

∣∣∣∣∣

[
aT

f

Si

]
x =

[
bf

ti

]
, Sx ≤ t

}
,

where af , bf , S and t are as defined in Lemma 4.11.

Proof. The result follows directly from Corollary 4.12 by noting that if n is zero then ỹ ∈ R
0.

42

4.3 RIDGE ORACLE

From Corollary 4.12 and Lemma 4.14, we see that for each facet F of πxPE, there exists

an i ∈ Ec such that F = πxPE∪{i}. It is clear from Lemma 4.14 and the definition of faces

(Definition 3.5) that πxPE∪{i} is a face of πxPE for all i ∈ Ec. Therefore, πxPE∪{i} is a facet

of πxPE (a ridge of πxP) if and only if it is of the appropriate dimension: dim πxPE∪{i} =

dim πxPE − 1 = d− 2.

The dimension of πxPE∪{i} is d− 2 if and only if the dimension of its affine hull is d− 2,

or equivalently the rank of

[
aT

f bf

SQ(i) tQ(i)

]
is two where Q(i) is the equality set of πxPE∪{i}.

Therefore, we can see that πxPE∪{i} is a ridge if and only if its equality set is given by:

Q(i) ,

{
j ∈ Ec

∣∣∣∣∣ rank

[
aT

f bf

S{i,j} t{i,j}

]
= 2

}
. (4.10)

This idea is formalized in Proposition 4.15 below.

Proposition 4.15. If E is an equality set of P such that πxPE is a facet of πxP and dim PE =

d− 1, then for all i ∈ Ec, πxPE∪{i} is a facet of πxPE if and only if rank

[
aT

f bf

Si ti

]
= 2 and

there exists an x0 ∈ πxPE∪{i} such that Sjx0 < tj for all j ∈ Ec\Q(i), where

Q(i) ,

{
j ∈ Ec

∣∣∣∣∣ rank

[
aT

f bf

S{i,j} t{i,j}

]
= 2

}
.

Proof. Assume that πxPE∪{i} is a facet of πxPE. We prove the existence of an x0 such that

Sjx0 < tj for all j ∈ Ec\Q(i) by contradiction. Assume such an x0 does not exist. Then there

exists a j ∈ Ec\Q(i) such that Sjx = tj for all x ∈ πxPE. Since j 6∈ Ec\Q(i) we have that

dim πxPE∪{i} = dim aff πxPE∪{i}

≤ dim

{
x

∣∣∣∣∣

[
xT

f

S{i,j}

]
x =

[
bf

t{i,j}

]}

= d− 3

and therefore an appropriate x0 exists by contradiction.

Assume that there exists an x0 such that Sjx0 < tj for all j ∈ Ec\Q(i). We define the set

B(ε, x0) ,

{
x

∣∣∣∣∣ ‖x− x0‖2 < ε,

[
aT

f

Si

]
(x− x0) =

[
bf

ti

]}
.

Note that dim B(ε, x0) = d−2 for all ε > 0 and all x0. Clearly, there exists an ε > 0 such that

43

4. EQUALITY SET PROJECTION

(x0 − x) ∈ πxPE∪{i} for all x ∈ B(ε, x0). It follows that πxPE∪{i} has a subset of dimension

d − 2 and therefore dim πxPE∪{i} ≥ d − 2. The rank of

[
aT

f bf

Si ti

]
is two and therefore

dim πxPE∪{i} ≤ d − 2. It follows that πxPE∪{i} is a (d − 2)-face of πxPE and is therefore a

facet of πxPE.

We now propose a linear program that will test if Q(i) as defined in Proposition 4.15 is

an equality set of πxP :

minimize
(τ,x)

τ

subject to S\Q(i)x ≤ t\Q(i) + τ

aT
f x = bf

Six = ti

τ ≥ −c, for some c ∈ R>0

(4.11)

If there exists an x and a strictly negative τ that satisfies LP (4.11), then clearly we have

found an x such that Sjx < tj for all j ∈ Ec\Q(i) and the requirements of Proposition 4.15 are

satisfied. Therefore πxPE∪{i} is a facet of πxPE if and only if there exists a feasible solution to

LP (4.11) such that τ is strictly less than zero. Note that x is bounded in LP (4.11) because

the polytope P is assumed bounded and the cost is bounded below. The equality set of the

ridge πxPE∪{i} is then given by the set Q(i).

4.3.2 Case 2: dim PE = d− 1 + n, n > 0

Here we make the assumption that the dimension of the face PE is larger than d − 1. As

a result, n is strictly greater than zero and, from Corollary 4.12, we can write πxPE as a

projection from R
d×R

n to R
d. Recall that each facet of πxPE is a ridge of πxP and therefore

computing this projection is equivalent to finding all the ridges that are subsets of πxPE. In

this section we show how to compute this projection using ESP, which requires some slight

work as it does not contain the origin and is not full-dimensional.

The polytope πxPE can be written as the projection from R
d × R

n to R
d:

πxPE = πx

{
(x, ỹ) ∈ R

d × R
n
∣∣Sx + Lỹ ≤ t, aT

f x = bf

}
, (4.12)

where S, L and t are as defined in Corollary 4.12. Recall from Corollary 3.20 that every facet

44

4.3 RIDGE ORACLE

F of πxPE can be written as

F = (πxPE)R

= πx

{
(x, ỹ) ∈ R

d × R
n
∣∣SRx + LRỹ = tR, aT

f x = bf , Sx + Lỹ ≤ t
}

,

for some equality set R of πxPE. From Lemma 4.11 and Corollary 4.12 we can see that

πxPE∪R = (πxPE)R and therefore E ∪ R is a ridge-defining equality set of P . All such facet-

defining equality sets R of πxPE can be computed via a call to the ESP algorithm, which

therefore also gives all of the ridge-defining equality sets Er = E ∪ R of P such that πxPEr
⊂

πxPE.

Note that (4.12) does not satisfy the assumptions that its projection is full dimensional

or that the origin is contained in its interior, which is required if this projection is to be

computed via ESP. Taking the singular value decomposition aT
f =

[
σ 0 · · · 0

]
V T , we

can re-write (4.12) as:

πxPE =

{
x ∈ R

d

∣∣∣∣∣ ∃ỹ ∈ R
n, x̃ ∈ R

d−1, Sx + Lỹ ≤ t, x = V

[
bf/σ

x̃

]}

=

{
x ∈ R

d

∣∣∣∣∣x = V

[
bf/σ

x̃

]
, x̃ ∈ πd−1P̃

}
, (4.13)

where

P̃ =
{

(x̃, ỹ) ∈ R
d−1 × R

n
∣∣∣SṼ x̃ + Lỹ ≤ t− SV̂ bf/σ

}
(4.14)

and V is partitioned appropriately as V =
[

V̂ Ṽ
]
.

Note that as the dimension of πxPE is d− 1, P̃ is guaranteed to be full-dimensional. The

reader is referred to Section 5.4 for a simple procedure to ensure that the origin is interior to

P̃ . The projection πd−1P̃ can now be computed using a recursive call to the ESP algorithm.

Finally, for each facet
{

x̃
∣∣∣ ãf x̃ = b̃f

}
∩ πd−1P̃ of πd−1P̃ , the corresponding ridge of πxP

can be computed from (4.13) as:

{
x
∣∣∣ ãf Ṽ T x = b̃f

}
∩ πxPE (4.15)

Remark 4.16. The adjacency oracle requires that the equation describing each ridge has a

unit normal and is orthogonal to the facet. Once the ridge
{
x
∣∣ aT

r x = br

}
∩ πxPE has been

45

4. EQUALITY SET PROJECTION

computed, an equivalent representation that has the required properties can be computed as:

[
aT

r br

]
←−

[
aT

r br

]
− aT

f ar

[
af bf

]
(4.16)

[
aT

r br

]
←− sign br

‖ar‖2

[
aT

r br

]

4.3.3 Projection to 1D

This section is included in order to guarantee that the recursion introduced when the dimen-

sion of PE is larger than d− 1 terminates.

If d is one, then the facets of the projection are vertices and there are clearly only two of

them. They can be computed by maximizing and minimizing along the x−axis as follows

(x?
min, y

?
min)/(x

?
max, y

?
max) , min/max

(x,y)

x

subject to Cx + Dy ≤ b

(4.17)

If LP (4.17) is not dual degenerate, then the equality sets of the ridges are given by

Emin , {i | Cx?
min + Dy?

min = b} ,
Emax , {i | Cx?

max + Dy?
max = b} .

If LP (4.17) is dual degenerate, then the equality sets must be computed as in Section 4.2.

The pre-image of the facets x?
min and x?

max are given by

π−1
x x?

min = π−1
x PEmin

= P ∩ {(x?
min, y)} ,

π−1
x x?

max = π−1
x PEmax

= P ∩ {(x?
max, y)} ,

where the equality sets Emin and Emax can be computed as in Section 5.2.

Algorithm 4.3 describes the procedures developed in this section in algorithmic form.

4.4 Shooting Oracle

This section discusses the oracle (E0, af , bf) = SHOOT (P) introduced in Section 4.1. The

goal of the oracle is to initialise the ESP algorithm by finding a random equality set E0 such

that πxPE0
is a facet of the projection πxP .

This oracle operates by randomly choosing a direction γ ∈ R
d and then solving an LP

in order to move along the ray γr, r ≥ 0 until a point is found on the boundary of πxP . If

the point is not on a facet of πxP then the ray is randomly perturbed until it is. The active

46

4.4 SHOOTING ORACLE

Algorithm 4.3 Ridge oracle: Er = RDG(E, af , bf)

Input: Polytope P and equality set E such that πxPE is a facet of πxP .
Output: List Er whose elements are all equality sets Er such that πxPEr

is a facet of πxPE.

Initialize variables.

1: Er ←− ∅
2: Compute S, L and t as in Lemma 4.11

Compute the dimension of PE.

3: if rank
[

CE DE

]
< k + 1 then

Call ESP recursively to compute the ridges.

4: Ẽr ←− ESP(P̃) (4.13)
5: Convert the facets of πd−1P̃ into ridges of πxP and add to Er. (4.15)
6: else

Test each i ∈ Ec to see if E ∪ {i} defines a ridge.

7: for each i in Ec do
8: Compute τ ? from LP (4.11)
9: if τ? < 0 then Proposition 4.15

10: Compute equality set Q(i)
11:

[
aT

r br

]
←−

[
Si ti

]

12: Er ←− ((Q(i), ar, br),Er)
13: end if
14: end for
15: end if
16: Normalize all equations and make orthogonal to the facet πxPE Remark 4.16

47

4. EQUALITY SET PROJECTION

constraints that define the facet can then be calculated from the constraints of P that are

satisfied with equality at this point.

The following LP will be used to search in the direction of the ray γr until a facet of the

projection is found:

(r?, y?) , argmax
(r,y)∈R×Rk

r

subject to Cγr + Dy ≤ b

(4.18)

The point (γr?, y?) will be on the face of P that projects to the face of πxP intersecting

the ray γr, where r is a positive real number. This is equivalent to LP (4.3) where a point was

computed on the adjacent facet. The method of computing the equality set of the face of P

that contains (γr?, y?) is the same as that presented in Section 4.2. Namely, if the optimiser

of the LP is unique, then the equality set is given by E0 , {i | Ciγr? + Diy
? = bi}. However,

if the LP is dual-degenerate, then the equality set can be computed by calculating the affine

hull of the pre-image:

PE0
= π−1

x πxPE0
= P ∩

{
x
∣∣ aT

f x = bf

}
,

where af and bf are given by Lemma 3.22.

Remark 4.17. The ESP algorithm assumes that the polytope P contains the origin. This

ensures that the ray γr will intersect the polytope for some value of r ≥ 0. If an initial equality

set is already known, then the interiority assumption can be relaxed.

4.5 Complexity Analysis

The complexity of the ESP algorithm is best described in terms of the number of linear

programs needed. Let LP (n, q) be the time complexity of an LP of dimension n with q

constraints. For the simplex approach, the average complexity is linear in q and polynomial

(approximately to the power three) in n, while the worst case is exponential. For interior point

methods the worst case is polynomial to within a given ε-bound of the optimum, however,

there is a large constant multiplier on the interior point approach and as a result it is often

slower for ‘small’ problems (less than a few hundred dimensions).

First, assume that none of the linear programs computed during the adjacency oracle

are dual-degenerate. If the polytope P is in R
d × R

k and has q constraints, then one LP in

d + k dimensions with q constraints must be solved per output facet in order to compute its

equality set. Computing the ridges of each facet requires a redundancy removal operation.

48

4.5 COMPLEXITY ANALYSIS

Algorithm 4.4 Shooting oracle: Calculation of a random facet of πxP

Input: Polytope P =
{
(x, y) ∈ R

d × R
k | Cx + Dy ≤ b

}
that contains the origin in its

interior and whose projection is full-dimensional.

Output: A randomly selected equality set E0 of P such that πxPE0
,

{
x
∣∣∣ aT

f x = bf

}
∩πxP

is a facet of πxP .

Find a face of P that projects to a facet of πxP
1: repeat
2: Choose a random vector γ ∈ R

d

3: Compute

(r?, y?) , argmax
(r,y)∈R×Rk

r

subject to Cγr + Dy ≤ b

4: E0 ←− {i | Ciγr? + Diy
? = bi}

5: until dim πxPE0
= d− rank N

(
DE0

T
)T

CE0
= d− 1

Compute affine hull of facet

6:
[

aT
f bf

]
←− N

(
DE0

T
)T [

CE0
bE0

]
Lemma 3.22

7:
[

aT
f bf

]
←− sign bf

‖af‖
2

[
aT

f bf

]
Remark 4.16

Handle dual-degeneracy in LP Section 4.2
8: if LP is dual-degenerate in 3 then

9: Compute equality set E0 such that PE0
=
{

(x, y)
∣∣∣ aT

f x = bf

}
∩ P Section 5.2

10: end if

Report facet

11: Report (E0, af , bf).

49

4. EQUALITY SET PROJECTION

This can be done in q− |Er|, d-dimensional LPs with q− |Er| constraints. If nf is the number

of inequalities in the projection πxP , then the worst-case time complexity is

O(nf (LP (d + k, q) + (q − |Er|)LP (d, q − |Er|))).

If the projection polytope is in general position, then |Er| is k for all facets and the complexity

becomes:

O(nf (LP (d + k, q) + (q − k)LP (d, q − k))). (4.19)

Clearly, the complexity is linear in the number of output facets.

It is interesting to note that if the dimension that we are projecting to and the number

of constraints are held constant, then the complexity becomes O(nfLP (k, q)). Finally, if the

size of the polytope P (dimension and number of constraints) is fixed, then the complexity is

linear is the number of output facets, O(nf).

4.5.1 Degeneracy

If degeneracy is encountered, then ESP will need to be called recursively and the algorithm

will no longer be output sensitive. This is not surprising as there currently exist no output

sensitive algorithms for any basic geometric operations in the degenerate case.

The worst-case is clearly if every facet of the projection is degenerate and their preimages

are (d + k − 1)−dimensional faces of P . ESP would then be called recursively, projecting

these faces from R
d+k−1 to R

d−1. Clearly, this could continue recursively until the projection

is to R
1. The result is that in the worst-case, the complexity of ESP is a function of the

number of faces in P , rather than the number of facets of πxP . As it is possible for the

number of faces of P to be exponentially larger than the number of facets in πxP , in the

worst-case ESP is an exponential algorithm.

Despite this worst-case behaviour, simulations in Chapter 6 demonstrate that ESP is

very well suited to many types of polytopes encountered in control problems, which are both

degenerate and non-degenerate.

50

Chapter 5
Extensions and Implementation Details

5.1 Degeneracy

In this section we will discuss a second method of dealing with degeneracy. A facet of the

projection is called degenerate if its pre-image is of dimension larger than d − 1, where d

is the dimension of the projection. A method to handle this problem was introduced in

Section 4.3, which involved recursive calls to the ESP algorithm. We here present a second

method that perturbs the cost function of the linear program used in the adjacency oracle

such that it cannot be dual-degenerate. We will refer to these two methods as the recursive

and perturbation methods respectively.

Consider the following modification of LP (4.3):

(x?, y?) = argmax
x,y

([
ar

0

]
+ ε

)T (
x

y

)

subject to CEr
x + DEr

y ≤ bEr

aT
f x = bf (1− δ),

(5.1)

where ε =
[

ε0 ε20 . . . εd+k
0

]T
and ε0 is a sufficiently small, positive number. This lexico-

graphic perturbation will be discussed in detail in Section 8.5, but here we will simply state

the main results: LP (5.1) is not dual-degenerate for sufficiently small ε and the (unique)

optimiser (x?, y?) of LP (5.1) is also an optimiser of LP (4.3).

The benefit of using LP (5.1) for the adjacency oracle is clearly that the pre-image of

each facet will be of dimension d− 1 and therefore the ridges can be computed without any

recursion. The cost is that a degenerate facet may be rediscovered several times. This is

illustrated through an example in Figures 5.1 and 5.2 where the adjacent facet is degenerate.

51

5. EXTENSIONS AND IMPLEMENTATION DETAILS

In Figure 5.1 we can see that the recursive method will choose an optimiser in the interior

of the preimage of the adjacent degenerate facet and will therefore return the equality set

of the preimage of the entire face. As the ridges cannot be computed directly from this

2−dimensional face, a recursive call is needed to ESP. Contrast this to Figure 5.2, where the

perturbation method causes the adjacency oracle to choose a particular 1−dimensional face

of P to be the preimage.

a
T
f
x = bf

(1−
ε)

Ridge aT
r x = br

Unique x?

ar

Face
t a

T
f
x = bf

Optimisers (x?, y?)

(a) Multiple optimisers: ESP will choose one in
the strict interior of the preimage of x?

Adjacent Facet

Preimage

(b) Preimage is not of dimension d − 1 and a re-
cursive call to ESP must be made to compute the
ridges.

Figure 5.1: Degenerate Projection Example: Recursive Method

If there are degenerate facets in the projection, then the ESP algorithm will no longer

be output sensitive. The complexity of the perturbation method is clearly a function of the

number of (d− 1)−dimensional faces of the polytope P that project into facets of πxP . As

this number of faces is known to be worst-case exponential, the ESP algorithm is clearly

worst-case exponential under both degeneracy handling methods.

52

5.1 DEGENERACY

Unique Optimiser

(x?, y?)
ar + ε

a
T
f
x = bf

(1−
ε)

Ridge aT
r x = br

Unique x?

ar

Face
t a

T
f
x = bf

(a) Perturbation of the cost makes the optimiser
unique.

Preimage

Adjacent Facet

(b) Ridges can be computed directly, but ESP will
find the facet more than once.

Figure 5.2: Degenerate Projection Example: Perturbation Method

53

5. EXTENSIONS AND IMPLEMENTATION DETAILS

It is difficult to compare the complexity of the two approaches, as there exist polytopes

for which each is superior. Consider Figure 5.3, where two polytopes are projected from R3 to

R2. It is possible for one method to be exponentially better than the other, as demonstrated

by the polytopes in Figure 5.3, if they were taken to higher dimensions.

This analysis makes it difficult to choose between the two approaches as it is unknown

how to tell which will be better a priori. Computational experience has demonstrated that

the perturbation method of handling degeneracy is often more numerically robust than the

recursive approach. However, as many geometers have found, using rational arithmetic can

greatly alleviate such problems. It has also been seen that for most problems of interest to

control, both methods are approximately equal. For these reasons, we generally choose the

perturbation method over the recursive.

5.2 Calculation of the Affine Hull

This section presents a well known algorithm for the computation of the equality set E of a

polytope P such that PE = P [Bor02, Alg. 1.3.1]. The input to the algorithm is the matrix

A ∈ R
q×n and the vector b ∈ R

q that defines the polytope P , {z ∈ R
n | Az ≤ b}. The output

is an equality set E such that PE = P and the affine hull is given by aff P = {z | AEz = bE}.
Recall that the equality set of P consists of all constraints that are active at every point in

the polytope. Therefore, if a point can be found in the polytope for which a given constraint

is not active, then that constraint is clearly not in the equality set. Given a constraint

i ∈ {1, . . . , q}, a point exists for which it is not active if Aiz − bi is strictly less than zero for

some z. We can search for such a point by minimizing the value of Aiz − bi:

J(i)? , minimise
z

Aiz − bi

subject to Az ≤ b.

If J(i)? is strictly negative, then constraint i is not in the equality set. If it is positive, then

the constraint is redundant and if it is equal to zero then it is in the equality set.

5.3 Projection of non Full-Dimensional Polytopes

If πxP is not full-dimensional, then P must have a non-trivial affine hull and there exists an

equality set A such that PA = P . An algorithm for computing the affine hull of a polytope,

and the equality set of the constraints that determine it was given in Section 5.2. If A is the

54

5.3 PROJECTION OF NON FULL-DIMENSIONAL POLYTOPES

(a) The perturbation method causes the front
facet to be re-discovered seven times.

(b) The recursive method needs to be called
exactly once for the same polytope.

(c) The perturbation method visits each of the
degenerate facets exactly once.

(d) The recursive method must recurse for each
of the three facets.

Figure 5.3: Example Projections that are Good/Bad for both Degeneracy Methods.

55

5. EXTENSIONS AND IMPLEMENTATION DETAILS

equality set of the affine hull, then from Lemma 3.22 we can write the projection πxP as

πxP = {x ∈ R
n | ∃y, Fx = f, Cx + Dy ≤ b} , (5.2)

where F , N
(
DA

T
)T

CA and f , N
(
DA

T
)T

bA. We now form a polytope P̃ that satisfies

the assumption that its projection is full-dimensional and from which we can recover the

projection πxP .

The equation Fx = f can be equivalently written as x = N(F)x̃ + F †f , for x̃ ∈ R
dim πxP ,

where we note that dim πxP = n− rank F . Defining P̃ as

P̃ ,

{
(x̃, y)

∣∣∣CN(F)x̃ + Dy ≤ b− CF †f
}

,

the polytope πxP becomes

πxP =
{

x ∈ R
n
∣∣∣ ∃y, x = N(F)x̃ + F †f, (x̃, y) ∈ P̃

}

=
{

x ∈ R
n
∣∣∣x = N(F)x̃ + F †f, x̃ ∈ πexP̃

}
.

We now show that P̃ satisfies the assumption that πexP̃ is full-dimensional.

πexaff P̃

= πex

{
(x̃, y)

∣∣∣CAN(F)x̃ + DAy = bA − CAF †f
}

=
{

x̃
∣∣∣N
(
DA

T
)T

CAN(F)x̃ = N
(
DA

T
)T(

bA − CAF †f
)}

= R
dim πxP (5.3)

where (5.3) follows because F is defined as N
(
DA

T
)T

CA.

Once the projection of P̃ is computed using ESP, an expression is needed to recover πxP .

x̃ can be written as a function of x as N(F)T x = x̃. If πexP̃ is given by {x̃ | Gx̃ ≤ g} then

πxP =
{

x
∣∣∣x = N(F)x̃ + F †f, Gx̃ ≤ g

}

=
{

x
∣∣∣Fx = f, GN(F)T x ≤ g

}
.

5.4 Projection of Polytopes that do not Contain the Origin

In this section we consider a polytope P that does not contain the origin in its interior. The

solution presented here is to compute a strictly interior point (x0, y0) and then translate the

polytope such that this point gets mapped to the origin. After running ESP on the translated

56

5.4 PROJECTION OF POLYTOPES THAT DO NOT CONTAIN THE
ORIGIN

polytope, the projection is then translated back by −x0 to restore the origin placement.

The following linear program will compute an interior point of polytope P whose equality

set is A:

(x0, y0) , argmin
(τ,x,y)

τ

subject to CAcx + DAcy ≤ bAc + τ

CAx + DAy = bA

(5.4)

Translating P by (x0, y0) gives P̂ , {(x, y) | Cx + Dy ≤ b + Cx0 + Dy0}. If the projec-

tion of P̂ is πxP̂ =
{

x
∣∣∣ Ĝx ≤ ĝ

}
, then πxP =

{
x
∣∣∣ Ĝx ≤ ĝ − Ĝx0

}
.

57

Chapter 6
Projection Examples

In this chapter we will present various comparative results on projections that are of interest to

control. While there exists a class of polytopes for which each projection method is optimal,

we will see that ESP is particularly and uniquely well suited to the types of problems of

interest in control.

All simulations presented in this section were carried out on a Pentium 4, 3GHz machine

with 2GB of RAM.

6.1 Random Polytopes

This section shows comparative simulations of ESP against other commonly used projec-

tion algorithms. Each algorithm is presented with an irredundant halfspace description of a

polytope P and the output of the algorithm is an irredundant halfspace description of the

projection πxP . The polytopes to be projected have been chosen randomly, and therefore are

very likely to be non-degenerate. A study of the degeneracy properties of ESP will be seen

in a later section.

Four algorithms have been compared:

1. Fourier Elimination: This algorithm was implemented by the author of this thesis in C

as described in [SH95].

2. Projection Cone: If the projection cone is defined as W , {v | vD = 0, v ≥ 0}, then

the projection is given by πxP = {x | (vC)x ≤ vb, ∀v ∈ extr W }. The extreme rays of

W were computed via the double description method CDD, which is implemented in

C [FP96] (version 0.93b, floating point arithmatic).

59

6. PROJECTION EXAMPLES

3. Vertex Enumeration: In this approach, the vertices of the polytope P are enumerated,

projected and then the convex hull of the projection is calculated. All computations are

done via the double description method CDD [FP96].

4. ESP: The ESP algorithm is implemented in MATLAB and all linear programs are com-

puted via the Stanford Systems Optimization Laboratory (SOL) toolbox [MS] (Tomlab

release 4.0.0)

As we require the output to be irredundant, each inequality generated by the first two ap-

proaches is tested for redundancy by a call to a linear program. For a fair comparison, the

LP code used is the Stanford Systems Optimization Laboratory (SOL) toolbox [MS].

Remark 6.1. Note that although at first glance, enumerating the vertices of the polytope as in

method 3 above may seem slow in all cases, there are classes of polytopes for which it is fast.

Furthermore, it is advocated in leading software packages, such as the Geometric Bounding

Toolbox (GBT) [Sys].

Several approaches are available to compute the extreme rays in 2 and the vertices in 3,

including [BDH96, Avi00, FP96, CL97, Cla, BFM98a]. As with most polytopic algorithms,

the efficiency of these methods varies widely as a function of the structure of the polytope: a

given algorithm will be fast for a certain class of polytopes and slow for a different one. It was

found, however, that for the class of polytopes considered here, CDD [FP96] was generally

faster than, or similar speed to the methods [BDH96, Avi00, BFM98a]. Therefore, we have

chosen to compare ESP with CDD.

The polytopes that are used in this comparison are randomly generated, bounded by a

hypersphere of radius 10 and all inequalities in their description are irredundant. Figures 6.1

and 6.1 shows the results of the simulations where the y−axis is a logarithmic scale of the

time taken per facet of the projection and the x−axis is the variable ξ, which is defined in

the following list. Let q be the number of halfspaces in the description of P . We define four

scenarios:

a. R
10 −→ R

4, q = ξ, ξ = 10, . . . , 100

This test demonstrates the complexity of the algorithms as a function of the number of

halfspaces in the polytope. From (4.19) and recalling that an LP has an average linear

complexity for fixed dimension, the complexity per facet of the projection of ESP is

O
(
q2
)
; this tendency can be seen in Figure 6.1(a).

b. R
ξ −→ R

4, q = 3ξ, ξ = 5, . . . , 30

In this test we project to a fixed dimension while increasing the dimension of the poly-

tope P . From (4.19), the complexity of ESP should increase as O(LP (ξ, 3ξ)). It is clear

60

6.2 FEASIBILITY

from Figure 6.1(b) that for these polytopes, ESP is capable of projecting from much

higher dimensions than the other approaches. The main limitation as the dimension

increases is the rapid growth of the number of facets in the projection.

c. R
ξ −→ R

4, q = 2ξ, ξ = 5, . . . , 70 P is a hypercube

This scenario computes the projection of rotated hypercubes to R
4. Note that while

a n−dimensional hypercube has 2n facets, it contains 2n vertices. Therefore, the pro-

jection cone and vertex enumeration approaches are ill-suited in this case. However, as

can be seen from Figure 6.1(c), ESP can handle very high dimensions.

d. R
ξ −→ R

2, q = 3ξ, ξ = 5, . . . , 50

The final test shows the projection of randomly generated polytopes from high dimen-

sions to R
2. The procedure described in Section 4.3.3 for the calculation of ridges in 1D

makes ESP particularly suited to this task, as can be readily seen from Figure 6.1(d).

Remark 6.2. Note that difference in speed between ESP and the other algorithms for small

problems is likely to be due in large part to the overhead involved in the implementation of

ESP in MATLAB.

6.2 Feasibility

We now examine one of the main uses of projection in a control context: the calculation of the

region of feasibility. In constrained control, polytopes arise naturally as input and/or state

constraints. For example, sets of halfspaces can be used to describe the physical position or

rate limits of a valve or the maximum safe pressure of a tank. Once constraints are placed on

the operation of a system, it is no longer necessarily the case that a control action can be found

for every state that satisfies all constraints. Determining the states of a linear system with

polytopic constraints for which there exists a feasible control action is called the feasibility

problem and requires a projection of polytopes.

Consider the following linear system:

x+ = Ax + Bu,

where x ∈ R
n is the state, x+ is the successor state and u ∈ R

m is the input. Consider the

61

6. PROJECTION EXAMPLES

10 20 30 40 50 60 70 80 90 100
10−3

10−2

10−1

100

101

102

103

ξ (Number of facets in input polytope)

Ti
m

e
(s

ec
/fa

ce
t o

f p
ro

je
ct

io
n)

Vertex Enum
Projection Cone
ESP
Fourier Elim

(a) R
10

−→ R
4; ξ = number of facets in P

5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

101

102

103

ξ (Dimension of input polytope)

Ti
m

e
(s

ec
/fa

ce
t o

f p
ro

je
ct

io
n)

Vertex Enum
Projection Cone
ESP
Fourier Elim

(b) R
ξ
−→ R

4; 3ξ = number of facets in P

Figure 6.1: Comparative Simulation Results for Randomly Generated Polytopes (a-b)

62

6.2 FEASIBILITY

5 10 15 20 25 30 35 40 45 50 55
10−4

10−3

10−2

10−1

100

101

102

ξ (Dimension of input hypercube)

Ti
m

e
(s

ec
/fa

ce
t o

f p
ro

je
ct

io
n)

Vertex Enum
Projection Cone
ESP
Fourier Elim

(c) R
ξ
−→ R

4; P is a rotated hypercube

0 10 20 30 40 50 60 70
10−4

10−3

10−2

10−1

100

101

102

103

104

ξ (Dimension of input polytope)

Ti
m

e
(s

ec
/fa

ce
t o

f p
ro

je
ct

io
n)

Vertex Enum
Projection Cone
ESP
Fourier Elim

(d) R
ξ
−→ R

2; 3ξ = number of facets in P

Figure 6.1: Comparative Simulation Results for Randomly Generated Polytopes (c-d)

63

6. PROJECTION EXAMPLES

following constraints:

x0 = x

xi+1 = Axi + Bui, i = 0, . . . , N − 1

xi ∈ X , i = 1, . . . , N − 1

xN ∈ XF ,

ui ∈ U , i = 0, . . . , N − 1,

(6.1)

where xi and ui are future states and inputs respectively, which are constrained to be in the

polytopes X and U , with the state at the end of the horizon N required to lie in the terminal

set XF .

The feasible set is defined as all initial states for which there exists a sequence of inputs

and states that satisfy the constraints in (6.1). For convenience, we define the vectorised sets

X ,

[
xT

1 · · · xT
N

]T
and U ,

[
uT

0 · · · uT
N−1

]
and the matrices A , IN⊗

[
A −In

]
,

Ax , A?,{1,...,n}, AX , A?,{n+1,...,nN} and B , IN−1⊗B, where Ij ∈ R
j×j is the identity and

⊗ is the Kronecker product. The feasible set can now be written as the following projection:

XF , πx





(x, X, U)

∣∣∣∣∣∣∣∣

Axx +AXX + BU = 0,

X ∈ XN−1 ×XF ,

U ∈ UN−1





(6.2)

= πx

{
(x, X, U)

∣∣∣∣∣
−A−1

X (Axx + BU) ∈ XN−1 ×XF ,

U ∈ UN−1

}
(6.3)

In this thesis we are primarily interested in the computational complexity of calculating

the feasible set XF and therefore, we here present some illustrative examples. The first is a toy

example that is used in many papers to illustrate such computations as it can be computed

quickly using any approach and, being two-dimensional, can be drawn on paper. The second

and third examples demonstrate how quickly the computation time of existing methods grows

with problem size, while ESP is still fast enough to be practical.

6.2.1 Double Integrator

Consider the single input, two-state double integrator:

x(k + 1) =

[
1 1

0 1

]
x(k) +

[
1

0.5

]
u(k)

64

6.2 FEASIBILITY

The following input and state constraints must be met at each point in time:

−1 ≤ u(k) ≤ 1, ∀k ≥ 0(
−5

−5

)
≤ x(k) ≤

(
5

5

)
, ∀k ≥ 1

If a horizon of N = 2 is assumed, then the projection (6.2) is:

XF = πx





(x, U)

∣∣∣∣∣∣∣∣∣∣∣

−




5

5

1

1



≤




A B 0

A2 AB B

0 Im 0

0 0 Im




(
x

U

)
≤




5

5

1

1








= πx





(x, U)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−




10

10

10

10

2

2




≤




2 2 2 0

0 2 1 0

2 4 3 2

0 2 1 1

0 0 2 0

0 0 0 2




(
x

U

)
≤




10

10

10

10

2

2








This projection from R
4 to R

2 is small enough to be computed very quickly by any available

method:

XF =





x

∣∣∣∣∣∣∣∣∣∣∣

−




6

15

15

11



≤




1 1

1 −1

2 4

0 2




x ≤




6

15

15

11








This feasible set is shown as Figure 6.2

6.2.2 Random Three-Dimensional System

We now consider a randomly generated three-dimensional system and compare the compu-

tation time of the various projection methods for this problem. The following system was

randomly selected using MATLAB’s drss function:

x(k + 1) =




−0.0489 0.4040 0.2306

0.0682 0.3540 −0.4081

−0.4602 −0.0895 −0.0368


x +




−0.4326 0.2877

0 −1.1465

0.1253 1.1909


u (6.4)

65

6. PROJECTION EXAMPLES

−15 −10 −5 0 5 10 15
−6

−4

−2

0

2

4

6

x
1

x 2

Figure 6.2: Feasible Region of the Double Integrator for N = 2

subject to the stage constraints

−
[

1

1

]
≤ u(k) ≤

[
1

1

]
, ∀k ≥ 0

−




10

10

10


 ≤ x(k) ≤




10

10

10


 , ∀k ≥ 1

(6.5)

As is common, the terminal constraint XF is taken to be the minimally invariant set generated

using a linear LQG controller with identity state and cost weights (see, for example [RKKM05]

for details on minimally invariant sets and their uses). The resulting set XF contains 30

constraints.

The feasibility projection is from a polytope in R
13 containing 80 constraints, of which

30 are from the terminal set XF and the remainder are the input and state constraints (6.5).

The resulting set XF is in R
3 and consists of only 16 halfspaces. While this would seem to be

a simple problem, the upper and lower bounds on the variables in (6.5) result in a polytope

that is related to a hypercube and therefore has a very large number of vertices: 166, 276.

As a result, most projection algorithms take a very long time to compute the feasible set. A

comparison is shown in Table 6.1 and the feasible region is shown in Figure 6.3.

Remark 6.3. Constraints of form (6.5) are very common in control and lead to a hypercube

in the states and inputs. Intersecting this hypercube with the subspace (6.4), which forms

the linear dynamics of the system may increase or decrease the number of vertices. While a

hypercube has an exponential number of vertices, experience has shown that it is common for

the constraint polytope to have many more than this. As was seen in the previous paragraph,

66

6.2 FEASIBILITY

the polytope has 166, 276 vertices while a 13-dimensional hypercube has only 8, 192.

As in Example 6.2.1, four methods were compared, but now that the polytopes have struc-

ture, there is a significant difference in computation time depending on the vertex enumeration

algorithm used. The following codes were tried: qhull [BDH96], porta [CL97], pd [BFM98a],

CDD [FP96] and lrs [Avi00], but only CDD, qhull and lrs are reported as numerical errors

caused the rest to fail without returning a result. In Table 6.1, the method labeled VpH

refers to first enumerating the vertices of the original polytope, projecting the vertices and

then enumerating the facets of the projection.

It should be noted that the performance of both Fourier elimination and the double

description method (CDD) are extremely dependant on the order in which the variables are

eliminated. Various orderings were tried and while, for this example, a significant difference

was not seen in CDD, Fourier elimination varied between 30 seconds and almost 6 hours. It

is not known if 30 seconds is the optimal ordering, or if another exists which could solve this

problem faster.

Method Time (secs)

ESP 0.22

Fourier Elimination 30.2− 20, 739.0

VpH
CDD 4, 186.7
lrs 455.51
qhull 391.0

Projection Cone
CDD 9, 327.7
lrs > 12 hours
qhull > 2GB RAM

Table 6.1: Comparison of Projection Methods for the Calculation of the Feasible Region for
Example 6.2.2

6.2.3 Large Random System

In the final feasibility example we examine the performance of ESP on a larger problem.

Comparative results cannot be given as none of the existing methods are able to compute the

required projection.

Consider the following system with four states and ten inputs and a prediction horizon of

N = 10:

x(k + 1) = Ax(k) + Bu(k)

67

6. PROJECTION EXAMPLES

Figure 6.3: Feasible Region for Example 6.2.2

where

A =




0.1867 0.1104 0.4882 0.0127

0.1104 −0.4556 −0.1107 0.2971

0.4882 −0.1107 0.2308 0.2476

0.0127 0.2971 0.2476 0.5222




B =




−0.4326 0 0 0 1.0668 0.2944 −0.6918 −1.4410 0 1.1908

0 1.1909 0.1746 2.1832 0.0593 −1.3362 0 0 0.7119 −1.2025

0.1253 1.1892 −0.1867 −0.1364 −0.0956 0.7143 0 0 1.2902 −0.0198

0.2877 −0.0376 0.7258 0.1139 −0.8323 1.6236 −1.5937 0.6900 0.6686 −0.1567




The computation of the feasible set required a projection of a 104–dimensional polytope

with 208 constraints to R
4. This projection was computed using ESP and the resulting feasible

set contains 542 constraints. As the feasible region XF is four dimensional it cannot be drawn

directly, but the projections onto each of the sets of three axes is shown as Figure 6.4.

The calculation of a feasible region tends to be very degenerate if the number of inputs

exceeds the number of states. As this is clearly the case for this example, a comparison of the

degeneracy handling methods for ESP described in Sections 4.3 and 5.1 is in order. For this

problem it was found that the vast majority of the facets were degenerate and that the recur-

sive (Section 4.3) method took 1865.4 seconds, while the perturbation method (Section 5.1)

took 249.4 seconds, spending fully 87% of its effort dealing with degeneracy. Computational

experience has shown that for control problems the degeneracy handling method of Section 5.1

is often better both in speed and in numerical stability. However, as demonstrated in Fig-

ure 5.3, this is not a general rule. Despite the loss of the output sensitivity property of the

algorithm for these degenerate projections, ESP is clearly drastically superior for this type of

68

6.2 FEASIBILITY

(a) Projection onto x2, x1, x3 (b) Projection onto x2, x1, x4

(c) Projection onto x3, x1, x4 (d) Projection onto x3, x2, x4

Figure 6.4: Feasible Set XF of Example 6.2.3

69

6. PROJECTION EXAMPLES

problem.

It should be noted that while the computation of the feasible set in this example took

only 3 minutes, it is at the limits of the current implementation of ESP. The reason for this

is the numerical stability of the implementation in MATLAB, which does all calculations in

floating–point arithmetic. As many geometers have found, the round–off errors involved put

a sharp limit on any algorithm not using exact arithmetic. Future versions of ESP will be

implemented using rational arithmetic in order to remove all problems with these errors.

70

Part II

Parametric Linear Programming

71

Chapter 7
Introduction

In this part we will consider the following multi-parametric linear program (mpLP) in the

(vector) parameter θ ∈ R
d:

f(θ) , minimise
x

(Eθ + c)T x

subject to x ∈ D,
(7.1)

where D is a polytope. The goal in ‘solving’ an mpLP is to pre-compute the solution for

every possible value of the parameter.

Remark 7.1. Note that we here consider only parameters in the cost or in the polytope

D, but not both. There are two reasons for this: First, the problems of interest to control

have this structure and second, as was shown in [SKJ+04] if there are parameters in both the

cost and the polyhedron D, then the proofs of continuity, completeness and correctness of the

algorithms in this part are invalid.

The single-parameter linear parametric program has been studied for decades in various

fields [Gal95]. The ability to determine what happens to the optimal solution if a parameter

is varied is essential whenever there are uncertain parameters. While the single-parametric

linear program has been thoroughly investigated, there has been less research into the multi-

parametric linear program. There are two contributing factors: First, the primary use of

parametric programming would appear to be as an aid to decision making. In this role, it is

primarily a visualisation tool and as such one must be able to plot the solution on a 2D piece

of paper. Second, as will be seen in this part, the complexity of the solution to an mpLP

grows extremely quickly with the dimension of the parameter and many problems of interest

outside control have an extremely large number of parameters. As such, analysing them one

at a time seems to be the best approach.

73

7. INTRODUCTION

In recent years there has been a surge of interest in the control community in multi-

parametric programming. It has been determined [BBM00] that certain constrained, finite-

horizon optimal control problems, commonly referred to as model predictive controllers (MPC)

can be posed as mpLPs or mpQPs (multi-parametric quadratic programs) with the measured

state as the parameter. The benefits of this are two-fold: First, before this point, the rela-

tionship between the measured state of a system and the input of the MPC controller was

obscured, as the link between the two was an online optimisation. However, it can now be said

with certainty that an MPC controller is in fact a piecewise linear controller, a very common

and well-understood type of control. Second, one of the primary limitations of MPC, which

has prevented its use in many areas, is the amount of time taken to compute the control

action, as this requires the solution to a linear or quadratic program. By pre-computing the

control for every possible state, this requirement of online optimisation can be removed and

as a result, MPC can now be applied to a much wider range of systems, in which a high

sampling rate is required.

This part will investigate the structure of the solution to multi-parametric linear programs.

It is known [BBM00] that the solution to an mpLP is piecewise-affine and is defined over a

union of polyhedral ‘critical regions’. We will show that if the problem is non-degenerate,

then the union of these critical regions makes up a so-called complex. This property allows

the proof that the solution methods proposed in Section 9.4 are correct and complete in the

non-degenerate case. Furthermore, this property will enable the ability to search the solution

in logarithmic time in Part IV. Clearly, it would be desirable if this property is maintained

when the problem is degenerate and in Section 9.2 we do just this, introducing an algebraic

perturbation of the data that will guarantee non-degeneracy for all problems. We will also

prove that this perturbation ensures that the dual optimiser of (7.1) is continuous, a critical

requirement for control, where a discontinuous optimiser will cause chattering. (Note that

the parameter enters only in the constraints for the dual of (7.1)). Four methods will be

proposed for the enumeration, each suited to a different type or size of problem. Finally, an

analysis of the complexity of the algorithms will be reported and it will be seen that, in the

absence of degeneracy, the enumeration methods are output sensitive.

7.1 Related Work

We briefly review the salient properties of existing proposals for computing multi-parametric

linear programs. There have been only a few methods published:

74

7.1 RELATED WORK

Full enumeration

The simplest approach to multiparametric programming is to enumerate all bases of the

constraint polytope D. Each basis then needs to be tested to determine if there exists a

parameter θ satisfying the optimality conditions at that vertex. This approach is clearly not

output sensitive as there can be exponentially more vertices in the polytope than there are

critical regions. While there are bound to be problems with a particular structure that make

this scheme efficient, in general it is a very costly approach.

Region Complement Method (RCM)

With [BBM00], Borrelli sparked a large interest in mpLPs and mpQPs in recent years. There

has been a significant amount published since the first paper in 2000, but the main references

are [BBM03] and [BBM00]. An implementation of this approach has been made available as

part of the Hybrid Toolbox [Bem03].

This approach stores two lists of non-overlapping polytopes, whose union covers the pa-

rameter space. One is a list of discovered critical regions, and the other is a list of polytopes

whose union makes up the complement of the discovered regions. At each iteration of the

algorithm, a polytope is selected from the list of unexplored polytopes and an interior point

is computed. The critical region containing this point is calculated and added to the first list.

Its complement is taken and intersected with the known regions, before being added to the

list of unexplored space. Iterations continue until the list of unexplored regions is empty.

The algorithm has the important property that its solution is guaranteed to cover the en-

tire feasible region, whether the problem is degenerate or not. However, if there is degeneracy,

then it is possible for the primal optimiser (control input) to be discontinuous and therefore

for chattering to occur. Furthermore, degeneracy may cause artificial cuts to be made in the

parameter space and therefore a very large number of critical regions to be returned.

The size of the list of unexplored space is not a function of the number of critical regions.

It follows that the algorithm is not output sensitive and computational experience has shown

that it is not generally as efficient for control problems as other approaches.

Facet Traversal Method (FTM)

The method reported in [Bao02, GBTM04] takes a distinctly different approach to computing

the solution. An implementation of this algorithm is available in the multi-parametric toolbox

(MPT) [KGBM04].

This solver is similar to the basis enumeration method that will be introduced in Sec-

tion 9.4.1 and if there is no degeneracy, the algorithms will return the same result. However,

75

7. INTRODUCTION

there are several key differences.

First, adjacent regions are computed by finding a point in the interior of a given facet

using an LP. A small amount is added to this point in the direction normal to the facet

and then a high-dimensional LP is used to compute the active constraints in the adjacent

region. There are three differences between this and what is proposed in this thesis. First,

the computation of an explicit point interior to the facet both requires an additional LP and

can cause numerical error. Second, moving the given point in the direction normal to the

facet requires one to choose a stepsize and if this stepsize is too large then small regions will

be missed; too small and numerical error will interfere with the algorithm. The difficulty

comes in that it is impossible to know if a stepsize is too big or too small before the algorithm

is run. Finally, the calculation of the active constraints in the adjacent region requires a

full LP in high dimension to be solved, rather than the LP of Theorem 9.11, which requires

exactly one pivot in the absence of degeneracy. The resulting difference in the number of

high-dimensional pivots will be seen in simulation in Section 10.

This method was primarily developed for solving multi-parametric quadratic programs, in

which requiring the cost to be positive definite will guarantee a unique and continuous primal

optimiser. As a result the degeneracy handling for linear problems has not yet been fully

investigated. While they have not yet been published, there are ad-hoc approaches imple-

mented in the MPT code: if dual-degeneracy is detected then a small random perturbation

is made to the primal cost vector. As a different random perturbation is used each time,

the solution will not be a complex and the input will not be continuous if the problem is

degenerate. Furthermore, as this approach requires the assumption that the critical regions

form a complex, no guarantee can be made that the entire feasible region will be covered, or

that a given section of the feasible region will be explored only once. This behaviour can be

seen in Example 10.4.

[Gal95]

In [Gal95] the effect of degeneracy on parametric programming was studied and the useful

notion of the degeneracy graph was introduced. While only sketches of algorithms were

proposed in the work, an appropriate implementation would provide the optimal solution

for a non-degenerate problem. When the problem is degenerate, the purpose of the author

of [Gal95] is rather different than the goal here. Rather than finding a single basis for each

parameter θ, the goal is to enumerate all bases. While this may show interesting properties

of the problem, it is unnecessary for control applications. Furthermore, as seen in Figure 8.4

the number of bases that need to be enumerated increases exponentially with the degree of

76

7.2 OUTLINE

degeneracy, making this approach unsuited to control problems.

[STJ05a]

The paper [STJ05a] introduces an approach to ensuring continuity of the optimiser of an

mpLP. The method identifies the degenerate regions and then solves an mpQP with a positive

definite cost in each. There are two reasons why one may prefer the perturbation approach

proposed in this thesis. First, as it is based only on mpLPs, a separate mpQP solver is

not needed and second, the critical regions will no longer form a complex and therefore the

solution cannot be searched in logarithmic time as shown in Part IV.

Remark 7.2. Note that the names Facet Traversal Method (FTM) and Region Complement

Method (RCM) have been created by the author of this thesis so that they could be referred

to conveniently in later sections. No names were given to these approaches in the papers in

which they were published.

7.2 Outline

Multi-parametric linear programs are obviously very closely linked to standard LPs. Chapter 8

will provide the required background on the geometric aspects of linear programming. Also

presented is a modification of the well-known simplex algorithm that ensures a unique optimal

basis is obtained, whether the LP is degenerate or not, which is an essential ingredient for

the mpLP algorithm to follow. Chapter 9 will define what is meant by a ‘solution’ to an

mpLP and investigate its structure. It will be proven that if the modified simplex method

of the previous chapter is used, then the solution will have two important properties: the

optimiser is continuous and the solution is defined over a complex. The first property prevents

chattering in the control input and the second is a requirement for the proposed algorithms

to be correct. Finally, Chapter 9 will present four enumeration methods, each with their pros

and cons. Finally, examples and simulation results will be presented in Chapter 10, with a

focus on control problems.

77

Chapter 8
Geometry of the Simplex Method

In this chapter we will review the needed details of linear programs (LPs), specifically: the

simplex method and its geometry, degeneracy and lexicographic perturbation and single-

parameter linear programming. A new enhancement of the standard simplex approach will

be introduced that will guarantee a unique optimal basis; an unnecessary detail for most ap-

plications, but a useful tool for computational geometry and a requirement for the algorithms

presented in this thesis. Much of the material for this section is derived from [Mur83, BT97].

In this chapter we will consider the following linear program:

J , minimise cT x

subject to x ∈ P
(8.1)

where the polyhedron P ⊂ R
n is defined in what is referred to as standard form:

P , {x |Ax = b, x ≥ 0} (8.2)

for some matrix A ∈ R
m×n and some vector b ∈ R

m.

Remark 8.1. Note that any polyhedron can be written in the form (8.2). See, for exam-

ple, [Mur83] for details.

We begin by motivating our interest in the vertices of the polyhedron P with the Funda-

mental Theorem of Linear Programming:

Theorem 8.2 (Fundamental Theorem of Linear Programming). If an LP has an

optimal solution, then there exists an extreme point of the feasible region that is optimal.

79

8. GEOMETRY OF THE SIMPLEX METHOD

8.1 Representation of Vertices: The Basis

We will now discuss the standard method of representing vertices in simplex-based algorithms:

the basis.

Although the form of the polyhedron used here is slightly different than that of Part I,

a face of the polyhedron P is still given by setting some of the inequality constraints to

equality. If A is in R
m×n and N is a subset of {1, . . . , n}, then we will slightly abuse the

notation introduced in Part I and define PN to be the face:

PN , {x |Ax = b, x ≥ 0, xN = 0}
=
{
x
∣∣A?,\Nx\N = b, x\N ≥ 0, xN = 0

}
, (8.3)

where the notation A?,E selects the columns of A in E. By definition, a face PN is a vertex

of P if and only if (8.3) contains exactly one point. Clearly, this will be the case if and only

if the rank of A?,\N is m (where we make the standing assumption that A 6= 0). A standard

result of linear algebra states that if the rank of A?,\N is m, then there will exist a subset B

of {1, . . . , n} \N such that rank(A?,B) = m and |B| = m. Any set B ⊆ {1, . . . , n}, such that

|B| = m is called a basis of P and if B also has the property that P\B is a vertex of P , then

it is called a feasible basis. Clearly, for every vertex v of P , there exists a basis such that

P\B = {v}.
In the remainder of this thesis, we will adopt the standard notation used in simplex-

based methods as follows. If B is a basis, then N , {1, . . . , n} \B is defined as the non-basic

variables. The matrix A will often be partitioned into basic A?,B and non-basic columns A?,N ,

but where it is clear from the context, we will use the standard abuse of notation and refer to

A?,B as B and A?,N as N . Furthermore, we will make the assumption that N is an equality

set (Definition 3.9). The case where this is not true is referred to as primal degeneracy and

will be discussed in Section 8.5.1 below.

8.2 Pivoting and Polyhedral Skeletons

Two vertices are called adjacent if there exists an edge of the polyhedron P that contains

both. Note that this adjacency of vertices differs from the adjacency of facets discussed in

Part I. As the dimension of an edge is one and that of a vertex is zero, we know from

Theorem 3.14 that each of the equality sets of the edges of P that contain PN are given by

PN\{e} for some e in N .

If B is a feasible basis of P and we have what is called an entering variable e ∈ N , then

80

8.3 OPTIMALITY CONDITIONS

we have the following relations for the edges that contain the vertex PN :

PN\{e} =
{
x
∣∣BxB + N?,{e}xe = b, xN\{e} = 0, xB ≥ 0, xe ≥ 0

}

=
{
x
∣∣xB = B−1b−B−1N?,{e}xe ≥ 0, xN\{e} = 0

}
(8.4)

If all the rows of the vector B−1N?,{e} are less than or equal to zero, xe can be increased

forever and (8.4) will remain non-empty. It follows that PN\{e} is a ray of P in this case. If,

however, any of the rows of B−1N?,{e} are positive, then there is clearly an upper limit to

how large xe can grow before (8.4) becomes empty. As xe is increased away from zero, one of

the inequality constraints on the basic variables in (8.4) will become an equality. The index

l(e) of this constraint is called the leaving variable and is given by what is called the ratio

test, which follows directly from (8.4):

l(e) , argmin
j∈B

{ (
B−1b

)
j(

B−1N?,{e}

)
j

∣∣∣∣∣
(
B−1N?,{e}

)
j
≥ 0

}
(8.5)

Remark 8.3. Note that l(e) is not necessarily unique. We will here assume that it is and

discuss the case where it is not in Section 8.5.2.

From the above arguments, we have that B ′ , B\l(e) ∪ {e} is a feasible basis of the

polyhedron P . The basis B′ is said to be adjacent to the basis B and we have that their

associated vertices are also adjacent. The act of choosing an entering variable e ∈ N and

computing B′ is referred to as a simplex pivot.

Balinski’s Theorem [Bal61] states that the skeleton of a polyhedron, which is the graph

formed by its vertices and edges, is connected and therefore, beginning from any basis we can

make a series of pivots and arrive at any other basis in P .

8.3 Optimality Conditions

Given a vector x in the polyhedron P , a feasible direction (or tangent vector) is defined as

all directions away from x that remain in P .

Definition 8.4 ([BT97]). Let x be an element of the polyhedron P ⊆ R
n. A vector γ ∈ R

n

is said to be a feasible direction at x if there exists a strictly positive scalar α for which

x + αγ ∈ P .

The first order necessary condition for optimality states that a point x is locally optimal

only if the cost increases in all feasible directions away from x. In a linear program a convex

81

8. GEOMETRY OF THE SIMPLEX METHOD

function is being optimised over a convex set, and therefore this condition is also sufficient

and implies global optimality.

Theorem 8.5. Let x be an element of the polyhedron P ⊆ R
n. A necessary and sufficient

condition for x to be a global minimum of the linear program (8.1) is

cT γ ≥ 0

for all feasible directions γ at x.

From Theorem 8.2, the Fundamental Theorem of Linear Programming, we know that

if an optimum of LP (8.1) exists, then it will occur at a vertex. Although there may be

other optimal points interior to higher dimensional faces, this allow us to focus on finding an

optimal vertex and therefore we aim to compute the change in cost as we move away from a

given vertex to its neighbouring vertices.

Let B be a basis of LP (8.1) and x its associated vertex. We wish to consider the cost

at the point x + αγ for all vectors γ such that x + αγ remains feasible. As discussed above,

all of the feasible directions that lead to another vertex of the polyhedron involve increasing

one of the variables xN from zero. To this end, we select a non-basic variable j ∈ N and set

γj = 1, while keeping all the other non-basic variables at zero: γi = 0, ∀i ∈ N, i 6= j. As all

points x + αγ must remain feasible, we have that A(x + αγ) = b, which implies that Aγ = 0,

since x is already feasible. From this we can compute:

0 = Aγ

= BγB + NγN

= BγB + A?,j

⇔ γB = −B−1A?,j (8.6)

It is now a simple matter to test the condition of Theorem 8.5:

cT γ ≥ 0 for all feasible directions γ

⇔ cT
j − cT

BB−1A?,j ≥ 0, ∀j ∈ {1, . . . , n}
⇔ cT − cT

BB−1A ≥ 0 (8.7)

The quantity in (8.7) is called the reduced cost and is commonly denoted by c̄T , cT−cT
BB−1A.

The following Theorem is the common optimality condition used in linear programming.

82

8.4 SIMPLEX ALGORITHM

Theorem 8.6. [BT97] If B is a feasible basis of LP (8.1), and x and c̄ are the vertex and

associated reduced cost respectively, then x is an optimal solution if and only if c̄ ≥ 0.

Remark 8.7. Note that the reduced cost is often defined as cT
N − cT

BB−1N , as c̄B is clearly

zero. We include the zero elements in the definition here so that the indices are preserved,

i.e. c̄i is related to the ith variable xi, rather than to xNi
.

8.4 Simplex Algorithm

We can now outline a rudimentary version of the (primal) simplex algorithm. The input to

the algorithm is any feasible basis of the polyhedron P and the output is a feasible basis that

corresponds to an optimal extreme point. At each step of the algorithm, one of the non-basic

variables e ∈ N is chosen to ‘enter the basis’, or become inactive. A pivot is performed on

this entering variable, where the leaving variable is chosen via the ratio test (8.5). By only

selecting entering variables whose reduced cost is negative, we can be sure to decrease the

cost in each iteration until an optimal basis is reached. This simple procedure is outlined in

Algorithm 8.1 below.

Remark 8.8. An initial feasible basis can be computed via a linear program over a modified

version of the polyhedron P . See, for example, [Mur83] for details.

The connectivity of the polyhedral skeleton discussed above implies that we will reach

the optimal basis from any initial feasible basis. See any text on linear programming for a

detailed proof (e.g. [Mur83]).

There are two steps in the simplex algorithm that involve choice: choosing the entering

variable (Step 3) and choosing the leaving variable in the case of a tie in (8.5) (Step 4). The

rule used to make these choices drastically affects the number of pivots that the algorithm will

have to make before arriving at the optimum. There has been an enormous amount of research

done on finding an optimal rule in terms of the number of pivots, while still ensuring that the

optimal basis will be reached. Despite this, the original, proposed by Dantzig [Dan48, Dan51],

is still often the best. See [TZ91] for a partial, although extensive, survey. In the following

sections we will develop a rule that is ideal for our purposes as it deals efficiently with the

degeneracy that plagues geometric algorithms.

8.5 Degeneracy

Up until now we have implicity assumed that the complement of each basis is an equality set,

which implies that each vertex is associated with a single basis, and we have not considered

83

8. GEOMETRY OF THE SIMPLEX METHOD

Algorithm 8.1 Simplex Algorithm

Input: Feasible basis B
Output: Optimal basis B? or unbounded
1: Compute reduced cost c̄ for the basis B (8.7)
2: while there exists an e ∈ N such that c̄e < 0 do
3: Choose an entering variable to reduce the cost: {e ∈ N | c̄e < 0}
4: Compute the leaving variable via the ratio test: l(e) (8.5)
5: if l(e) is empty then
6: Return unbounded The optimal cost is −∞ and B ∪ {e} defines an extreme ray
7: end if
8: Perform the pivot: B ←− B\l(e) ∪ {e}
9: Compute the reduced cost c̄ for the basis B

10: end while
11: Return B? ←− B

the case where the optimiser is non-unique. The violation of these assumptions is called

primal and dual degeneracy respectively and the following sections will discuss them in detail

as well as introduce a minor modification of the simplex algorithm that will compute a unique

optimiser in the presence of degeneracy.

8.5.1 Primal Degeneracy

Primal degeneracy occurs when more than n − m constraints are active at a vertex. By

definition, a basis must contain exactly m inactive constraints and therefore, when primal

degeneracy occurs some of the basic variables xB will be equal to zero (i.e. active).

Consider the following example polyhedron, which is shown in Figure 8.1:

P ,





x ∈ R
5

∣∣∣∣∣∣∣∣




−1 2 1 0 0

0 1 0 1 0

2 1 0 0 1


x =




1

0.6

1


 , x ≥ 0





(8.8)

With reference to Figure 8.1 we see that the vertex v2 is primal degenerate as all of the

following three bases represent it: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}.

Remark 8.9. Note that while two-dimensional polyhedra can only contain primal degener-

ate vertices if there are weakly redundant constraints as in Figure 8.1, higher dimensional

polyhedra commonly have them as shown in Figure 8.2.

The main problem caused by primal degeneracy in linear programming is called cycling.

Cycling can occur when the simplex algorithm has a choice of which basis to use in describing a

vertex. For instance, in the above example if we began from basis {1, 2, 3} and were optimising

84

8.5 DEGENERACY

x4

v2

v3

x2

v0

x1

v1

x3

x5 c =

[
1
0

]

Figure 8.1: Example of Primal Degeneracy: Each of the variables xi is shown as the orthogonal
distance from hyperplane i (i.e. x3, x4 and x5 are slack variables)

Figure 8.2: 3D Example of Primal Degeneracy

85

8. GEOMETRY OF THE SIMPLEX METHOD

the cost function cT =
[

1 0 0 0 0
]
, the simplex algorithm would choose to pivot to

basis {1, 2, 5}. In the next iteration pivoting to either basis {2, 4, 5} or back to basis {1, 2, 3}
is valid. If {1, 2, 3} is chosen then this cycle would continue indefinitely without making any

progress towards the optimal.

While cycling is generally ignored in commercial codes as it is usually not problematic,

there are several accepted methods in the literature to handle it [Mur83, Chap. 10]. For the

purposes of geometric algorithms the main issue is the non-uniqueness of the optimal basis,

rather than cycling. However, one of the approaches developed to deal with cycling will also

solve this problem: lexicographic perturbation.

Primal degeneracy occurs when some of the basic variables xB are equal to zero. Early

methods of resolving primal degeneracy consisted of adding a small random vector to the

right hand side of the constraints in (8.2) [Cha52]. If B is a primal-degenerate basis, then the

basic variables are xB = B−1b of which some xi are equal to zero. However, if a small random

vector ε was added to b, we would have xB = B−1b+B−1ε, and all xi would be non-zero and

therefore the basis could not be primal degenerate.

Lexicographic perturbation is a more elaborate version of this simple idea and was origi-

nally proposed in [DOW55]. Consider the perturbed constraints:

P ε , {x |Ax = b + ε, x ≥ 0} ,

where εT ,

[
ε0 ε20 . . . εm

0

]
and ε0 > 0 is a sufficiently small positive number.

The key result of this section is the following: there exists a sufficiently small ε̂ such that

for all ε0 < ε̂, the polyhedron P ε is not primal degenerate.

Theorem 8.10 ([Mur83]). Given any polyhedron P = {x |Ax = b, x ≥ 0}, there exists a

positive number ε1 > 0, such that whenever 0 < ε0 < ε1, the following perturbed problem is

primal non-degenerate:

minimise cT x

subject to x ∈ P ε,
(8.9)

where P ε , {x |Ax = b + ε, x ≥ 0} , and εT ,

[
ε0 ε20 . . . εm

0

]

Furthermore, the relationship between vertices of P ε and bases of P is given by the

following theorem.

Theorem 8.11 ([Mur83]). If B is a feasible basis for P ε when ε is sufficiently small, then

B is a feasible basis for P .

86

8.5 DEGENERACY

Theorems 8.10 and 8.11 allow us to solve the non-primal degenerate problem (8.9) rather

than the original degenerate one. The remainder of this section discusses the mechanics of

solving a linear program over the polyhedron P ε for a sufficiently small ε.

Consider now a primal degenerate basis B and we have the basic vector:

(xB)i =
(
B−1b

)
i
+
(
B−1ε

)
i

=
(
B−1

)
i
b +

(
B−1

)
i,1

ε0 +
(
B−1

)
i,2

ε20 + · · ·+
(
B−1

)
i,m

εm
0 (8.10)

Clearly, (xB)i is feasible (i.e. positive) for all arbitrarily small ε0 if and only if the first

non-zero element of the vector
(
B−1

)
i

[
b Im

]
is positive. This condition is referred to as

lexico–positivity.

Definition 8.12 (Lexico Positive). If γ = (γ1, . . . , γr) is a vector, then it is said to be

lexico positive (or lex-positive) if γ 6= 0 and if the first nonzero component of γ is positive.

Lexico positivity will be denoted by the symbol γ Â 0.

Given two vectors, v and u, we say that v Â u if and only if v−u Â 0. Given a set of vectors

{v1, . . . , vr}, the lexicographical minimum, denoted lexmin is the element vi such that vj Â vi

for all j 6= i.

Clearly, not all feasible bases will satisfy the positivity condition of (8.10). The following

definition introduces the bases of interest.

Definition 8.13. A feasible basis B is called lexicographically feasible (lex-feasible) if and

only if every row of the matrix

[
B−1b B−1

]

is lex-positive.

Figure 8.3 illustrates the geometry of a lexicographic perturbation. One can see that each

of the constraints in Figure 8.1 has been shifted outwards from the origin. The result is that

the primal degenerate vertex v2 has been changed into the three non-degenerate vertices that

correspond to the three bases that can describe it: v2a, v2b and v2c. Notice that only v2a and

v2b are feasible vertices of P ε, while v2c is not. This is the graphical interpretation of v2c not

being lex-feasible.

We saw in Figure 8.3 that the number of lex-feasible bases can be less than the feasible

ones. We define the degree of degeneracy σ as the number of extra constraints that are active

at a vertex i.e. there are n − m + σ constraints active. If a given vertex has a degree of

87

8. GEOMETRY OF THE SIMPLEX METHOD

v0

c =

[
1
0

]

ε0

x5

x1

x2

v3

v2cv2a v2b

x4

ε3
0

v1

ε2
0

x3

Figure 8.3: Lexicographic Perturbation P ε

degeneracy of σ, then there are up to

φ(n−m, σ) ,

(
n−m + σ

σ

)

possible feasible bases that describe the vertex [Mur83]. However, in [Arm93] it was shown

that the number of lex-feasible basis is bounded by

φlex(n−m, σ) ,

(⌊
n−m

2

⌋
+ σ

σ

)
+

(⌊
n−m−1

2

⌋
+ σ

σ

)
−
(
σ + 1

)
.

While φlex is non-polynomial, it is still much smaller than φ as shown in Figure 8.4.

Remark 8.14. A little discussed topic in the literature is the effect of ordering on the com-

plexity of lexicographic perturbation. In the above discussion, we have followed the standard

convention of setting ε equal to
[

ε0 ε20 . . . εm
0

]T
. However, all of the above results hold

for any ordering of this vector, and the number of lex-feasible bases can change drastically

with the chosen order. For example, if we were to use the ordering ε =
[

ε20 ε0 ε30

]T
in the

example (8.8), then we would have only one lex-feasible basis as shown in Figure 8.5. This

88

8.5 DEGENERACY

0 5 10 15 20
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

σ

Lo
g

of
 N

um
be

r o
f R

ep
re

se
nt

at
io

ns

φ(30,σ)
φ

lex
(30,σ)

Figure 8.4: Maximum Number of Feasible and Lex-Feasible Representations of a Vertex with
Degree of Degeneracy σ

effect of ordering has largely been ignored in the linear programming literature as the compu-

tational effort of finding a good ordering would likely be large compared to the calculation of

a single linear program. However, for enumeration tasks, a pre-processing stage may well be

worth the effort and this would make an interesting topic for future research.

We now discuss a modification of the ratio test (8.5) that uses lexicographic perturbation.

If B is a lex-feasible basis and e is the entering variable, then the lexicographic ratio test is

given by:

llex(e) , arglexmin
j∈B





[
B−1b B−1

]
j(

B−1N?,{e}

)
j

∣∣∣∣∣∣∣

(
B−1N?,{e}

)
j
≥ 0





(8.11)

Note that the choice made by (8.11) must be unique. A non-unique solution would exist if

and only if two rows of
[

B−1b B−1
]

were identical, and this clearly cannot happen as B

is invertible.

The following three important theorems allow us to simply replace the ratio test (8.5)

with the lexicographic ratio test (8.11) in the simplex algorithm and be sure that the optimal

solution will be found and that it will not be primal degenerate. We will refer to a pivot made

89

8. GEOMETRY OF THE SIMPLEX METHOD

v0

c =

[
1
0

]

x3

x5

x1

x2

v3

v2c

v2b

ε0

ε2
0

v1

x4

v2a

ε3
0

Figure 8.5: Lexicographic Perturbation: Effect of Ordering

using the lexicographic ratio test as a lex-pivot.

Theorem 8.15 ([Mur83]). If B is a lex-feasible basis of P and a lex-pivot is performed on

B, the resulting basis will be lex-feasible.

Theorem 8.16 ([Mur83]). For sufficiently small ε, there is a one-to-one correspondence

between the vertices of P ε and the lex-feasible bases of P .

Theorem 8.17 ([Mur83]). Two vertices v1 and v2 of P are adjacent if and only if there are

a lex-feasible basis B1 associated with v1 and a lex-feasible basis B2 associated with v2 such

that one can move from B1 to B2 (and vice versa) via a single lexicographic pivot.

Remark 8.18. An initial feasible lex-positive basis can be found by solving a modified LP

using a lexicographic pivoting rule. Details can be found in [Mur83].

8.5.2 Dual Degeneracy

A linear program is called dual degenerate if there exists more than one vertex that achieves

the minimal cost. Assuming that lexicographic perturbation is being used, this condition is

equivalent to there being more than one optimal basis.

90

8.5 DEGENERACY

For many applications the existence of multiple optimisers is not a problem. However,

for the purposes of the algorithm that will be presented in Chapter 9, a unique optimal basis

is required. This section will describe a new method that will augment the original problem

such that there is a unique optimal basis.

The first step in the algorithm is to use a standard simplex approach to find any lex-

feasible and optimal basis for LP (8.1). It is well-known that the set of all optimisers will

lie on a face of P ε [Zie95, Sec. 3.2]. Therefore, the second step is to identify this face using

the known optimal basis. Finally, a second linear program is computed over the optimal face

using a cost that is guaranteed to be non-dual degenerate.

Given a lex-optimal basis B, the following new theorem gives the face of P ε that contains

all optimisers of LP (8.9).

Theorem 8.19. If B is a lex-optimal basis of LP (8.1), then the set of all lex-optimisers are

given by the face PT , where T , {i | c̄i > 0}.

Proof. The proof proceeds by first defining the set of all feasible directions F at the vertex

v associated with the basis B (i.e. the tangent set). We then parameterise each point x in P

as x = v + f for some f ∈ F and then show that the cost increases in the direction f unless

x ∈ PT .

Let F ∈ R
n×n−m be the matrix whose rows are defined as:

FB , −B−1N FN , I (8.12)

From (8.6) we can see that the columns of F are precisely the directions along the edges that

intersect at v and as v ∈ P ε is not primal-degenerate, there are exactly n −m of them and

they are clearly linearly independent. The set of all feasible directions at v is then given by

the set F :

F ,
{
γ
∣∣ ∃λ ∈ R

n−m, γ = Fλ, λ ≥ 0
}

.

From [Zie95, Lemma 3.6] we have that the cone F is a superset of P . As P is convex, it

follows that for every x in P there exists a γ ∈ F such that x = γ + v. Furthermore, as F is

full rank, there exists a unique λ ≥ 0 ∈ R
n−m such that x = Fλ + v.

The cost at x is then given by:

cT x = cT Fλ + cT v

91

8. GEOMETRY OF THE SIMPLEX METHOD

and recalling from (8.7) that c̄T
N = cT F and c̄B = 0:

cT x = c̄T
Nλ + cT v

and the definition of T as {i | c̄ > 0} gives:

cT x = c̄T
T λT + c̄T

\T λ\T + cT v

= c̄T
T λT + cT v.

Clearly, the cost at x is equal to the optimal cost of cT v if and only if λT = 0, which completes

our proof.

Corollary 8.20. An LP is not dual-degenerate if and only if there exists a lex-optimal basis

B of LP (8.1) such that c̄ > 0.

8.6 Simplex Algorithm with a Unique Optimal Basis

The tools are now in place to define a modified version of the simplex algorithm in which a

unique optimal basis is guaranteed to be found. In order to ensure a unique optimal basis,

the LP must be neither primal nor dual degenerate. In this section we will show that the

following modified LP has this property:

minimise (c + čδ)T x

subject to x ∈ P ε
(8.13)

for sufficiently small ε and δ, where č is any vector that is not perpendicular to any of the

edges of P ε. The output in solving this LP is the optimal basis. If desired, the optimiser can

then be easily derived from the basis.

Remark 8.21. The simplest method to find an appropriate č is to select it randomly. This

clearly does not guarantee that the assumption of non-degeneracy will be met, but one can

then simply test for degeneracy at each step of the algorithm and start again with another

random vector if it is detected.

Remark 8.22. Note that the cost č may also be treated as a symbolic vector of the form
(
κ, κ2, . . .

)
, where κ is a small, unspecified, positive value. The reduced cost of LP (8.14)

would then be computed as r =
(
κ, κ2, . . .

)
F , where F is the matrix of feasible directions

92

8.6 SIMPLEX ALGORITHM WITH A UNIQUE OPTIMAL BASIS

FN = I, FB = −B−1N . Clearly, the ith reduced cost ri is positive if and only if the first non-

zero element of F is positive. As with lexicographic perturbation of the primal, the reduced

cost can clearly not be zero, and therefore not dual-degenerate.[FLN97]1

Theorem 8.23. The lex-feasible basis B of P is the unique optimiser of LP (8.13) if and

only if B is a lex-optimiser of LP (8.1) and of the LP:

minimise čT x

subject to x ∈ P ε

xT = 0

(8.14)

where T , {i | c̄i > 0}

Proof. An optimal basis B of LP (8.13) is unique if and only if it is neither primal nor

dual degenerate. Primal non-degeneracy follows directly for the lexicographically perturbed

polyhedron P ε from the discussion in Section 8.5.1 and the remainder of this proof will show

that B is not dual-degenerate either.

Let B be a lex-feasible basis of P . From Theorem 8.6, B is an optimal basis of LP (8.13)

if and only if

c̄ + δ¯̌c ≥ 0, (8.15)

for δ arbitrarily small. Hence, a necessary condition is for c̄ ≥ 0, or in other words, for B to

be a lex-optimal basis of LP (8.1).

Assume that B is a lex-optimal basis of LP (8.1) and let T = {i | c̄i > 0}. Equation 8.15

becomes:

c̄T + δ¯̌cT ≥ 0 (8.16)

¯̌c\T ≥ 0. (8.17)

The first condition is clearly satisfied for all sufficiently small δ, as c̄T > 0. The second

condition is satisfied if and only if B is an optimiser of LP (8.14).

Finally, we address the issue of uniqueness and show that the inequality in (8.17) is strict

and therefore not dual-degenerate. Recall that ¯̌c\T
T = čT F?,\T , where the columns of F are

the directions along the edges that intersect at the vertex associated with B. It follows that

an element of ¯̌c can be equal to zero if and only if č is perpendicular to one of the edges of P .

By assumption, this is not true and therefore the optimiser of LP (8.13) is unique.

1The author would like to thank his examiner Komei Fukuda for pointing this out.

93

8. GEOMETRY OF THE SIMPLEX METHOD

The following two corollaries follow directly:

Corollary 8.24. If B is a lex-optimal basis of LP (8.13), then it is a lex-optimal basis of

LP (8.1).

Corollary 8.25. If B is a unique (non-degenerate) lex-optimal basis of LP (8.1), then it is

a lex-optimal basis of LP (8.13).

From the above theorem, it is clear that the following modified simplex algorithm (Algo-

rithm 8.2) will compute the unique optimum of LP (8.13).

Algorithm 8.2 Simplex Algorithm with a Unique Optimiser

Input: Lex-feasible basis B, costs c and č
Output: Unique optimal basis B? or unbounded
1: STAGE ←− 1
2: T ←− ∅
3: Goto 11 (8.7)
4: while there exists an e ∈ N such that c̄e < 0 do
5: Choose an entering variable to reduce the cost: {e ∈ N\T | c̄e < 0}
6: Compute the leaving variable via the lex ratio test: llex(e) (8.11)
7: if llex(e) is empty then
8: Return unbounded
9: end if

10: Perform the pivot: B ←− B\llex(e) ∪ {e}
11: Compute the reduced cost c̄
12: if c̄ ≥ 0 then
13: if STAGE = 2 then
14: Return B? ←− B
15: else
16: T ←− {i | c̄i > 0}
17: c←− č
18: STAGE ←− 2
19: end if
20: end if
21: end while

One can see that the differences between Algorithm 8.2 and Algorithm 8.1 are minor.

During the first stage of the algorithm any lex-optimal basis of LP (8.1) is found using

exactly the same procedure as in Algorithm 8.1, apart from the replacement of the minimum

ratio test at Step 6 with the lexicographic minimum ratio test. The basis is detected as being

optimal for LP (8.1) at Step 12, at which point we begin to solve LP (8.14) by changing the

cost and setting xT to zero by preventing any members of T entering the basis at Step 5.

94

8.7 ONE-DIMENSIONAL PARAMETRIC PROGRAMMING

8.7 One-Dimensional Parametric Programming

In this section we will introduce a small extension to the well-known one-dimensional paramet-

ric linear programming problem in order to ensure uniqueness. We are interested in solving

for all θ ∈ R the following parametric linear problem (pLP):

J(θ) , minimise
x

(c + θe + δč)T x

subject to x ∈ P ε
(8.18)

where P , {x |Ax = b, x ≥ 0}, A ∈ R
m×n, b ∈ R

m, c ∈ R
n, č ∈ R

n and e ∈ R
n.

By the ‘solution’ to pLP (8.18) we mean to find for each θ, the optimal basis B. The

procedure described here consists of three steps: First, fix θ at any value θ0 and compute the

optimal basis B0. Second, compute the region
>

θ < θ <
<

θ in which B0 is the optimal basis

and third, find the optimal basis B1 for θ >
>

θ and B2 for θ <
<

θ. The second and third stages

are then iterated for B1 and B2 until the lower bound
>

θ and upper bound
<

θ are equal to −∞
and ∞ respectively.

If θ is fixed at some value θ0, then pLP (8.18) becomes a standard LP, which can be solved

via the techniques discussed in Section 8.6. Assume that B0 is the optimal basis for θ = θ0.

Our goal is now to compute the region
>

θ < θ <
<

θ in which B◦ is optimal. The uniqueness

condition requires slightly more care than usual in pLP solvers.

The following Theorem allows the calculation of the region of optimality, or the so-called

critical region, of a basis.

Theorem 8.26. If B is a lex-feasible basis of P ε for which there exists a θ such that B is

optimal for LP (8.18), then B is optimal in the range
>

θ < θ <
<

θ where ē is the reduced cost

of e ((8.7)) and

>

θ ,




−∞, ē ≥ 0

min
i

{
− c̄i

ēi

∣∣∣ ēi < 0
}

, otherwise

<

θ ,




∞, ē ≤ 0

max
i

{
− c̄i

ēi

∣∣∣ ēi > 0
}

, otherwise

(8.19)

Proof. From Theorem 8.23, we need the basis to be optimal for both LP (8.1) and LP (8.14).

We consider LP (8.1) first and recall from Theorem 8.6 that the basis B is optimal if and

only if:

c̄ + θē ≥ 0. (8.20)

95

8. GEOMETRY OF THE SIMPLEX METHOD

The range of values for which (8.20) is true is clearly given inclusively by (8.19):
>

θ ≤ θ ≤
<

θ.

Second, we consider for which values LP (8.14) is optimal. From (8.19), we can see that

in the range
>

θ < θ <
<

θ, the set T = {i | c̄i + θēi > 0} is fixed and therefore the optimiser

of LP (8.14) is fixed. However, at the boundaries this situation changes as all indicies that

achieve the minimum/maximum in (8.19) are removed from the set T and therefore the

optimal basis for LP (8.14) may change and therefore the critical region is open.

We now consider the third step and look to find the basis that is optimal for θ >
<

θ. A

similar procedure is used to find the optimal basis for θ <
>

θ and is omitted here.

Theorem 8.27. If B is a lex-optimal basis of LP (8.18) in the range
>

θ < θ <
<

θ, then the

basis which is lex-optimal for θ >
<

θ is the lex-optimal basis of the LP:

minimise (e + δč)T x

subject to x ∈ P ε

xT = 0,

(8.21)

where T is given by

T =
{

i
∣∣∣ c̄i +

<

θēi > 0
}

(8.22)

Proof. Theorem 8.23 provides the required conditions: optimality for LP (8.1) and for LP (8.14).

From (8.20) we can see that a basis B is optimal for LP (8.1) at θ >
<

θ only if it is also optimal

for θ =
<

θ. It follows from Theorem 8.19 that the set of optimisers at θ =
<

θ is given by the

face PT , where T is defined as

T =
{

i
∣∣∣ c̄i +

<

θēi > 0
}

.

The goal is now to find a basis associated with a vertex of PT such that it is optimal for

LP (8.1) at θ =
<

θ + α, α > 0. From Theorem 8.5, basis B has this property if and only if:

c̄ +
<

θē + αē ≥ 0

which can be split into

c̄T +
<

θēT + αēT ≥ 0 (8.23)

αē\T ≥ 0 (8.24)

96

8.8 PRIMAL-DUAL PAIRS

Equation (8.23) is satisfied for sufficiently small α, as c̄T +
<

θēT > 0 and (8.24) is satisfied, as

well as the uniqueness conditions, if and only if the basis B is optimal for LP (8.21).

Remark 8.28. Note that if neither of the bases for θ <
<

θ and θ >
<

θ are dual degenerate,

then the set T will consist of all but one constraint and LP (8.21) will be solved in exactly

one pivot.

The required elements for computing the parametric linear program (8.18) are now in

place and the procedure is stated in algorithmic form in Algorithm 8.3.

Algorithm 8.3 One-Dimensional Parametric Linear Program with a Unique Optimiser

Input: Lex-feasible basis B, which is optimal for some θ
Output: Optimal basis for every θ in the pLP (8.18)

1: Compute limits of optimality:
>

θ,
<

θ (8.19)

2: Report B optimal for
>

θ < θ <
<

θ

3: while
<

θ <∞ do
4: Compute constraints T inactive at θ =

<

θ (8.22)

5: Compute optimal basis B′ for θ >
<

θ LP (8.21)

6: Compute limit of optimality:
<

θB′

(8.19)

7: Report B′ optimal for
>

θB < θ <
<

θB′

8: B ←− B′

9: end while
10: Repeat Steps 3 through 9 for θ > −∞

8.8 Primal-Dual Pairs

As will be seen in the coming chapters, there are very interesting and useful interpretations

of the primal-dual pairs for parametric LPs, and therefore we conclude this chapter with a

very brief introduction to duality. The primal-dual pair of interest are:

JD = minimise cT x

subject to Ax = b,

x ≥ 0

JP = maximise bT y

subject to AT y ≤ c (8.25)

We will call the LP on the right the primal and that on the left, the dual, although this is an

arbitrary choice as the dual of the dual is the primal [Mur83, Theorem 4.1]. The link between

the two LPs is given by the fundamental duality theorem, sometimes called the strong duality

theorem.

97

8. GEOMETRY OF THE SIMPLEX METHOD

Theorem 8.29 (The Fundamental Duality Theorem). In a primal-dual pair of LPs,

if either the primal or the dual problem has an optimal feasible solution, then the other does

also and the two optimal objective values are equal.

The main implication of Theorem 8.29 for our purposes is that the optimality conditions

of the primal are precisely the feasibility conditions of the dual, and vice versa. If B is a basis

of the primal, then it is optimal if and only if:

c̄ ≥ 0

recalling the definition of reduced cost (8.7)

cT − cT
B

(
B−1A

)
≥ 0

(
cT
BB−1

)
A ≤ cT

and taking the transpose gives

AT
(
B−T cB

)
≤ c (8.26)

Equation (8.26) can now be written as:

AT y ≤ c,
(
AT
)
B

y = BT y = cB

(8.27)

from which it follows that the basis B is also a basis of the dual and the primal is optimal

only if the dual is feasible. A similar argument can be made for the feasibility of the primal

implying optimality of the dual.

A second implication of the duality theorem is the following corollary.

Corollary 8.30. Given any primal-dual pair of LPs, the following statements hold:

• the primal is primal degenerate if and only if the dual is dual degenerate.

• the primal is dual degenerate if and only if the dual is primal degenerate.

98

Chapter 9
Parametric Linear Programming

This chapter will introduce a new approach to parametric linear programming. We will begin

with a new definition for the ‘solution’ and we prove that this solution is defined over a

polyhedral complex. Second, a perturbed version of the problem will be introduced that will

ensure non-degeneracy of the optimiser. Finally, four algorithms for computing the solution

will be presented and the benefits and limitations of each discussed.

9.1 Structure of the Solution

We wish to understand the structure of the solution to the following linear problem in the

multi-dimensional parameter θ ∈ R
d:

f(θ) , minimise
y

bT y

subject to (y, θ) ∈ P,
(9.1)

where P ⊂ R
m+d is a polytope and we restrict θ to lie in the polyhedron Θ , πθ(P) ⊆ R

d.

Our goal is to compute efficiently the optimiser of mpLP (9.1) given any θ ∈ Θ. To do this

we will identify polyhedral subsets of the parameter space called critical regions, in which the

optimal basis does not change. Once we have determined which region contains the parameter

θ, we can then easily compute the optimiser from the basis.

The following sections will define the critical regions formally and prove an important

property that will allow the enumeration of all critical regions in a simple manner. Finally,

problem (9.1) will be modified slightly to gaurantee that the optimiser is unique and contin-

uous.

99

9. PARAMETRIC LINEAR PROGRAMMING

9.1.1 Solution Complex

A key property that is needed for the enumeration algorithms in Section 9.4 is that a facet

of any critical region has a full-dimensional intersection with at most one facet of another

critical region. Without care, this assumption is easily violated, as shown in [SKJ+04]. It is

the purpose of this section to define the critical regions in a new manner such that we are able

to prove that they form what is called a polyhedral complex, which has this desired property.

Definition 9.1. [Grü00] A finite family C of polyhedra in R
n is a complex if

1. Every face of a member of C is itself a member of C

2. The intersection of any two members of C is a face of each of them

The definition of a critical region used here is defined via the epigraph.

Definition 9.2. Let g : U → R, where U ⊆ R
n. The epigraph of g is:

epi(g) , {(u, w) |u ∈ U, w ∈ R, g(u) ≤ w}

The epigraph of f is then as shown in the following lemma:

Lemma 9.3. The epigraph of f , as defined in (9.1), is

epi(f) = π(θ,J)Q

where Q is defined as

Q ,
{
(θ, J, y)

∣∣ J ≥ bT y, (y, θ) ∈ P
}

. (9.2)

Proof. From the definition of the epigraph, we have:

epi(f) = {(θ, J) | θ ∈ πθP, J ∈ R, f(θ) ≤ J }
= {(θ, J) | ∃y, (y, θ) ∈ P, J ∈ R, f(θ) ≤ J }

For every (y, θ) ∈ P , we have that bT y ≥ f(θ) and that there exists a y such that f(θ) = bT y.

It follows that the condition f(θ) ≤ J is equivalent to bT y ≤ J . Therefore, the epigraph of f

is given as in the statement of the Lemma.

100

9.1 STRUCTURE OF THE SOLUTION

Corollary 9.4. There exists a matrix G and a vector g such that epi(f) is given by the

polyhedron

epi(f) = {(θ, J) |1J ≥ Gθ + g, θ ∈ πθP }

Proof. It is shown that epi(f) is a polyhedron in Lemma 9.3, and that it is unbounded above

in J . The result follows directly.

The complex formed by the proper faces of a polyhedron P , is denoted by B(P) and is

called the boundary complex of P [Grü00]. We define the solution complex of problem (9.1)

to be the projection of the boundary complex of the faces of epi(f) where the minimal cost

is achieved.

Definition 9.5. The solution complex of f is defined as:

S (f) , {πθF |F ∈ B(epi(f)) and J = f(θ) for all (θ, J) ∈ F }

The elements of S (f) that are of dimension dim(Θ) are referred to as the critical regions.

The goal of an algorithm that ‘solves’ problem (9.1) will be to compute the critical regions

of S (f) and the equality sets of the faces of P that are the pre-image of the critical regions.

Given a θ ∈ Θ, one could then determine which critical region contains θ and compute the

optimiser from the equality set. We now prove that the name ‘solution complex’ is justified,

and prove that S (f) is a complex.

Theorem 9.6. S (f) is a complex.

Proof. Every member of S (f) is the projection of a polytope and is therefore a polytope

itself. It follows that S (f) is a finite family of polyhedra.

We first show that every face of a member of S (f) is in S (f). By definition, every

member of S (f) is the projection of a face of epi(f). Let F ∈ S (f) and epi(f)E be its

preimage, where E is an equality set of epi(f). Let i be an element in E. Describing epi(f)

101

9. PARAMETRIC LINEAR PROGRAMMING

as in Corollary 9.4, we have:

epi(f)E =





(θ, J)

∣∣∣∣∣∣∣∣

1J = GEθ + gE ,

1J ≤ Gθ + g,

θ ∈ Θ





=





(θ, J)

∣∣∣∣∣∣∣∣∣∣∣

J = Giθ + gi,

1J = GE\{i}θ + gE\{i},

1J ≤ Gθ + g,

θ ∈ Θ





=





(θ, J)

∣∣∣∣∣∣∣∣∣∣∣

J = Giθ + gi,

1(Giθ + gi) = GE\{i}θ + gE\{i},

1(Giθ + gi) ≤ Gθ + g,

θ ∈ Θ





(9.3)

From (9.3) we see that the projection of epi(f)E is:

πθ epi(f)E =





θ

∣∣∣∣∣∣∣∣

1(Giθ + gi) = GE\{i}θ + gE\{i},

1(Giθ + gi) ≤ Gθ + g,

θ ∈ Θ





(9.4)

From (9.3) and (9.4) it is clear that epi(f)E∪T is a face of epi(f)E if and only if πθ epi(f)E∪T

is a face of πθ epi(f)E . Since every face of a member of B(epi(f)) is in B(epi(f)), it follows

that every face of a member of S (f) is in S (f).

We now prove that the second property of complexes is satisfied: The intersection of any

two members of S (f) is a face of each of them.

Let A and B be equality sets of epi(f) such that epi(f)A ∩ epi(f)B 6= ∅. Since boundary

complexes are complexes [Grü00], there exists an equality set T of epi(f) such that epi(f)T =

epi(f)A∩ epi(f)B and epi(f)T is a face of both epi(f)A and epi(f)B . Since T ⊃ A and T ⊃ B

(Theorem 3.14), it follows that πθ epi(f)T is a face of both πθ epi(f)A and πθ epi(f)B by the

previous argument.

102

9.1 STRUCTURE OF THE SOLUTION

It remains to be shown that πθ epi(f)T = πθ epi(f)A ∩ πθ epi(f)B. Let i ∈ A and j ∈ B.

πθ epi(f)T = πθ epi(f)A ∩ epi(f)B

=





θ

∣∣∣∣∣∣∣∣∣∣∣

∃J,

1J = GAθ + gA

1J = GBθ + gB

1J ≥ Gθ + g,

θ ∈ Θ





=





θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃J,

J = Giθ + gi

J = Gjθ + gj

1J = GAθ + gA

1J = GBθ + gB

1J ≥ Gθ + g,

θ ∈ Θ





=





θ

∣∣∣∣∣∣∣∣∣∣∣∣∣

1Giθ + gi = GAθ + gA

1Gjθ + gj = GBθ + gB

1Gjθ + gj ≥ Gθ + g

1Giθ + gi ≥ Gθ + g,

θ ∈ Θ





=





θ

∣∣∣∣∣∣∣∣

1Giθ + gi = GAθ + gA

1Giθ + gi ≥ Gθ + g,

θ ∈ Θ




∩





θ

∣∣∣∣∣∣∣∣

1Gjθ + gj = GBθ + gB

1Gjθ + gj ≥ Gθ + g,

θ ∈ Θ





= πθ epi(f)A ∩ πθ epi(f)B

A graphical interpretation of the solution complex is shown in Figure 9.1. The polytope

P is shown in the first two dimensions, as it is a function of θ and y only. The unbounded

polyhedron Q is defined as in Lemma 9.3 and the epigraph epi(f) is then the projection of Q

onto the (θ, J) axis. Finally, the solution complex is the projection of the boundary complex

of epi(f) onto the θ axis. A more colourful example is given as Figure 9.2, which shows a

two-dimensional solution complex and three-dimensional epigraph.

103

9. PARAMETRIC LINEAR PROGRAMMING

J = bT y

P J J = bT y

y

J

θ

P

P J

S (f)

B(epi(f))

epi(f)

Figure 9.1: Illustration of the Geometry of the Epigraph and the Solution Complex

104

9.1 STRUCTURE OF THE SOLUTION

Figure 9.2: Example Epigraph and Solution Complex

105

9. PARAMETRIC LINEAR PROGRAMMING

9.2 The Optimiser

In this section we will discuss the link between the linear programming theory of Chapter 8

and the solution complex. We have thus far treated the constraint polytope P as an abstract

object, without reference to how it is represented. In Part III it will be seen that there are

two representations of interest, namely the primal and dual formulation. We will here show

that the solution complex for both the primal and for the dual are the same. Furthermore,

as all intended uses require a unique and continuous primal optimiser, we will introduce a

perturbed problem as in Section 8.6, which guarantees this property.

Consider now the perturbed primal mpLP:

f(θ) = minimise
y

(b + ε)T y

subject to (y, θ) ∈ P δ

(9.5)

and its dual:

f(θ) = maximise
x

(c + Eθ + δč)T x

subject to x ∈ Dε

(9.6)

The primal and dual constraint polyhedron are defined as:

P ,
{
(y, θ)

∣∣AT y ≤ c + Eθ
}

D , {x |Ax = b, x ≥ 0}

and the perturbed versions as:

P δ ,
{
(y, θ)

∣∣AT y ≤ c + Eθ + δč
}

Dε , {x |Ax = b + ε, x ≥ 0}

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n and E ∈ R

n×d and where the vector č ∈ R
n is chosen such

that it is not perpendicular to any of the edges of D and both ε, a lexicographic perturbation,

and δ ∈ R are sufficiently small.

Remark 9.7. When discussing a basis B of the above primal-dual pair, we will use the same

meaning as in previous sections. That is, B is an index set of the columns of A and is also

used to mean the matrix A?,B.

From the developments in Section 8.6, it is known that for each θ there exists a unique

106

9.2 THE OPTIMISER

optimal basis B that is optimal if and only if it is feasible for both the primal and for the

dual. From (8.27) and (8.3), the primal and dual optimisers are given by the faces PB and

DN respectively:

PB =
{
(y, θ)

∣∣ y = B−T (cB + EBθ)
}
∩ P, (9.7)

DN =
{
xB = B−1b, xN = 0

}
(9.8)

where we recall that by uniqueness, fixing θ in (9.7) will cause PB to be a singleton. We

define the unique primal and dual optimisers as y?(θ) = {y | (y, θ) ∈ PB } and x?(θ) = DN .

Solving the parametric program, i.e. finding for each θ either the primal optimiser or

the dual optimiser, is therefore equivalent to computing the optimal basis B for either the

primal (9.5) or the dual (9.6).

We now consider the relationship between the optimal basis B and the solution complex.

Theorem 9.8. If F is a member of the solution complex S (f), then there exists a unique

lex-feasible basis B of P such that F = πθPB

Proof. From Theorems 8.23 and 8.10 there exists, for every θ, a unique optimal basis B that

achieves the minimal cost f(θ). Furthermore, this optimal basis gives the unique optimiser

y? = y = B−T (cB + EBθ) in (9.8). It follows that the pre–image of F is:

π−1
θ F =

{
(θ, J, y)

∣∣ J = bT y?, y = y?, (θ, y?) ∈ P
}

=
{
(θ, J, y)

∣∣ J = bT y, (θ, y) ∈ PB

}

Therefore, the result follows as

F = πθπ
−1
θ F

= πθ

{
(θ, J, y)

∣∣ J = bT y, (θ, y) ∈ PB

}

= πθPB

Given the result from Theorem 9.8, a representation of critical regions can be derived.

Corollary 9.9. Let B be a unique lex-optimal basis such that πθPB is a critical region of

S (f). Then the critical region is given by:

πθPB =
{
θ
∣∣ c̄ + Ēθ ≥ 0

}
, (9.9)

107

9. PARAMETRIC LINEAR PROGRAMMING

where the reduced cost Ē is defined columnwise as Ē ,

[
Ē?,1 ... Ē?,d

]
.

Proof. The critical region is the projection of the primal optimiser as defined in (9.7):

πθPB = {θ | ∃y, (θ, y) ∈ PB }
=
{
θ
∣∣ ∃y, y = B−T (cB + EBθ), AT y ≤ c + Eθ

}

=
{
θ
∣∣AT B−T (cB + EBθ) ≤ c + Eθ

}

=
{
θ
∣∣ c + Eθ −AT B−T (cB + EBθ) ≥ 0

}

=
{
θ
∣∣ c−AT B−T cB +

(
E −AT B−T EB

)
θ ≥ 0

}

Recall the definition of the reduced cost (8.7) and the result follows immediately.

The algorithms proposed in the following sections will ‘solve’ the mpLP by enumerating

all lex-optimal bases B such that πθPB is a critical region. However, the optimal bases of the

lower-dimensional faces of the solution complex will not be known and may well be different

from those of the critical regions. This thesis has two applications for an mpLP algorithm,

neither of which requires the basis of the lower-dimensional faces. The first is interested in

only the dual optimisers associated with critical regions (projection) and the second is looking

for any primal optimiser as long as it is continuous across the boundaries of the critical regions

(closed-form MPC). We now show that the above uniqueness conditions also guarantee this

continuity.

Theorem 9.10. Let C1 and C2 be critical regions of the solution complex S (f) for the

perturbed mpLP (9.5), (9.6). If the primal optimisers are y?
1(θ) and y?

2(θ) in C1 and C2

respectively, then y?
1(θ) = y?

2(θ) for all θ ∈ C1 ∩ C2.

Proof. Let B1 and B2 be the unique lex-feasible bases such that Ci = πθPBi
(Theorem 9.8).

Note that it is the dual constraints that are lexicographically perturbed and therefore the

dual is not primal degenerate (Theorem 8.10). Therefore, by Corollary 8.30, the primal is not

dual degenerate and the primal optimiser is unique for all θ.

While B1 and B2 may not be the unique optimisers in the region C1 ∩ C2 in the sense of

Theorem 8.23, they are still lex-optimal for this region. It follows that for every θ ∈ C1 ∩C2,

the optimisers y?
1(θ) and y?

2(θ), defined for B1 and B2 respectively as per (9.5), are optimal.

As the optimiser is unique, we must have the result y?
1(θ) = y?

2(θ).

108

9.3 NEIGHBOURHOOD PROBLEM

9.3 Neighbourhood Problem

The neighbours of a given critical region C are defined as those critical regions whose intersec-

tion with C is a facet of each. In this section we will discuss methods of computing adjacent

critical regions.

The procedure that we outline here is essentially a generalisation of that for the one-

dimensional parametric case in Section 8.7, and is of course related to the oracles of Part I.

As in ESP, two oracles will be defined, the first will be called the facet oracle, the analogue

of the ridge oracle, and the second the adjacency oracle.

From Theorem 9.8, it is known that each critical region is the projection of a face PB,

where B is a basis. The facets of the critical region are then the facets of πθPB and each facet

is either on the boundary of the feasible region Θ = πθP , or is the intersection of πθPB with

some other critical region. The neighbours of a critical region can then be determined in two

steps: First, determine the facets of πθPB and second, for each facet, compute the basis that

is optimal for a point just outside the facet.

The following theorem provides the tool for computing the optimal basis in a neighbouring

critical region given the basis of the known region, and the description of one of its facets.

Theorem 9.11. Let B be a basis such that C = πθPB is a critical region of the solution

complex S (f) to the perturbed parametric program (9.5) and let F =
{
θ
∣∣αT θ + β = 0

}
∩C

be a facet of C. Let B′ be the optimal basis of the following LP:

minimise (Eα + δč)T x

subject to x ∈ Dε,

xT = 0

(9.10)

where T =
{

i
∣∣∣
[

αT β
]
6∝
[

Ēi c̄i

]}
∪
{
i
∣∣ Ēi = 0, c̄i > 0

}
.

If the minimum exists then the optimal basis B ′ defines the adjacent critical region C ′ =

πθPB′ such that F = C ∩ C ′, otherwise F is on the boundary of the feasible region Θ.

Proof. Let θ◦ be in the facet F . The goal is to find the optimal basis B ′ for mpLP (9.5) at

all points θ = θ◦ + γα for an arbitrarily small γ. It is known that there is only a single such

optimal basis as Theorem 9.6 demonstrates that S (f) is a complex.

The proof follows along the same lines as that for one-dimensional parametric program-

ming (Theorem 8.27). The basis B ′ must satisfy the following three conditions (Theo-

rem 8.23): First, it must be optimal for the unperturbed problem at all points θ ∈ F ,

second, it must be optimal for the unperturbed problem for arbitrarily small γ and finally, it

must be optimal for the perturbed problem for arbitrarily small, but strictly positive γ.

109

9. PARAMETRIC LINEAR PROGRAMMING

From Theorem 8.19, the set of dual optimisers on F for the unperturbed problem is given

by DT , where T is the set of indices of all variables whose reduced costs are strictly positive

for all θ in the interior of F . From Corollary 9.9, the critical region C is:

C = πθPB =
{
θ
∣∣ c̄ + Ēθ ≥ 0

}

As all critical regions are full-dimensional (Definition 9.5), there must exist a point θ in C such

that the reduced cost at θ is strictly positive. It follows that the only optimality constraints

that are active at every point in the interior of F are those that are equal (proportional) to

the affine hull of F , i.e.
[

Ēi c̄i

]
∝
[

αT β
]
, or are identically zero. Therefore, we have

that the constraints that are strictly inactive at all points in the (relative) interior of F are

given by:

T =
{

i
∣∣∣
[

αT β
]
6∝
[

Ēi c̄i

]}
∪
{
i
∣∣ Ēi = 0, c̄i > 0

}

and therefore the set of all dual optimisers is DT .

We have now to compute the set of optimisers from the set DT for the parameter θ =

θ◦ + γα for an arbitrarily small γ > 0. The optimality condition is given by the positivity

constraint on the reduced cost:

c̄ + Ēθ ≥ 0

c̄ + Ēθ◦ + Ēαγ ≥ 0,

which can then be split into two inequalities:

c̄T + ĒT θ◦ + ĒT αγ ≥ 0, (9.11)

Ē\T αγ ≥ 0. (9.12)

By the strict positivity of c̄T + ĒT θ◦, (9.11) is satisfied for sufficiently small γ > 0. Fi-

nally, (9.12) is satisfied, along with the uniqueness conditions, if and only if the optimal basis

B′ is the optimiser of LP (9.10).

Note that if LP (9.10) is infeasible, then there does not exist a basis B ′ such that (9.12) is

satisfied. It follows that no optimal basis exists for the mpLP (9.5) at the point θ = θ◦ + γα

and therefore θ is outside the feasible region Θ and F is on the boundary.

From Theorem 9.11, one can see that computing the neighbours of a given critical region

can be split into two parts: First, compute the facets of the critical region and their strictly

110

9.3 NEIGHBOURHOOD PROBLEM

active constraints T and second, solve the linear program (9.10). These two actions will be

dubbed the facet and adjacency oracles respectively.

9.3.1 Facet Oracle

Given an optimal basis B, Corollary 9.9 gives the description of the critical region πθPB:

πθPB =
{
θ
∣∣ c̄ + Ēθ ≥ 0

}
. (9.13)

The goal of the facet oracle is to find those inequalities of (9.13) that define facets and

to compute for each of them the set of strictly active constraints T from Theorem 9.11. This

problem comes down to redundancy elimination, or the removal of all redundant constraints

from a polyhedron.

A straightforward method of checking if the ith constraint of (9.13) is redundant is to

compute the optimal cost of the following LP [Fuk00]:

J?
i = minimise Ēiθ

subject to c̄\i + Ē\iθ ≥ 0

c̄i + Ēiθ ≥ −1

(9.14)

The ith constraint is then redundant if and only if the optimal cost satisfies J ?
i + c̄i ≤ 0.

There are several heuristic methods that can improve the efficiency of the redundancy

calculation, [Cla94, OSS95, Gri04, SLG+04]. These methods however, have been seen to have

only a limited effectiveness for control problems and for many LP (9.14) must be computed

for each inequality. Comparative simulations are given in Chapter 10.

A simple algorithm for computing the affine hulls and strictly positive constraints of all

the facets of a given critical region is given as Algorithm 9.1. One can see that the complexity

of this algorithm is entirely a function of Step 6, where one linear program must be solved in

d dimensions and n−m constraints. As Step 6 is executed in the worst case n−m times the

complexity of the facet oracle is:

Tfct ocl = O((n−m)LP (d, n−m))

9.3.2 Adjacency Oracle

The input to the adjacency oracle is a basis that defines a critical region, a facet of the critical

region and a list of strictly active constraints on that facet. The goal of the oracle is then

111

9. PARAMETRIC LINEAR PROGRAMMING

Algorithm 9.1 Facet Oracle

Input: Lex-optimal basis B such that πθPB is a critical region
Output: List of strictly active constraints T for each facet of the critical region πθPB

1: Compute c̄ and Ē
2: ToTest←−

{
i
∣∣ Ēi 6= 0

}

3: while ToTest is not empty do
4: Select any member i from ToTest
5: Compute constraints Q equal to i:

Q←−
{
j
∣∣ [Ēi c̄i

]
∝
[

Ēj c̄j

]}

6: Test if ith constraint is redundant:

J? = minimise Ēiθ
subject to c̄\Q + Ē\Qθ ≥ 0

c̄i + Ēiθ ≥ −1
(9.15)

7: if J? + c̄i < 0 then If true, then i is irredundant
8: Compute strictly active constraints:

T =
{
j
∣∣ [Ēi c̄i

]
6∝
[

Ēj c̄j

]}
∪
{
j
∣∣ Ēj = 0, c̄j > 0

}

9: Report facet
{
θ
∣∣ Ēiθ + c̄i = 0

}
∩ πθPB and the strictly active constraints T .

10: end if
11: ToTest←− ToTest\Q
12: end while

112

9.4 ENUMERATION ALGORITHMS

to compute the unique optimal basis for the adjacent critical region, whose intersection with

the given region is the given facet.

As shown in Theorem 9.11, this problem can be solved through the calculation of linear

program (9.10). An algorithm table is not given for this oracle as it is straightforward.

In the worst case, the adjacency oracle consists of solving a single linear program in m

dimensions with n constraints resulting in a complexity of

Tadj ocl = O(LP (m, n)).

However, if the basis is non-degenerate, then all but two of the constraints are fixed at zero

and the LP consists of a single pivot operation. Furthermore, the dimension of the LP that

must be solved is equal to the degree of degeneracy, and therefore in practice this oracle will

generally take less time to solve than the facet oracle, even though in big-O notation it is

slower.

9.4 Enumeration Algorithms

As discussed in the previous section, the goal of the mpLP algorithm is to enumerate all of

the bases associated with critical regions of the solution complex S (f). In this section we

will present four algorithms for this enumeration. In each method a different graph will be

constructed whose enumeration will result in the enumeration of the critical regions of the

solution complex.

The first method is a simple depth/breadth first enumeration over a graph whose vertices

are the critical regions and whose edges are the facets joining two regions. The second

recognises the high computational cost of the adjacency oracle and reduces the number of

times it is called through a search approach much like that employed in ESP, where the vertices

of the graph are the facets of the critical regions. The third method is an implementation of the

reverse search algorithm, made popular by Avis and Fukuda in the 1990s, which enumerates

a tree whose nodes are the critical regions. This is theoretically a very efficient algorithm

but due to computational overheads does not become advantageous until the problem size is

quite large. The final method is a heuristic primal-dual approach that stores both a vertex

and a halfspace description of the result, which potentially increases the speed of the facet

oracle drastically for smaller problems. The following sections discuss each of these methods

in detail.

113

9. PARAMETRIC LINEAR PROGRAMMING

9.4.1 Basic Enumeration

In this section a simple enumeration scheme will be presented that works with the bases that

define critical regions directly. We first define the graph that will be enumerated, prove that

it is connected and then outline a simple algorithm for the enumeration.

Definition 9.12. Let f : R
d → R be as defined in (9.5). The basis solution graph G B(f) is

defined as the pair

G
B(f) , (V (f), E(f)),

where the vertices V (f) are defined as the critical regions of S (f) and a pair (v1, v2) ∈
V (f)× V (f) is in E(f) if and only if v1 ∩ v2 is a facet of both v1 and of v2.

The key property that is required for an enumeration algorithm is the connectivity of the

graph G B(f).

Proposition 9.13. The graph G B(f) is connected.

Proof. Let (V, E) be the graph whose vertices V are the facets of epi(f) and whose edges E

connect two facets if and only if the intersection of the facets is a ridge. Note that epi(f)

bounded below and therefore the facets of interest are equivalent to facets on a polytope and

therefore Theorem 4.1 proves that the graph (V, E) is connected. As every critical region is

the projection of a facet of epi(f), the graph (V, E) and G B(f) are equivalent and therefore

G B(f) is connected.

We will now introduce a simple scheme that uses the two oracles from Section 9.3 to

fully enumerate all vertices of the graph G B(f). As the graph G B(f) is connected (Proposi-

tion 9.13), we are free to use any basic enumeration scheme. See Algorithm 9.2 for an outline

of the proposed scheme. A descriptive example of the algorithm is shown in Figure 9.3.

Complexity

We now examine the complexity of Algorithm 9.2. First, we must consider the cost of opera-

tions on the set Lunexplored. The properties that the storage method must have are: First, the

order that elements are inserted (Steps 1 and 10) or removed (Step 4) is not important and

second, insertion and removal happen infrequently compared to search (Step 9). The most

common data structure that has the required properties is the AVL tree [Pfa02] for which

insertion, deletion and search can all be done in O(log q), where q is the number of elements

in the tree. As Steps 9 and 10 are called once for each facet and there are a maximum of n−m

114

9.4 ENUMERATION ALGORITHMS

B0 B0

Initial basis B0 Step 6: Compute facets of πθPB0

B0

B1

B2 B0

B1

B2

Step 8: Compute adjacent bases Steps 4 and 6: Choose unexplored basis and
compute facets

B0

B1

B2

B3

B4

B0

B1

B3 B3 B3

B3

B3B2

B4

Step 8: Compute adjacent bases Repeat

Figure 9.3: Example Enumeration using the Basic Method. The curved lines are the edges of
the graph G B(f) that were traversed and the circles are the vertices.

115

9. PARAMETRIC LINEAR PROGRAMMING

Algorithm 9.2 Multiparametric Linear Programming: Basic Enumeration

Input: Unique lex-optimal basis B such that πθPB is a critical region
Output: All bases that define critical regions.
1: Lunexplored ←− {B} Initialise set of unexplored bases
2: Ldiscovered ←− {B} Initialise set of discovered bases
3: while Lunexplored is not empty do
4: Remove any basis B from Lunexplored

5: Report basis B
6: Compute facets Fi of B Facet Oracle: Sec. 9.3.1
7: for each facet Fi do
8: Compute adjacent basis: B′ Adjacency Oracle: Sec. 9.3.2
9: if Adjacent basis exists and is not in Ldiscovered then

10: Insert B′ into Ldiscovered

11: Insert B′ into Lunexplored

12: end if
13: end for
14: end while

facets for each critical region, the complexity is Nr(n − m)Tsearch, where Tsearch = log Nr,

where Nr is the number of critical regions.

For problems of reasonably small size, the time taken for these operations is very small

compared to that of the two oracles. However, as the complexity is a function of the number

of critical regions found their complexity will eventually outweigh that of the oracles. Having

said this, in the author’s experience, problems must get exceptionally large before this becomes

an issue. An algorithm is presented in Section 9.4.4 that is suited to these large problems as

it removes the need to make any search over the critical regions found so far, improving both

the time and space complexity.

In this algorithm, the facet oracle is called exactly once for each critical region, and the

adjacency oracle is called twice for each facet. If Nr is the number of critical regions, and

Nf = O(Nr(n−m)) is the number of facets, then the total time complexity is

Tbasic = NrTfct orl + NfTadj orl + NfTsearch (9.16)

= O(Nr(n−m)(LP (d, n−m) + LP (n, m) + log Nr))

The worst-case space complexity is clearly the storage of an m dimensional vector of

numbers (the basis) for each critical region:

Sbasic = O(Nr(m))

As the size of the output can grow very quickly, it is this storage requirement that limits the

116

9.4 ENUMERATION ALGORITHMS

size of problem that this algorithm can handle as the data will grow past the physical memory

limitation of the computer.

9.4.2 Facet-Based Enumeration

In this section we introduce a variant of the algorithm discussed in the previous section,

which will reduce the number of times that the adjacency oracle must be called to once per

critical region, rather than twice per facet. This reduction in complexity comes at the cost

of a potential increase in the storage requirements and in the resulting search and insert

times over the stored data. The approach proposed is similar to that presented for the ESP

algorithm in Part I.

The first step is to define the graph that is going to be enumerated. Instead of the critical

regions being the vertices of the graph as in the previous section, the facets of the critical

regions are taken.

Definition 9.14. Let f : R
d → R be as defined in (9.5). The facet solution graph G F (f) is

defined as the pair

G
F (f) , (V (f), E(f)),

where the vertices V (f) are defined as the d − 1 dimensional faces of S (f) that are the

intersection of two critical regions and a pair (v1, v2) ∈ V (f)× V (f) is in E(f) if and only if

there exists a critical region that contains both v1 and v2.

As before, connectivity of G F (f) is a requirement of the algorithm.

Proposition 9.15. The graph G F (f) is connected.

Proof. Connectivity of the graph G F (f) follows directly from the link between facets of

the solution complex and ridges of the epigraph and the proof of the correctness of ESP

(Theorem 4.1).

We can now describe an algorithm that uses a search strategy similar to that of ESP. This

approach is presented as Algorithm 9.3.

Remark 9.16. Note that the sets of strictly active constraints T for each facet are equality

sets and therefore provide a unique list of integers that can be used to identify a facet, making

searching and comparison in Step 13 simple and efficient.

The example shown in Figure 9.3 is displayed again in Figure 9.4 using the facet-based

approach. One can see that the reduction in the number of calls to the adjacency oracle is

significant.

117

9. PARAMETRIC LINEAR PROGRAMMING

B0

F0

F1 B0

B1

F0

F1

Step 8: Enumerate facets of initial basis B0. Steps 4 and 5: Choose a facet F0 and compute
the adjacent basis.

B0

B1

F0

F1 B0

B1

F0

F1

Step 8: Enumerate facets of adjacent basis B1. Steps 4 and 5: Choose a facet and compute the
adjacent basis.

B0

B1

F0

F1 B0

B1

F0

F1

Step 8: Enumerate facets of adjacent basis. Repeat.

Figure 9.4: Example Enumeration using the Facet-Based Method. The curved lines are the
edges of the graph G F (f) that were traversed and the black circles are the vertices.

118

9.4 ENUMERATION ALGORITHMS

Algorithm 9.3 Multiparametric Linear Programming: Facet-Based Enumeration

Input: Unique lex-optimal basis B such that πθPB is a critical region
Output: All bases that define critical regions
1: Lunexplored ←− ∅
2: Goto 7

3: repeat
4: Select any element (F, B′) from Lunexplored

5: Compute adjacent basis B such that F = πθPB ∩ πθPB′ Sec. 9.3.2
6: if adjacent basis B exists then
7: Report B
8: Compute facets Fi of B Sec. 9.3.1
9: for each facet Fi do

10: if there exists an element (Fi, X) in Lunexplored for some X then
11: Remove (Fi, X) from Lunexplored

12: else
13: Insert (Fi, B) into Lunexplored

14: end if
15: end for
16: else
17: Remove (F, B′) from Lunexplored

18: end if
19: until Lunexplored is empty

Complexity

From Algorithm 9.3, one can see that the facet oracle is called the same number of times as

for Algorithm 9.2, i.e. once for each critical region. The difference is that the adjacency oracle

is now called only once per critical region. This reduction is due to the fact that storing the

facets allows the algorithm to determine if a facet has been seen before without having to

execute the adjacency oracle.

The cost of this improvement is that the facets of the critical regions are now stored rather

than the critical regions themselves, resulting in a search complexity of Tsearch = log (Nf),

where Nf is the number of facets.

It follows that the total time complexity is given by:

Tfacet = NrTfct orl + NrTadj orl + NfTsearch

= O(Nr((n−m)(LP (d, n−m) + log ((n−m)Nr)) + LP (n, m))),

where the change from (9.16) is seen by the change from Nf to Nr in the adjacency oracle

multiplier. Recalling that the storage of each facet requires storing the vector T from Theo-

rem 9.11, which can be as long as n−m numbers (complement of the basis) gives the space

119

9. PARAMETRIC LINEAR PROGRAMMING

complexity as:

Sfacet = O(Nr(n−m))

9.4.3 Primal-Dual Enumeration

In this section we will present a heuristic based on [BFM98b] that can drastically reduce the

work done in the facet oracle in some cases. We will restrict our attention to problems in

which the cost c is zero, i.e. problems of the form:

f(θ) , maximise (Eθ)T x

subject to x ∈ D
(9.17)

In Part III it will be seen that all multiparametric linear programs can be cast in this form

through a homogenisation procedure and that it is of particular interest in solving projection

problems. We will here introduce just enough of this formulation that the proposed search

algorithm can be discussed.

From the following Theorem, we see that for this formulation, the goal of computing

critical regions can be re-posed as a vertex enumeration problem.

Theorem 9.17. The basis B of D defines a critical region of mpLP (9.17) if and only if

ET DB is a vertex of ET D.

Proof. We first show that every optimal basis of mpLP (9.17) maps to a vertex of ET D and

then show that every vertex of ET D defines a critical region.

The mpLP (9.17) can be re-written in the following form:

f(θ) = maximise θT z

subject to z ∈ ET D,
(9.18)

where ET D is given by
{
ET x |x ∈ D

}
. For a given θ, the set of optimisers of (9.18) will be

a face of ET D [Zie95, Sec. 3.2], and if the perturbed problem is considered, this face will be a

vertex. Since only vertices of D map to vertices of ET D, as it is a linear map, for each vertex

v of ET D, there must exist a basis B of D such that v = ET DB.

We now show that every basis B that defines a vertex DB that maps to a vertex of

ET D also defines a critical region. Let d1, . . . , dn be rays along the edges away from the

vertex DB. It follows that the feasible directions at the vertex ET DB of ET D are given

by cone
{
ET d1, . . . , E

T dn

}
=
{
ET d1λ1 + · · ·+ ET dnλn |λi ≥ 0

}
. From Theorem 8.5 the

120

9.4 ENUMERATION ALGORITHMS

direction θ is optimal if and only if dT
i Eθ ≤ 0 for all i and this cone is full-dimensional if and

only if ET DB is a vertex of ET D.

Noting that by definition, dT
i E is the reduced cost Ēi and by Corollary 9.9 that πθPB is

{
θ
∣∣ Ēθ ≥ 0

}
gives the desired result: πθPB is a critical region if and only if ET DB is a vertex

of ET D.

We now develop a modification to the mpLP algorithm that exploits the result of The-

orem 9.17. The algorithm is called ‘primal-dual’ because both the primal (vertex) and dual

(halfspace) representations of ET D are computed. At the qth step of the algorithm, q vertices

of ET D will have been found. At this point, the algorithm has a list of these q vertices

V q , {v1, . . . , vq}, but unlike previous search methods, it also stores a halfspace representa-

tion of their convex hull Hq , {z |Gqz ≤ gq } = conv {v0, . . . , vq}. When a new vertex vq+1 is

found, the existing description of the convex hull is first extended to include it: a new matrix

Gq+1 and vector gq+1 are computed such that Hq+1 =
{
z
∣∣Gq+1z ≤ gq+1

}
= Hq ∪ {vq+1}.

We are now able to use this information to improve the efficiency of the facet oracle.

As before, the reduced costs Ē are computed, but now, instead of computing LPs to remove

redundancies in the set
{
θ
∣∣ Ēθ ≥ 0

}
, we notice that the set of feasible directions at the vertex

vq+1 of ET D is given by cone
{(

Ē1

)T
, . . . ,

(
Ēn

)T}
and that the extreme rays of this cone are

exactly the directions along the edges of ET D away from the vertex vq+1. We are therefore

able to test if each ray ri ,

{
z
∣∣∣ z = vq+1 +

(
Ēi

)T
t, t ≥ 0

}
points into the interior of the

convex hull of the vertices found so far and if it does, then it clearly does not point along an

edge. This notion is formalised in the following Theorem.

Theorem 9.18. Let H = conv {v0, . . . , vq} = {z |Gz ≤ g}, where vi are q vertices of ET D.

If v = ET DB is a vertex of ET D, then facet Fi of critical region πθPB is redundant if for

each j such that Gjv = gj the condition GjĒ
T
i < 0 holds.

Proof. The test is simply to check if a point on the ray ri =
{
z
∣∣ z = v + ĒT

i t, t ≥ 0
}

for a

strictly positive t is internal to H:

Gz ≤ g

Gv + GĒT
i t ≤ g

GĒT
i t ≤ g −Gv (9.19)

Recall that v is a vertex of H and therefore g−Gv ≥ 0. For those constraints that are strictly

greater than zero, (9.19) will clearly be satisfied for some t > 0 and therefore we have only

to test those constraints that are equal to zero. Let Q = {i | gi = Giv}, then there exists a

strictly positive t such that (9.19) is satisfied if and only if GQĒT
i ≤ 0.

121

9. PARAMETRIC LINEAR PROGRAMMING

Algorithm 9.4 describes a replacement for the facet oracle, which does not compute the

redundancy LP but rather returns all potential facets, i.e. those with non-zero reduced costs.

The proposed primal-dual approach is given as Algorithm 9.5. One can see that the primary

difference from Algorithm 9.3 is in Step 5, where Theorem 9.18 is put to work removing some

redundancies without the need for a linear program. This process is described graphically in

Figure 9.4.3.

Algorithm 9.4 Primal-Dual: Compute Potential Facets

Input: Unique lex-optimal basis B such that ET DB is a vertex of ET D
Output: List of potential facets that is a superset of the true facets
1: Compute Ē
2: ToTest←−

{
i
∣∣ Ēi 6= 0

}

3: while ToTest is not empty do
4: Select any member i from ToTest
5: Compute constraints Q equal to i: Q←−

{
j
∣∣ Ēi ∝ Ēj

}

6: Compute strictly active constraints: T ←− Qc ∪
{
j
∣∣ Ēj = 0

}

7: ToTest←− ToTest\Q
8: Report facet

{
θ
∣∣ Ēiθ = 0

}
∩ πθPB and the strictly active constraints T .

9: end while

One can see from Algorithm 9.5 that the goal is to avoid computing the redundancy test,

LP (9.14). There are two key differences from the previous algorithms that reduce the number

of LPs called. First, at Step 11, both the redundant and irredundant inequalities (potential

facets) that describe the critical region are placed in Lunexplored, rather than first removing

redundancies. As a result, any inequalities that have been seen before will be removed in

Step 14, which potentially prevents two LPs from being calculated: one for the facet under

consideration and one for the facet already in the list. The cost of this is that the list

Lunexplored will be potentially much larger as it contains redundant facets. However, as the

list can be searched and updated in logarithmic time, this isn’t an issue unless the problem

is very large.

Second, the primal-dual test is made in Step 5, exploiting the stored halfspace description

of ET D. As this test can only prove redundancy and not irredundancy, if the test fails then

the redundancy test, LP (9.14) must be executed as a last resort. The cost of computing

the primal-dual test is clearly the calculation and storage of the halfspace description of

ET D. While this convex hull can be computed efficiently in an incremental fashion, e.g.

via the quickhull algorithm [BDH96], there are two difficulties with this approach. First, no

incremental algorithm can be output sensitive [Bre99], implying that even if it is known that

the complexity of the halfspace description of ET D is simple, the incremental convex hulls may

be complex. Second, the relationship between the number of vertices in ET D and the number

122

9.4 ENUMERATION ALGORITHMS

Algorithm 9.5 Multiparametric Linear Programming: Primal-Dual Enumeration

Input: Unique lex-optimal basis B such that ET DB is a vertex of ET D
Matrix G, vector g such that H = {z |Gz ≤ g} ⊆ ET D

Output: All bases that define critical regions
Matrix G, vector g such that H = {z |Gz ≤ g} = ET D

1: Lunexplored ←− ∅
2: Goto 9

3: repeat
4: Select any element (F, B′) from Lunexplored

5: if F does not satisfy Theorem 9.18 then Primal-Dual test
6: if minimum of LP (9.14) is negative then Redundancy test
7: Compute adjacent basis B such that F = πθPB ∩ πθPB′ Sec. 9.3.2
8: if adjacent basis B exists then
9: Report B

10: Increment convex hull: H ←− H ∪
{
ET DB

}
H , {z |Gz ≤ g}

11: Compute potential facets Fi Algorithm 9.4
12: for each facet Fi do
13: if there exists an element (Fi, X) in Lunexplored for some X then
14: Remove (Fi, X) from Lunexplored

15: else
16: Insert (Fi, B) into Lunexplored

17: end if
18: end for
19: end if
20: end if
21: end if
22: if (F, B′) ∈ Lunexplored then
23: Remove (Fi, B

′) from Lunexplored

24: end if
25: until Lunexplored is empty

123

9. PARAMETRIC LINEAR PROGRAMMING

v4

ET D v1

v2

v3

H3

Vertices of D times ET

ET D

v4

v1

v2

v3

H4

Initial convex hull H3 and initial vertex v4. Step 10: Increment convex hull.

ET D

v4

d2

d1

d0

d3

v1

v2

v3

H4
ET D

v4
d3

v1

v2

v3

H4

Step 11: Compute edge directions.
Theorem 9.18: d1 and d2 are redundant

Step 4: Select unexplored facet and compute
adjacent basis.

ET D

v5

v4

v1

v2

v3

H5
ET D

v5

v4

v8

v6

v7

v1

v2

v3

H8 = ET D

Step 10: Increment convex hull. Repeat

Figure 9.5: Example Enumeration using the Primal-Dual Method.
Gray dots are ET v for the vertices v of the dual D.

124

9.4 ENUMERATION ALGORITHMS

of inequalities can be exponential. As a result the applicability of this algorithm is limited

to those polyhedra ET D that can be described with both relatively few inequalities and few

vertices. An extension to the algorithm that would ameliorate some of these difficulties would

be at Step 10 to only add a new vertex if it is sufficiently far from the existing description H,

which would prevent the calculation of very small facets in the convex hull.

Complexity

As the number of halfspaces required to describe the dual is possibly exponential, the worst-

case time and space complexity of the primal-dual algorithm is clearly exponential in the

number of critical regions. It is therefore not competitive with the other algorithms presented

here in terms of the worst-case. However, as will be seen in examples of Chapter 10, it offers

a significant improvement for some smaller problems.

9.4.4 Reverse Search for Enumeration

In this section an algorithm based on the reverse search approach of Avis and Fukuda [AF92,

AF96, Avi00] will be introduced. The goal of reverse search is to remove the need to test if

a newly discovered element has been seen before, i.e. Steps 6 and 13 in Algorithm 9.3 and

Step 9 in Algorithm 9.2. While this test can be done in logarithmic time, the complexity

is a function of the number of critical regions and so for very large problems can become

prohibitive. More importantly, these tests require that discovered bases be stored in main

memory, which can quickly be exhausted for large problems.

While both the basic or facet-based enumeration algorithms of the previous sections can

be converted to a reverse search approach, we will here focus on the basis enumeration method

of Section 9.4.1 for simplicity. In this algorithm we will again be considering the graph G B(f);

the vertices V of the graph are the bases that define critical regions and an edge joins two

vertices if the intersection of the two critical regions is a facet of each. We will take the

restricted form of the problem and assume that c = 0, recalling again that every mpLP of the

form (7.1) can be written in this form.

Reverse search achieves its aim by converting the graph G B(f) into a tree. The root of

the tree is taken to be any critical-region defining basis; we shall call this root R. A unique

mapping g : V \ {R} → V is defined over the remaining vertices. This function is defined in

such a way that if g is applied recursively to any vertex we will eventually arrive at the root

R. In other words, g defines a unique path from every vertex to the root. Note that the

definition implies that there are no circuits in the paths and that every vertex has exactly one

edge pointing towards the root and possibly several pointing away. As a result, the mapping

125

9. PARAMETRIC LINEAR PROGRAMMING

g defines a tree over the graph G B(f). The reverse search algorithm proceeds to enumerate

all vertices by reversing the paths taken to the root and searching this tree in a depth-first

fashion.

The algorithm begins at the root, chooses the first incoming path and follows it backwards

one step to a new vertex. A recursive call is then made on this new vertex, which also defines

a tree. Once the first path has been enumerated, the algorithm moves onto the second, and

so on until all branches have been enumerated.

The key to the efficiency of this approach is that all decisions can be made based on

local information. When a new vertex is discovered it does not need to be checked against

previously discovered vertices because if it is further down the tree, we can be certain that it

has not been seen before.

To apply reverse search to multi-parametric linear programming, two details need to be

defined: the function g, and the notion of ordering on the paths. The function g is defined

in a similar fashion to [AF92, AF96, Avi00] and is defined via the simplex algorithm. A cost

r ∈ R
d is chosen such that the transformed vertex v = ET DR is the unique optimiser of:

maximise rT z

subject to z ∈ ET D
(9.20)

It is assumed that this cost r is not parallel to any of the edges of ET D, i.e. that there

will be no dual-degeneracy in LP (9.20), which can be made almost certain via a random

perturbation. At each vertex ET DB there are a number of edges that can be followed to a

new vertex. The function g chooses the edge along which the cost decreases most rapidly.

Note that this edge is unique via the above assumption.

We now define the notion of ordering among the set of possible neighbours of a given vertex

ET DB. Note that each neighbour is associated with an edge of ET D and that there is a one-to-

one mapping from edges leaving the vertex to facets of the critical region πθPB (Section 9.3).

Corollary 9.9 gives the critical region πθPB as
{
θ
∣∣ Ēθ ≥ 0

}
and each row of Ē either defines

a facet of the critical region, or is redundant. If the ith row is irredundant, not zero and i

is the smallest index that defines the facet, i.e. i = min
{

j
∣∣∣
[

Ēi c̄i

]
∝
[

Ēj c̄j

]}
, then

the ith neighbour of ET DB is given by Theorem 9.11 for facet
{
θ
∣∣ Ēiθ = 0

}
and the function

Neighbour(B, i) is defined to return the adjacent basis. If any of the conditions are not met,

then Neighbour(B, i) returns the empty set.

An example reverse-search tree is shown in Figure 9.6. The figure on the left shows the

path that the function g would take from each vertex of the cube, and the figure on the

right is the resulting reverse search tree. Another example is shown in Figure 9.7, where the

126

9.4 ENUMERATION ALGORITHMS

reverse-search tree is shown over points equally distributed across the surface of a sphere.

R

f

a b

e

dg

c

ET D

(a) Path that the simplex algorithm
would take from each vertex to the
root R

R

a

b

e

f

g
c

d

(b) Reverse search tree

Figure 9.6: Reverse Search Illustration (Figure taken from [AF92])

The reverse-search method is shown as Algorithm 9.6, which is a standard implementation

and is not much different from the generic algorithm of [AF96]. While Algorithm 9.6 looks

slightly more complicated than those presented previously, the process is a very simple depth-

first search, where the cost function g is used to avoid the requirement of a stack. The inner

while loop (Steps 5–14) first move the algorithm down to a leaf of the tree. Step 16 then

backtracks up the tree one step and Steps 17–21 determine which branch j the algorithm

followed to get to the leaf. The neighbour counter is then incremented by one (Step 6) and

the next branch is followed back down to a leaf. By continuing this until there are no more

branches to follow, the entire tree will be visited. The example followed in the previous

sections is again shown in Figure 9.8 for the reverse-search algorithm.

Complexity

The time complexity of the reverse search enumeration is clearly a function of Steps 7, 9, 16

and 19:

Step 7 In order to compute the jth neighbour, the worst case will require a redundancy test

(LP (9.14)) and the calculation of the neighbour (LP (9.10)):

T7 = O(LP (d, n−m) + LP (n, n−m))

127

9. PARAMETRIC LINEAR PROGRAMMING

Figure 9.7: Reverse Search Tree for a Polytope ET D whose Vertices are on a Sphere

Algorithm 9.6 Multiparametric Linear Programming: Reverse Search for Enumeration

Input: Unique lex-optimal basis R such that ET DR is a vertex of ET D
Cost r such that vertex ET DR is the minimiser of (9.20)

Output: All bases that define critical regions
1: B ←− R Begin at the root
2: j ←− 0 Neighbour counter
3: Report R
4: repeat

Reverse traverse

5: while j < n do
6: Increment j ←− j + 1
7: Compute jth neighbour of B: next←− Neighbour(B, j)
8: if next 6= ∅ then
9: if g(next) = B then

10: B ←− next, j ←− 0
11: Report B
12: end if
13: end if
14: end while

Forward traverse

15: if B 6= R then
16: B′ ←− B, B ←− g(B), j ←− 0
17: repeat
18: j ←− j + 1
19: until Neighbour(B, j) = B′ Restore j
20: end if
21: until v = R and j = n

128

9.4 ENUMERATION ALGORITHMS

R

B1

F1

R

B1
B2

F1

F1

Reverse Traverse: Compute 1st neighbour of
the root.

Reverse Traverse: Descend down the tree.

R

F1B1
B2

B3

F1B4

F1

R

F1B1
B2

F1B4

B3

F1

Reverse Traverse: Continue down the 1st

neighbours until a leaf is found.
Forward Traverse: Move up the tree until a
new branch is found.

R

F1B1
B2

F1B4

B5

F2

B3

B4

F1

F1

R

F1B1
B2

F1B4
F2

B3

B4

F1

B5

B7

B6

F2

F1

F1

Reverse Traverse: Descend the tree to a leaf. Repeat until arriving back at the root with all
branches explored.

Figure 9.8: Example Enumeration using the Reverse-Search Method.
Straight arrows are reverse steps and curved arrows are forward.

129

9. PARAMETRIC LINEAR PROGRAMMING

Step 9 This test can be split into two parts: First, compute the direction of steepest de-

scent, and second, test if this direction goes to the basis B. The first step requires the

removal of redundancies in the critical region, while the second only requires testing the

optimality conditions of LP (9.10), which requires fixed time:

T9 = O((n−m)LP (d, n−m))

Step 16 The complexity of this step is the same as that of Step 9, except LP (9.10) must

actually be calculated, rather than simply testing the optimality conditions:

T16 = O((n−m)LP (d, n−m) + LP (n, n−m)

Step 19 Finally, this step needs to test the optimality conditions of LP (9.10) and then

determine if the jth facet is redundant via LP (9.14):

T19 = O(LP (d, n−m))

We have now to determine how many times per vertex each of the above four steps is

executed. Step 7 is called once for each facet of the solution Nf . As ET D is in R
d, there are

d edges intersecting at the vertex ET DB, which need to be tested in Step 9. As each vertex

of ET D is contained in d edges, it is possible for Step 16 to be called d − 1 times for each

vertex. Finally, the loop 17–19 is called the same number of times as Step 16, but iterates up

to d times. If there are Nr extreme points in the polyhedron ET D, the time complexity of

the reverse search enumeration method is given by:

Trs = NfT7 + NrdT9 + Nr(d− 1)T16 + Nrd(d− 1)T19

= O
(
Nr(d

2LP (d, n−m) + d(n−m)(LP (d, n−m) + LP (n, n−m)))
)

Note that the time complexity Trs is linear in the number of critical regions and is only slightly

worse than the complexity seen in Sections 9.4.1 and 9.4.2. The most important feature of the

reverse search approach is that the space complexity is fixed and that no search ever needs

be done over the critical regions that have been found so far:

Srs = O(1).

130

9.4 ENUMERATION ALGORITHMS

There are two important extensions possible to the reverse search approach. First, the

algorithm can be parallelised very efficiently, as each branch of the tree can be assigned

to a different processor and no data will need to pass between the machines. Second, the

computation speed can be drastically improved by storing the path taken down the tree in a

stack. In this case, the size of the stack can be limited to a fixed size, maintaining the space

complexity as constant.

131

Chapter 10
mpLP Examples

In this chapter we will show comparative numerical simulations of some problems that are

of importance to control. We will demonstrate that the methods presented in this thesis are

both the fastest currently available and the only approaches which are guaranteed to provide

a continuous answer in the presence of degeneracy.

The primary motivation for mpLPs in control is the calculation of so-called closed-form

or explicit MPC control laws. In standard MPC an optimisation problem, which is a function

of the current state, is solved at each sampling instant, whereas in closed-form MPC the

problem is posed in multiparametric form, with the state as a parameter, and solved offline.

The goal is to control the following LTI system:

x+ = Ax + Bu,

where x ∈ R
n is the state, x+ is the successor state and u ∈ R

m is the input. A standard Model

Predictive Controller (MPC) can be written as the solution to the following optimisation

problem:

J(x) = minimise
u1,...,uN−1,x1,...,xN

∑N−1
i=1 ‖Rui‖p +

∑N−1
i=1 ‖Qxi‖p + ‖QF xN‖

subject to x0 = x

xi+1 = Axi + Bui, i = 0, . . . , N − 1

xi ∈ X , i = 1, . . . , N − 1

xN ∈ XF ,

ui ∈ U , i = 0, . . . , N − 1,

(10.1)

where xi and ui are future predicted states and inputs respectively, which are constrained to

be in the polytopes X and U , with the state at the end of the horizon N required to lie in the

133

10. MPLP EXAMPLES

terminal set XF . The norm p is generally taken to be either the 1−, 2−, or ∞−norm and, if

the 2−norm is used, R ∈ R
m×m, Q ∈ R

n×n and QF ∈ R
n×n are positive semi-definite.

If the square of the 2−norm is used in (10.1), then the problem becomes a quadratic

program, whereas if the 1− or ∞−norms are used, then a linear program results. As we

are only interested in linear programs in this thesis, we shall make the standing assumption

of a linear norm. In order to convert (10.1) into a multiparametric linear program of the

form (9.1), a standard trick must be used to remove the norms in the cost. Let t ∈ R
n be

any vector, then the 1− and ∞−norms can be written as:

‖t‖∞ , max
i∈{1,...,n}

|ti|

= min
s
{s | |ti| ≤ s, i = 1, . . . , n}

= min
s
{s | s ≥ 0, −s ≤ ti ≤ s, i = 1, . . . , n} (10.2)

‖t‖1 , |t1|+ · · ·+ |tn|
= min

s1,...,sn

{s1 + · · ·+ sn | si ≥ 0, −si ≤ ti ≤ si, i = 1, . . . , n} (10.3)

The identities (10.2) and (10.3) allow the MPC problem (10.1) to be re–written as a

standard mpLP:

J(x) = minimise
x1, . . . , xN , u0, . . . , uN−1

s1, . . . , sN−1, t1, . . . , tN

∑N−1
i=1 1T si +

∑N
i=1 1T ti

subject to x0 = x

xi+1 = Axi + Bui, i = 0, . . . , N − 1

xi ∈ X , i = 1, . . . , N − 1

xN ∈ XF ,

ui ∈ U , i = 0, . . . , N − 1,

si ≥ 0, i = 1, . . . , N − 1

ti ≥ 0, i = 1, . . . , N

−1si ≤ Rui ≤ 1si, i = 0, . . . , N − 1

−1ti ≤ Qxi ≤ 1ti, i = 1, . . . , N − 1

−1tN ≤ QF xN ≤ 1tN ,

(10.4)

where si and ti are in R if the ∞−norm is used and si is in R
m and ti is in R

n if the

1−norm is used. LP (10.4) can be written in a simpler form, as in Chapter 6, by defining the

vectorised sets XT ,

[
xT

1 · · · xT
N

]
, UT ,

[
uT

0 · · · uT
N−1

]
, ST ,

[
sT
1 · · · sT

N−1

]
,

and T T ,

[
tT1 · · · tTN

]
and the matrices A , IN ⊗

[
A −In

]
, Ax , A?,{1,...,n}, AX ,

134

10.1 DOUBLE INTEGRATOR

A?,{n+1,...,nN} and B , IN−1 ⊗ B, R , IN−1 ⊗ R and Q ,

[
IN−1 ⊗R 0

0 QF

]
. LP (10.4)

becomes:

J(x) = minimise
U,S,T

1T S + 1T T

subject to A−1
X (Axx + BU) ∈ XN−1 ×XF ,

U ∈ UN−1

S ≥ 0,

T ≥ 0,

−(IN ⊗ 1)T ≤ QA−1
X (Axx + BU) ≤ (IN ⊗ 1)T

−(IN ⊗ 1)S ≤ RU ≤ (IN ⊗ 1)S

(10.5)

Now that the MPC problem is in the form (9.1), it can be solved using the methods

presented in this part. We now present some examples demonstrating the salient properties

of the algorithm.

Remark 10.1. Note that AX is always invertible in (10.5).

10.1 Double Integrator

We first return to the double integrator Example (6.2.1):

x(k + 1) =

[
1 1

0 1

]
x(k) +

[
1

0.5

]
u(k)

The following input and state constraints must be met at each point in time:

−1 ≤ u(k) ≤ 1, ∀k ≥ 0

−
(

5

5

)
≤ x(k) ≤

(
5

5

)
, ∀k ≥ 1

135

10. MPLP EXAMPLES

If a prediction horizon of N = 2 is assumed and R = 1, Q = QF = I, then the mpLP (10.5)

is:

minimise
U,S,T

1T S + 1T T

subject to −




10

10

10

10

2

2




≤




2 2 2 0

0 2 1 0

2 4 3 2

0 2 1 1

0 0 2 0

0 0 0 2




(
x

U

)
≤




10

10

10

10

2

2




−




1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1




(
T

S

)
≤




2 2 2 0

0 2 1 0

2 4 3 2

0 2 1 1

0 0 2 0

0 0 0 2




(
x

U

)
≤




1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1




(
T

S

)

S ≥ 0, T ≥ 0

(10.6)

The solution complex to this example is shown as Figure 10.1(a). The input applied to

the system, u0 (i.e. the first primal optimiser), is shown as Figure 10.1(b) and the cost as

Figure 10.1(c).

The following two examples will be used to compare the computational complexity of the

methods surveyed in Section 7.1 with the enumeration techniques presented in this thesis.

All of the algorithms that will be compared have been implemented in MATLAB, and as

such it would seem that the time taken by each approach could be compared directly. However,

computational experience has shown that some of the implementations take significantly

longer in MATLAB overhead than others. As discussed in Section 9.4, the primary cost of

the enumeration algorithms is the number of LPs and the time to search through the stored

data. All examples that can be calculated with current implementations have small enough

data sets as to make their search almost negligible when compared to the time taken by the

LPs. As a result, the time taken by the LPs in each algorithm is a fair comparison of the

computational cost. In order to isolate the complexity measurement from any implementation

issues, we define an optimal implementation, in which only the LPs are computed and all other

calculations are instantaneous. This will clearly be a lower bound on any implementation,

although for large problems a good code should come close.

In order to compute the complexity of the optimal implementation, the time for a single

136

10.1 DOUBLE INTEGRATOR

-10 -5 0 5 10
-6

-4

-2

0

2

4

6

x
1

x 2

(a) Solution Complex

-10

-5

0

5

10-5

0

5

-1

-0.5

0

0.5

1

x
2

x
1

u 1

(b) Input u0(x) (c) Cost J(x)

Figure 10.1: Solution to Example 10.1

137

10. MPLP EXAMPLES

LP pivot is needed, which is known to be approximately a linear function of the number of

constraints and a quadratic function of the dimension. The range of interest in the following

examples was gridded and 100, 000 LPs were carried out on random data at each point,

counting the number of pivots taken by each LP. Least-squares was then used to fit the data

to the following second-order polynomial and the following equation was determined, relating

the number of constraints N and the number of dimensions d to the number of microseconds

for a single pivot t:

t(N, d) = 0.02238d2 − 0.80456d + 0.15975N + 0.00457dN + 30.80649 (10.7)

The fit is very good, with a correlation coefficient of R2 = 0.9996 and the curve and fitting

error can be seen in Figure 10.2. This time is, of course, dependent on the machine used to

do the calculation, but any change in the machine speed would appear as a scaling of t(N, d).

The machine used to derive (10.7) was a 3GHz Pentium IV and the LP code was the Stanford

Systems Optimization Laboratory (SOL) toolbox [MS].

0
200

400
600

0

20

40

60
0

50

100

150

200

250

Number of ConstraintsDimension

Ti
m

e
(µ

 s
ec

s)

(a) Time for a Single LP Pivot

0
200

400
600

0

20

40

60
0

2

4

6

8

Number of ConstraintsDimension

Ti
m

e
(µ

 s
ec

s)

(b) Fitting Error

Figure 10.2: Time for a Single LP Pivot as a Function of Size

138

10.2 CLOSED-FORM MPC FOR RANDOM 3D SYSTEM

10.2 Closed-Form MPC for Random 3D System

In this example we will investigate the performance difference between currently available

mpLP codes. Consider the following randomly generated MPC problem:

x(k + 1) =




−0.3551 0.4523 −0.1813

0.4523 −0.6329 −0.2076

−0.1813 −0.2076 −0.0825


x(k) +




−1.0068 −0.9992

1.5975 0

1.0554 1.4262


u(k)

with a prediction horizon N = 5 and the constraints ‖u(k)‖∞ ≤ 1, ‖x(k)‖∞ ≤ 5 on the input

and state respectively. The cost is the minimisation of the ∞−norm of the states and inputs

at each point in time and the matrices Q and R are taken as the identity.

The resulting mpLP problem is significantly larger than that presented in the previous

example. When the problem is written in standard form as:

minimise (Eθ + c)T x

subject to Ax = b, x ≥ 0
(10.8)

the matrix A is in R
20×100 and E is in R

100×3 and the solution complex contains 718 regions.

The number and size of the pivots for each of the methods discussed above were collected

and analysed. The resulting data is presented in Table 10.1. The ‘Time’ column refers

to the measured amount of time that the current implementation of the algorithms took.

The ‘Pivots’ columns show the number of low–dimensional (3D) and high–dimensional (20D)

pivots that were taken as well as the average number of constraints per pivot. The time taken

doing low–dimensional (redundancy elimination) and high–dimensional (adjacency oracle)

operations is shown in the next two columns using (10.7). The final column shows the time

for an optimal implementation of the given algorithm.

A few comments are in order regarding each of the six approaches:

Basic/Facet (Algs 9.2 and 9.3) Note that, as expected, the difference between these two

approaches is in the number of high-dimensional (adjacency oracle) pivots required.

While the difference in the number of pivots is significant, the time required to do

redundancy elimination is far greater and therefore we do not see a large difference

in the total optimal time. One would expect this difference to be more pronounced

in problems with a larger distance between the high–dimension (20D) and the low–

dimension (3D).

PD (Alg 9.5) The primal-dual approach eliminates the vast majority of the redundancy

elimination requirements, while maintaining the good high-dimensional performance of

139

10. MPLP EXAMPLES

the Facet approach. The cost of this is the requirement of computing the convex hull

of the dual polytope. In this example, the convex hull calculation took less than 0.1

seconds using the qhull [BDH96] algorithm. The implementation used to produce the

results seen in Table 14.1 does not have access to an iterative convex hull algorithm,

and therefore the complete convex hull most be computed at every step. This is the

reason for the very significant difference between the measured and optimal times.

RS (Alg 9.6) The primary appeal of the reverse–search approach is its fixed storage space

requirements. For problems of the size considered here, the data fits easily within

100MB for all methods. However, the size of the data grows very quickly with the size

of the problem and so it is simple to find problems that exceed the main memory. Once

this has occurred, computation time becomes entirely a function of the speed of the

hard disk and therefore the reverse–search algorithm is a very useful method.

Facet Traversal Method (FTM) The mpLP method included with the Multiparametric

Toolbox [KGBM04] has many similarities to the basis enumeration method described

in Section 9.4.1. The primary difference that changes the computation time is that the

adjacency oracle is computed by explicitly finding a point θc on the facet, moving over

the facet to a point in the neighbouring region θ◦ by adding a small vector to it and

solving a high-dimensional LP for the new point. This is compared to the approach

taken in the adjacency oracle presented here where, for a non-degenerate facet, exactly

one pivot is required. This can be seen from Table 10.1 in both the number of 20–

dimensional pivots to be computed as well as their average number of constraints. For

a non-degenerate facet the adjacency oracle presented in this thesis has exactly one

constraint more than there are dimensions (21), whereas the MPT adjacency oracle

requires all constraints in the original problem to be included (100).

Region Complement Method (RCM) The method presented in [BBM00] is required to

compute the complement of each critical region found and then intersect this comple-

ment with all other regions to test for overlap. These tests cost a very large number of

LPs in the low–dimensional space as seen in the table. As a result, the approach has

been found not to be competitive with other methods except on specific examples.

Remark 10.2. The implementation of the method in [BBM00] reported in Table 10.1 was

written by the author of this thesis. The author of [BBM00] has recently released a tool-

box [Bem03] that has also been used to solve this problem. While the time taken by the [Bem03]

implementation was only 128 seconds rather than 794, the number of reported pivots was sig-

nificantly higher, and we therefore report the implementation that gives the best optimal time.

140

10.2 CLOSED-FORM MPC FOR RANDOM 3D SYSTEM

Pivots Optimal Time
Method Time 3D 20D 3D 20D Total

(secs) Number Avg N Number Avg N (secs) (secs) (secs)

Basic 41.6 134, 839 40.0 10, 500 23.5 4.8 0.3 5.1
Facet 29.5 134, 819 40.0 3, 385 24.1 4.8 0.1 4.9
PD 333.7 21, 042 71.2 3, 435 23.7 0.9 0.1 1.2a

RS 359.9 734, 620 77.8 28, 218 24.4 30.7 0.9 31.6
FTM 631.5 161, 702 39.5 70, 167 99.8 5.8 3.4 9.2
RCM 794.5 1, 392, 740 70.5 36, 143 26.2 57.0 1.2 58.2

aIncludes time to compute convex hull using qhull [BDH96] - 0.2 seconds

Table 10.1: Comparison of mpLP Methods for Example 10.2

As can be seen from Table 10.1, a very significant portion of the calculation time for all

methods is spent on low–dimensional pivots, which are executed for the purpose of redundancy

elimination. A heuristic to reduce the cost of redundancy elimination in control problems

has recently been proposed in [Gri04]. This method has been implemented and the result

shown in Table 10.2. The computation time is reduced enough to make its use worthwhile,

and experience has shown that it is very good for 2–dimensional problems. However, the

algorithm does not scale well, and seems to have less effect in higher dimensions, as will be

seen in the next example.

Finally, the pertinent results from Tables 10.1 and 10.2 are shown graphically in Fig-

ure 10.3, which demonstrates the relative performance of the surveyed approaches.

Pivots Optimal Time
Method Time 3D 20D 3D 20D Total

(secs) Number Avg N Number Avg N (secs) (secs) (secs)

Basic 36.5 85, 866 35.0 10, 272 23.5 3.0 0.3 3.3
Facet 24.7 85, 847 35.0 3, 353 24.0 3.0 0.1 3.1
PD 448.5 22, 142 63.2 4, 130 25.7 0.9 0.1 1.2a

RS 321.8 789, 701 63.9 28, 672 24.4 31.1 0.9 31.9
FTM 605.2 99, 352 28.6 70167 99.8 3.4 3.4 6.8
RCM 794.5 1, 392, 740 70.5 36, 143 26.2 57.0 1.2 58.2

aIncludes time to compute convex hull using qhull [BDH96] - 0.2 seconds

Table 10.2: Comparison of mpLP Methods for Example 10.2 using Redundancy Elimination
Heuristic [Gri04]

141

10. MPLP EXAMPLES

Basic Facet PD RS FTM RCM
0

100

200

300

400

500

600

700

800
Ti

m
e

(s
ec

)
No Redundancy Heuristic
Redundancy Heuristic [Gri04]

(a) Time Taken for Current Matlab Implementation

Basic Facet PD RS FTM RCM
0

10

20

30

40

50

60

Ti
m

e
(s

ec
)

No Redundancy Heuristic
Redundancy Heuristic [Gri04]

(b) Time Taken for Optimal Implementation

Figure 10.3: Method Comparison for Example 10.2

142

10.3 CLOSED-FORM MPC FOR 4D SYSTEM

10.3 Closed-Form MPC for 4D System

In this example, we present a larger problem, which is on the limits of what current imple-

mentations are capable of. Consider the following system, which is given as an example in

the MPT toolbox [KGBM04]:

x(k + 1) =




0.7 −0.1 0.0 0.0

0.2 −0.5 0.1 0.0

0.0 0.1 0.1 0.0

0.5 0.0 0.5 0.5




x(k) +




0.0 0.1

0.1 1.0

0.1 0.0

0.0 0.0




u(k),

where the following input and state constraints must be met at each point in time:

‖x(k)‖∞ ≤ 5, ‖u(k)‖∞ ≤ 5.

The weighting matrices Q and R are the identity, the horizon N is 5 and the norm to be

minimised is the ∞−norm.

Although this system looks hardly more complex that the previous example, the increase

in the state dimension of one makes an enormous difference to the complexity of the solution

complex: whereas Example 10.2 had 718 critical regions, this one contains 12, 128.

The same algorithms as in the previous example were run and the results are shown in

Tables 10.3 and 10.4 with and without the redundancy elimination heuristic [Gri04] respec-

tively. There is one notable omission: the algorithm from [BBM00]. This approach does not

seem to scale well with dimension and made virtually no progress before crashing MATLAB

after ten minutes. As before, a comparison is also made graphically in Figure 10.4.

While the complexity of the problem has increased drastically, the time taken per critical

region has only increased by approximately 50% for all methods except PD (Alg 9.5), which

has increased by 430%. This increase is due entirely to the relationship between the number

of vertices and the number of facets in ET D. For this example, there are 282, 162 facets to

12, 128 vertices, whereas in the previous example there where 5, 131 facets to 718 vertices;

an increase of 225% in ratio of facets to vertices. There is no reason not to believe that this

growth will continue for control problems of this type, which implies that the primal–dual

algorithm is of use at low dimensions only unless the problem has particular structure.

143

10. MPLP EXAMPLES

Pivots Optimal Time
Method Time 3D 20D 3D 20D Total

(secs) Number Avg N Number Avg N (secs) (secs) (secs)

Basic 1, 219.4 3, 261, 040 38.3 251, 149 23.2 114.9 7.5 122.4
Facet 883.2 3, 329, 603 38.0 50, 717 23.0 117.0 1.5 118.6
PD 13, 963.0 761, 487 96.5 76, 488 25.2 34.3 2.3 107.7a

RS 15, 687.1 34, 245, 395 98.2 628, 918 23.8 1550.6 18.9 1569.5
FTM 18, 884.0 6, 409, 503 54.4 670940 119.3 243.7 36.1 280.1

aIncludes time to compute convex hull using qhull [BDH96] - 71.1 seconds

Table 10.3: Comparison of mpLP Methods for Example 10.3

Pivots Optimal Time
Method Time 3D 20D 3D 20D Total

(secs) Number Avg N Number Avg N (secs) (secs) (secs)

Basic 1, 193.0 3, 511, 888 40.6 236, 844 22.8 126.1 7.0 133.1
Facet 843.8 2, 936, 183 36.7 50, 717 23.0 101.2 1.5 102.7
PD 12, 010.0 761, 487 96.5 76, 488 25.2 34.3 2.3 107.7a

RS 15, 687.1 34, 615, 931 98.2 635, 023 23.8 1567.4 19.0 1586.4
FTM 16, 900.1 3, 938, 090 39.4 670940 119.3 139.0 36.1 175.1

aIncludes time to compute convex hull using qhull [BDH96] - 71.1 seconds

Table 10.4: Comparison of mpLP Methods for Example 10.3 using Redundancy Elimination
Heuristic [Gri04]

144

10.3 CLOSED-FORM MPC FOR 4D SYSTEM

Basic Facet PD RS FTM
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Ti
m

e
(s

ec
)

No Redundancy Heuristic
Redundancy Heuristic [Gri04]

(a) Time Taken for Current Matlab Implementation

Basic Facet PD RS FTM
0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(s

ec
)

No Redundancy Heuristic
Redundancy Heuristic [Gri04]

(b) Time Taken for Optimal Implementation

Figure 10.4: Method Comparison for Example 10.3

145

10. MPLP EXAMPLES

10.4 Degenerate Closed-Form MPC Example

For the final example in this section, we re-visit the double integrator of Example 10.1 and

use it to investigate degeneracy. Recall that one of the primary contributions of this thesis

is the development of an mpLP approach that is guaranteed to both find a solution in the

presence of degeneracy and to ensure that it is continuous and that the critical regions form

a complex.

We again use the double integrator of Example 10.1, but now the state and input costs

are set to zero R = 0, Q = 0 and the horizon is N = 5. The resulting mpLP will, of course,

be very degenerate. While this is a slightly pathological example, it demonstrates nicely the

effect of degeneracy on the leading algorithms.

Facet Traversal Method (FTM) The resulting solution complex and control input are

shown in Figure 10.5. It is immediately obvious from the figure that the critical regions

no longer form a complex and that the input is discontinuous. More alarming, however,

is that the algorithm can miss parts of the state space, as shown in the blown-up region

of Figure 10.5(a).

-8 -6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

x
1

x 2

(a) Solution Complex. Blow-up shows
portion of the state-space that is not
covered by any region.

(b) Control Input

Figure 10.5: MPT Solution for Degenerate Example 10.4

Region Complement Method (RCM) The resulting solution complex and control input

are shown in Figure 10.6. While the critical regions of this approach are guaranteed to

146

10.4 DEGENERATE CLOSED-FORM MPC EXAMPLE

cover the entire feasible region, the control input is certainly not continuous. Note also

that the critical regions overlap and that there are many more of them than necessary.

The solution complex and input shown in Figure 10.6 are the result of code written by

the author of this thesis. There has recently been a preliminary toolbox released by

the author of [BBM03]. This toolbox was used to solve this problem and the resulting

solution is shown in Figure 10.7, although the toolbox was not able to plot the input.

One can see that the solution is not a complex and that there are overlapping regions.

-10 -5 0 5 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

(1,2)

x
1

x 2

(a) Solution Complex (b) Control Input

Figure 10.6: RCMSolution for Degenerate Example 10.4

Basis,Facet,PD,RS (Algs 9.2 through 9.6) As all of these approaches enumerate the

same graph, their outputs are all the same and are shown in Figure 10.8. Note that, as

promised, the solution complex is a complex and that the input is continuous.

147

10. MPLP EXAMPLES

-10 -5 0 5 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
1

x 2

Figure 10.7: RCMSolution for Degenerate Example using Hybrid Toolbox [Bem03]

-10 -5 0 5 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
1

x 2

(a) Solution Complex (b) Control Input

Figure 10.8: Basic Solution (Alg 9.2) for Degenerate Example 10.4

148

Part III

Projection and Parametric

Programming

149

Chapter 11
Introduction

In this section we bring together the previous two parts of this thesis and discuss the re-

lationship between projection and multi-parametric linear programming. First, it is shown

that given an mpLP problem, a projection algorithm exists whose output provides the solu-

tion complex and second, we introduce an mpLP whose dual solution is the projection of a

polytope.

Besides the theoretical interest of linking these two algorithms, the importance of this

work is obvious: advances in projection algorithms are improvements in mpLP algorithms

and vice versa. Many problems have a specific structure that means some algorithms are

drastically faster than others. As a result of the material given here, a much larger range of

both projection and mpLP methods can be searched to find an approach which matches a

given problem.

To the best of the author’s knowledge, nothing has been published relating these two

topics before. However, in a private communication with Prof. D. Klatte1 it was suggested

that Fourier elimination was used to solve rudimentary mpLPs in the 1970s, although no

literature could be found on this topic.

11.1 Outline

This part consists of three chapters. In Chapter 12, it is shown how to compute parametric

linear programs using a projection algorithm. Chapter 13 deals with the opposite direction:

an mpLP is formulated whose output provides a desired projection. Finally, Chapter 14

presents comparative simulation results of various tasks that one may put these algorithms

1Prof. Dr. D. Klatte, Institut für Operations Research, Universität Zürich, Moussonstrasse 15, 8044 Zürich,
klatte@ior.unizh.ch

151

11. INTRODUCTION

too.

152

Chapter 12
Solving Parametric Linear Programs via

Projection

This chapter provides a procedure by which parametric linear programs can be solved using

a projection algorithm. While the main result follows readily from the results of Section 9.1,

the detail, as always, is in dealing with degeneracy. Specifically, the tool available is any

projection algorithm and the aim is to compute all critical regions of the following parametric

linear program:

f(θ) = minimise
y

bT y

subject to (y, θ) ∈ P
(12.1)

The definition of the solution complex (Definition 9.5) and Lemma 9.3 show that the

solution complex can be computed as follows: First, the polyhedron Q is defined:

Q =
{
(θ, J, y)

∣∣ J ≥ bT y, (y, θ) ∈ P
}

. (12.2)

The supporting hyperplanes of the facets of the epigraph are then computed using a projection

operation whose output is the matrix G and the vector g (Corollary 9.4):

epi(f) = π(θ,J)Q = {(θ, J) |1J ≥ Gθ + g, θ ∈ πθP } . (12.3)

Remark 12.1. Note that the projection of Q will also return the supporting hyperplanes of

πθP . However, these are easily identified as the coefficient multiplying J will be zero.

Finally, the solution complex is given as the projection of the boundary complex of the

153

12. MPLP VIA PROJECTION

epigraph:

S (f) = {πθF |F ∈ B(epi(f)) and J = f(θ) for all (θ, J) ∈ F } .

Recalling that our interest lies only in the critical regions of the solution complex, we have

only to focus on the facets of epi(f), and not on the lower dimensional faces. The facets of

interest are clearly given by:

epi(f)i = {(θ, J) | J = Giθ + gi, 1J ≥ Gθ + g, θ ∈ πθP } ,

and the associated critical region is then the projection:

CRi = πθ epi(f)i = {θ | (G− 1Gi)θ ≤ 1gi − g} ∩ πθP. (12.4)

If the goal of the algorithm is simply to compute the critical regions, then we are done

at this point. However, for most purposes, the primal and/or dual optimisers will be needed

and can be found through a post-processing step by computing the optimiser for a point in

the strict interior of the region. Such a point can be found by, for example, computing the

Chebychev interior, which requires a single linear program [BV04, Sec. 8.4].

Consider the critical region CR and let θ◦ be a point in its strict interior. The de-

generate case will be considered in the next section, but here we assume that the point is

non-degenerate. Fixing θ to be θ◦ and solving LP (12.1) will give the optimal basis at the

point θ◦. As non-degeneracy has been assumed, this basis will also define the critical region

CR and the primal and dual optimisers by (9.7) and (9.8).

The above post-processing step can clearly be run for each critical region found in (12.4),

giving the primal and dual optimisers for every feasible point. The following section considers

the situation if the LP (12.1) is degenerate.

12.1 Degeneracy

A critical region CR is dual-degenerate if there is more than one primal optimiser for each

θ in the interior of CR. This is equivalent to the dimension of the pre-image being larger

than the dimension of the critical region itself dim π−1
θ CR > dim CR. Figure 12.1 depicts

this situation for an example multiparametric linear program, which contains only one critical

region.

While projection algorithms are certainly capable of computing the epigraph in (12.3)

whether the mpLP is degenerate or not, the problem arises if one wants to compute the

154

12.1 DEGENERACY

P J

J = 0T y

y

J

θ

P

epi(f)

Figure 12.1: Example of a Degenerate Multiparametric Linear Program

155

12. MPLP VIA PROJECTION

primal or dual optimisers. Recall that a primary requirement for many applications is to

have either a unique and continuous primal or dual optimiser. The remainder of this section

is dedicated to this goal.

Remark 12.2. Recall that a unique primal optimiser is particularly important in closed-form

MPC problems as the primal optimiser is the control input.

First, we discuss how to ensure that the primal optimiser is not dual-degenerate by sub-

dividing the critical region into full-dimensional regions. Let CR be a dual-degenerate critical

region and E be the equality set of its pre-image; CR = πθPE . For all parameters θ in the

critical region CR, the set of primal optimisers is all points y such that (y, θ) ∈ PE . We can

now restrict (y, θ) to be optimal in terms of mpLP (12.1) and optimise over a secondary cost

b̌, which is assumed to be selected such that it is not perpendicular to any edge of P , and

therefore the LP cannot be dual-degenerate. Consider the following multiparametric linear

program:

f(θ) = minimise
y

b̌T y

subject to (y, θ) ∈ PE

(12.5)

Note that the feasible region πθPE is equal to the critical region CR and that the optimiser

of (12.5) is also optimal for (12.1). mpLP (12.5) can now be solved using a projection

algorithm as discussed in the previous section. Furthermore, we can be sure that (12.5) will

not be dual-degenerate as b̌ was chosen to be not perpendicular to any edge

Remark 12.3. Note that if the same b̌ is used for every dual-degenerate critical region, then

the primal optimiser will be everywhere continuous as discussed in Section 9.2.

Remark 12.4. The calculation of E given the critical region CR is another example of the

implicit linearity problem. See Section 5.2 for details on how to solve this problem.

Finally, some applications demand that there is no primal degeneracy either. This can

be ensured quite simply and efficiently during the post-processing step when optimal bases

are computed by using a lexicographic LP solver to find the set of active constraints. The

approach outlined in this section is given in pseudocode as Algorithm 12.1.

Clearly, the complexity of Algorithm 12.1 is entirely a function of the projection algorithm

used. Therefore, if ESP is used, then this approach to computing mpLPs is output sensitive.

Remark 12.5. Note that the lexicographic perturbation prevents primal degeneracy of the

primal and the randomly selected vector b̌ prevents dual degeneracy, which is the opposite as

for the perturbed mpLP problem in Part II.

156

12.1 DEGENERACY

Algorithm 12.1 Multiparametric Linear Programming using a Projection Algorithm

Input: Polytope P and cost b defining mpLP (12.1).
Output: All bases that define critical regions.
1: Compute epigraph: epi(f) = π(θ,J)Q Equations 12.2 and 12.3
2: for each facet F of epi(f) with a non-zero J coefficient do
3: Compute the critical region CR = πθF Equation 12.4
4: Choose a parameter θ◦ in the strict interior of CR [BV04, Sec. 8.4]
5: Compute the active constraints E of P ε is a lex-perturbed

minimise bT y
subject to (θ◦, y) ∈ P ε (12.6)

6: if LP (12.6) is dual-degenerate then
7: Solve and report critical region defining bases of Recursive call

minimise b̌T y
subject to (y, θ) ∈ PE

(12.7)

8: else
9: Report E

10: end if
11: end for

157

Chapter 13
Solving Projection via

Parametric Linear Programming

In this chapter we further investigate the relationship between projection and parametric

programming by developing a method of computing projections given any multiparametric

linear programming tool. Specifically, given a polytope P = {(x, y) |Cx + Dy ≤ b}, we aim

to compute the projection πxP using an algorithm that can find the critical regions of an

mpLP.

We begin with the Projection Lemma, which is often attributed to Černikov [Č63] and

can be derived directly from Farkas’ Lemma (see, for example [Zie95]).

Lemma 13.1. (Projection Lemma) If P = {(x, y) |Cx + Dy ≤ b} is a polyhedron, then

the projection of P is:

πxP =
{
x
∣∣ vT Cx ≤ vT b, ∀v ∈ extr(W)

}
(13.1)

where extr(W) is the set of extreme rays of the projection cone W , which is defined as

W ,
{
v
∣∣DT v = 0, v ≥ 0

}

A standard approach to computing the projection is to first enumerate the rays of the

projection cone W , write down the projection πxP from (13.1), and then remove redundancies.

This approach is not output sensitive because many of the extreme rays of W generate

redundant inequalities of the projection and for many problems, including many of interest to

control, there are an exponential number of redundant inequalities generated. The procedure

described here uses an mpLP to enumerate only those rays of the projection cone that generate

159

13. PROJECTION VIA MPLP

irredundant inequalities of the projection.

We aim to describe the set of all valid inequalities of the projection, but first a well-known

basic result of convexity is needed on the description of valid inequalities.

Lemma 13.2. Let P be a polyhedron. The halfspace h =
{
x
∣∣αT x ≤ β

}
, is valid for P if

and only if there exists a set of valid halfspaces H = {x |Γx ≤ γ } and a positive vector λ ≥ 0

such that
[

αT β
]

= λT
[

Γ γ
]
.

Proof. (⇒) Assume that the halfspace h is valid. Take H = h and λ = 1 and the result

follows directly.

(⇐) Assume the existence of a set of valid halfspaces H and a positive vector λ such

that
[

αT β
]

= λT
[

Γ γ
]
.
[

αT β
]

is valid if and only if αT x ≤ β for all x in P , which

we derive as follows. For each pair (Γi, γi) we have Γix ≤ γi for all x ∈ P , which is still

true for all positive λi > 0: λiΓix ≤ λiγi. Finally, the inequality holds under addition:

λiΓix + λjΓjx ≤ λiγi + λjγj , which proves the result: ∀i, Γix ≤ γi implies λT Γx ≤ λT γ

implies αT x ≤ β.

From Lemmas 13.1 and 13.2 we can see that the set of all valid inequalities of the projection

πxP is given by the set S:

S ,

{
(α, β)

∣∣∣∣∣ ∃λ
(

α

β

)
=

[
CT

bT

]
λ, DT λ = 0, λ ≥ 0

}
(13.2)

The set S is what is referred to as a pointed cone, that is, a cone with exactly one vertex, the

origin. By definition, the extreme rays of S are exactly those halfspaces of πxP that cannot

be written as a positive combination of other valid halfspaces. It follows that the extreme

rays of S define the irredundant halfspaces of πxP .

The goal of computing all irredundant inequalities of πxP is now reduced to finding all

extreme rays of S. As will be seen shortly, the problem of finding all extreme points of a

polytope can be posed as a multiparametric linear program and therefore, if we wish to use

an mpLP, the cone S must be bounded. We assume a vector a such that for every point

(α, β) 6= (∞,∞) in S we have 0 <
[

αT β
]
a <∞. The existence of such a vector a is proven

in the following lemma.

Lemma 13.3. Let S be as defined in (13.2), then there exists a vector a such that 0 <[
αT β

]
a <∞ if and only if a is in the pointed cone πa

{
(a, z)

∣∣∣Dz ≤
[

C b
]
a
}
.

Proof. The result follows almost immediately from an application of Farkas’ Lemma. The

160

desired property can be written as:

∃a, such that
[

αT β
]
a > 0, ∀

(
α

β

)
=

[
CT

bT

]
λ, DT λ = 0, λ ≥ 0

re-writing gives:

∃a, such that λ
[

C b
]
a > 0, ∀λ λD = 0, λ ≥ 0

This statement is now exactly in the form of one of the many variants of Farkas’ Lemma (see,

for example [Zie95]), which prooves that this inequality is true if and only if:

Dz <
[

C b
]
a

From Lemma 13.3, it is clear that any element in the strict interior of the homogenisation

of P defines an appropriate vector a. An appropriate one can be found by, for example,

computing the Chebychev center of the homogenisation while restricting the Chebychev radius

to one:

a = argmax
z,a,t

t

subject to Dz −
[

C b
]
a +

∥∥∥
[

D −C −b
]∥∥∥

2

2
t ≤ 0

0 ≤ t ≤ 1,

(13.3)

where the 2−norm is taken row-wise and an appropriate a exists if and only if t > 0.

The set S can now be bounded by the inclusion of the constraint
[

αT β
]
a = 1:

S̄ ,

{
(α, β)

∣∣∣∣∣ ∃λ
(

α

β

)
=

[
CT

bT

]
λ, DT λ = 0, λ ≥ 0, aT

(
α

β

)
= 1

}

As each ray of S intersects the hyperplane
[

αT β
]
a = 1 exactly once, it is clear that there

is a one-to-one correspondence between vertices of S̄ and rays of S.

The following Theorem will allow the extreme points of S̄ to be enumerated via an mpLP.

Theorem 13.4. x0 ∈ R
n is an extreme point of a polyhedron P if and only if for some vector

c ∈ R
n we have max

{
cT x |x ∈ P

}
= cT x0 > cT x for all x ∈ P, x 6= x0.

Proof. See, for example [Pad99, 7.2(d)].

161

13. PROJECTION VIA MPLP

We can see from Theorem 13.4 that if we can compute the maximum for every vector c,

then all vertices will be enumerated. We can therefore pose the following multiparametric

linear program in the parameter θ to do just this:

J(θ) = maximise
α,β

θT

(
α

β

)

subject to

(
α

β

)
∈ S̄.

(13.4)

The mpLP (13.4) can be re-written in the simpler form:

J(θ) = maximise
λ

([
C b

]
θ
)T

λ

subject to DT λ = 0,

aT

[
CT

bT

]
λ = 1

λ ≥ 0

(13.5)

Note also that the condition cT x0 > cT x from Theorem 13.4 is satisfied if and only if the

linear program max
{
cT x |x ∈ P

}
is not dual-degenerate. Note that the solution of an mpLP

is dual-degenerate in every region of the solution complex, other than in the interior of the

critical regions. It follows that there is a one-to-one mapping from vertices of S̄ to the critical

regions of the above mpLP. Therefore, we can compute the projection by enumerating all of

the critical regions of the above mpLP.

This approach to computing projections using a multiparametric linear program is clearly

output sensitive if and only if the mpLP algorithm is. Pseudocode for the proposed approach

is given as Algorithm 13.1.

Remark 13.5. As promised in Section 9.4, we have now also shown that all mpLPs of the

form (7.1) can be written in the form (9.17), i.e. with c = 0. This follows from Chapter 12

in which is was shown that these mpLPs can be solved via a projection, and in this section

that all projections can be solved by an mpLP of the appropriate form.

Remark 13.6. Note that while each extreme ray of S defines a non-redundant inequality

of the projection, the mpLP (13.5) may return a particular ray more than once. If a ray is

primal-degenerate then the lexicographic perturbation will cause it to be found several times

as there will be several lex-perturbed rays corresponding to the single ‘true’ ray. This form

of redundancy is trivial to detect and remove as the projection simply needs to be tested for

duplicate inequalities and therefore no linear programs are required.

162

Remark 13.7. No assumption has been made on whether the polyhedron P is bounded in any

of the above discussion. As the projection lemma holds for general polyhedra, the approach

described in this section will also.

Algorithm 13.1 Projection using a Multiparametric Linear Programming Algorithm

Input: Polytope P = {(x, y) |Cx + Dy ≤ b}.
Output: Irredundant valid inequalities of πxP
1: Solve the mpLP (13.5)
2: for each critical region-defining basis B of (13.5) do
3: Let λ? be the optimiser of (13.5) for basis B (9.8)
4: Report valid, irredundant constraint: λ?Cx ≤ λ?b (13.2), Lemma 13.2
5: end for

It is clear that the complexity of this approach is entirely dependant on the complexity of

the mpLP used to solve (13.5). Therefore, if any of the approaches discussed in Chapter 9 are

used, then this will be an output sensitive projection algorithm for non-degenerate problems.

163

Chapter 14
Projection and mpLP Examples

In this chapter we will examine, through simulation, the use of projection algorithms for

solving multi-parametric linear problems and vice versa.

14.1 Solving Parametric Linear Programs via Projection

In this section some of the examples of Part II will be computed using the projection algo-

rithms discussed in Part I.

14.1.1 Double Integrator

We first revisit the double integrator of Example 10.1, in which the goal was to compute the

closed-form MPC solution. The resulting mpLP is:

f(x) = minimise
U,S,T

1T S + 1T T

subject to −γ ≤
[

Λ Σ
](x

U

)
≤ γ

−Ψ

(
T

S

)
≤
[

Λ Σ
](x

U

)
≤ Ψ

(
T

S

)

S ≥ 0, T ≥ 0

(14.1)

165

14. PROJECTION AND MPLP EXAMPLES

where we have defined the following matrices for simplicity:

γ ,

[
10 10 10 10 2 2

]T
Λ ,

[
2 0 2 0 0 0

2 2 4 2 0 0

]T

Σ ,

[
2 1 3 1 2 0

0 0 2 1 0 2

]T

Ψ ,




1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1




T (14.2)

Equation 12.3 can now be used to formulate the mpLP as a projection:

epi(f) = π(x,J)Q

= π(x,J)





(x, J, U, T, S)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




−Γ 0

Γ 0

−Γ 0

Γ 0

0 0

0 −1




(
x

J

)
+




Σ 0

−Σ 0

Σ −Ψ

−Σ −Ψ

0 −I

0 1T







U

T

S


 ≤




γ

γ

0

0

0

0








The polytope Q is in R
9, contains 25 constraints and the projection yields the epigraph in

R
3, which has 20 inequalities of which 8 define the boundaries of the feasible region and the

remaining 12 define critical regions. Six of the regions of this example are degenerate, and

require a second projection for each region in order to compute a unique optimiser. Of course,

if the ESP degeneracy handling method of Section 5.1 is used then this will be unneccesary.

The resulting projection is shown in Figure 14.1.

14.1.2 Random 3D System

In this example we consider the random three dimensional system with two inputs from

Example 10.2. Posing this as a projection problem requires a projection from R
24 to R

4 of a

polytope with 87 constraints. Table 14.1 compares the time taken by the various projection

and mpLP methods. Note that even this small example is too taxing for most existing

projection methods.

166

14.1 MPLP VIA PROJECTION

Figure 14.1: Projection of Q for Example 14.1.1

mpLP Method Time Projection Method Time
(secs) (secs)

Basic 41.6 ESP 38.95
Facet 29.5 VpH (CDD) > 24 hours
PD 333.7 Ray (CDD) > 24 hours
RS 359.9 Fourier > 24 hours
FTM 631.5
RCM 794.5

Table 14.1: Comparison of mpLP Methods for Example 10.2

167

14. PROJECTION AND MPLP EXAMPLES

14.2 Solving Projection via

Parametric Linear Programming

In this section we will return to some of the examples of Part I and re-solve the projections

using the mpLP algorithms of Part II.

14.2.1 Double Integrator

Consider again the calculation of the feasible region for the double integrator of Example 6.2.1:

XF = πx





(x, U)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−




10

10

10

10

2

2




≤




2 2 2 0

0 2 1 0

2 4 3 2

0 2 1 1

0 0 2 0

0 0 0 2




(
x

U

)
≤




10

10

10

10

2

2








(14.3)

Using the definitions of (14.2), the projection (14.3) can now be written in standard form as:

XF = πx

{
(x, U)

∣∣∣∣∣

[
Λ

−Λ

]
x +

[
Σ

−Σ

]
U ≤

[
γ

γ

]}

Using the results of Chapter 13, this projection can be re-written as the following mpLP:

maximise

([
Γ γ

−Γ γ

]
θ

)T

λ

subject to
[

ΣT −ΣT
]
λ = 0

aT

[
ΛT −ΛT

γT γT

]
λ = 1

λ ≥ 0

(14.4)

where a is computed via LP (13.3) and is found to be:

a =
[

0.7 0.7 1.9 2.5 1.9 3.5 0.7 0.7 0.9 2.2 1.4 3.2
]T

As discussed in Chapter 13, the vertices (αi, βi) of the polytope ET D define the halfspace

inequalities αix ≤ βi of the projection πxP . By the inclusion of the bounding constraint, all

of the vertices lie on the hyperplane
[

αT β
]
a = 1 and therefore the dimension of ET D is

168

14.2 PROJECTION VIA MPLP

two, although it is contained in R
3. To facilitate plotting, we normalise all of the vertices

by dividing through by βi. This can be done as the feasible set XF is bounded and contains

the origin, and therefore all of the vertices have a βi that is strictly positive. Shown in

Figure 14.2(a) is the polytope ET D. Note that this polytope is generally referred to as the

polar dual of the projection in the literature.

Remark 14.1. Note that the polytope ET D is the polar dual of the homogenisation of the

projection πxP intersected with the cut-plane T =
{
z
∣∣ aT z = 1

}
, where T was defined with

the requirement that all rays of the polar dual of ET D pass through it. See [Zie95] for details

on the polar dual and the homogenisation.

Recalling (9.18), we know that if c = 0, the mpLP can be re-written as min
{
θT z

∣∣ z ∈ ET D
}
.

It follows that for each vertex v of ET D, there will be some set of directions θ such that v is

the optimiser. From the definition, this set is the normal cone of the vertex v and it is clear

that it is also the critical region associated with v. It is clear that if all of the vertices of

ET D are considered, then the normal fan (set of all normal cones) will result. The solution

complex, which is also the normal fan of ET D, is shown in Figure 14.2(b).

Each normal fan is drawn originating from its associated vertex in Figure 14.2(c). Primal

degeneracy of the dual appears as more than one cone attached to a vertex. This is because

the point has been lexicographically perturbed and is therefore, from the point of view of

the algorithm, several points. It is clear, however, that degeneracy of this type makes the

algorithm no longer output sensitive, as more than one critical region needs to be enumerated

in order to determine a single inequality of the projection.

Finally, the projection itself is shown as Figure 14.2(d).

14.2.2 Random 3D System

We now move onto the second and final example in this section, where we re-visit the feasibility

calculation of Example 6.2.2. The computation of the feasible set in this example requires

the projection of a polytope in R
13 containing 80 constraints. The resulting set XF is in R

3

and consists of only 16 halfspaces.

Each of the mpLP algorithms discussed in Part II has been used to compute the projection

and the results are collected in Table 14.2, where they are compared against the computation

times for the known projection algorithms.

Remark 14.2. Note that the methods FTMand RCMcannot compute parametric programs

in which the primal feasible set is unbounded. In order to make this problem calculable,

constraints where added to restrict the primal optimiser to lie in the unit cube.

169

14. PROJECTION AND MPLP EXAMPLES

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

α
1

α 2

(a) Dual Polytope ET D

-0.5 0 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

θ
1

θ 2

(b) Solution Complex

-0.5 0 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

α
1

α 2

(c) Normal Fan of Dual Polytope ET D

-15 -10 -5 0 5 10 15
-6

-4

-2

0

2

4

6

x
1

x 2

(d) Projection πx(P)

Figure 14.2: Solution for Example 14.2.1

170

14.2 PROJECTION VIA MPLP

Remark 14.3. It should be noted that this projection is quite degenerate and as such the

method FTMcannot be guaranteed to find the correct solution, as shown in Figure 14.3. In

practice, it has been observed that for small problems, the correct projection is generally re-

turned, however, the number of critical regions explored is often much higher than expected.

The solution complex for this example is shown in Figure 14.4 and the dual polytope

ET D, with its associated normal fan, in Figure 14.5. Finally, the projection is shown in

Figure 14.6(a) and its polar dual ET D in Figure 14.6(b).

Method Time (secs)

ESP 0.22

Fourier Elimination 30.2 – 20739.0

VpH
CDD 4186.7
lrs 455.47
qhull 391.0

Projection Cone
CDD 9327.7
lrs > 12 hours
qhull > 2GB RAM

mpLP
Basic 3.69
Facet 3.37
PD 4.87
RS 22.45
FTM 12.19
RCM 23.71

Table 14.2: Comparison of Projection and mpLP Methods for the Calculation of the Feasible
Region of Example 14.2.2

171

14. PROJECTION AND MPLP EXAMPLES

Figure 14.3: Critical Regions found by MPT for Example 14.2.2

Figure 14.4: Solution Complex for Example 14.2.2

172

14.2 PROJECTION VIA MPLP

Figure 14.5: Normal Fan and Dual Polytope ET D for Example 14.2.2

(a) Feasible Region XF = πx(P) (b) Polar Dual of Projection, ET D

Figure 14.6: Solution to Example 14.2.2

173

Part IV

Point Location Problem

175

Chapter 15
Introduction

It is standard practice to implement an MPC controller by solving on–line an optimal con-

trol problem that, when the system is linear and the constraints are polyhedral, amounts

to computing a single linear or quadratic program at each sampling instant depending on

the type of control objective. In recent years, it has become well-known that the optimal

input is a piecewise affine function (PWA) defined over a polyhedral partition of the feasible

states [Bor03]. Methods of computing this affine function can be found in Parts II and III

of this thesis as well as in several sources in the literature (e.g., [TJB01, BMDP02, Bor03]).

The on–line calculation of the control input then becomes one of determining the region that

contains the current state and is known as the point location problem.

The complexity of calculating this function is clearly dependent on the number of affine

regions in the solution. This number of regions is known to grow very quickly and possibly

exponentially, with horizon length and state/input dimension [BMDP02]. The complexity of

the solution therefore implies that for large problems an efficient method for solving the point

location problem is needed.

The key contributions to this end have been made by Töndel, et al [TJB03] and Borelli,

et al [BBBM01]. In [TJB03], the authors propose to construct a binary search tree over the

polyhedral state-space partition. Therein, auxiliary hyper-planes are used to subdivide the

partition at each tree level. Note that these auxiliary hyper-planes may subdivide existing

regions. The necessary on–line identification time is logarithmic in the number of subdivided

regions, which may be significantly larger than the original number of regions. Although the

scheme works very well for smaller partitions, it is not applicable to large controller structures

due to the prohibitive pre-processing time. If R is the number of regions and F̄ the average

number of facets defining a region, then the approach requires the solution to R2 · F̄ LPs1.

1It is possible to improve the pre-processing time at the cost of less efficient (non-logarithmic) on-line

177

15. INTRODUCTION

However, the scheme in [TJB03] is applicable to any type of closed–form MPC controller,

whereas the algorithm proposed in this thesis considers only the case in which controllers are

obtained via a linear cost. The approach proposed here is not directly applicable to non-

convex controller partitions and can only be applied to controllers obtained for a quadratic

cost if the solution exhibits a specific structure.

In [BBBM01] the authors exploit the convexity properties of the piecewise affine (PWA)

value function of linear MPC problems to solve the point location problem efficiently. Instead

of checking whether the point is contained in a polyhedral region, each affine piece of the value

function is evaluated for the current state. Since the value function is PWA and convex, the

region containing the point is associated to the affine function that yields the largest value.

Although this scheme is efficient, it is still linear in the number of regions.

In this part, we combine the concept of region identification via the value-function [BBBM01]

with the construction of search trees [TJB03], by using the link between parametric linear pro-

gramming, Voronoi Diagrams and Delaunay triangulations, recently established in [RGJ04].

We demonstrate that the PWA cost function can be interpreted as a weighted power dia-

gram, which is a type of Voronoi diagram, and exploit recent results in [AMN+98] to solve

the point location problem for Voronoi diagrams in logarithmic time at the cost of very simple

pre-processing operations on the controller partition.

We focus on MPC problems with 1- or ∞-norm objectives and show that evaluating the

optimal PWA function for a given state can be posed as a nearest neighbour search over a

finite set of points. In [AMN+98] an algorithm is introduced that solves the nearest neighbour

problem in d dimensions with R regions in time O(cd,εn log R) and space O(dR) after a pre-

processing step taking O(dR log R), where cd,ε is a factor depending on the state dimension

and an error tolerance ε. Hence, the optimal control input can be found on–line in time

logarithmic in the number of regions R.

15.1 Outline

The remainder of this part is organised as follows. In section 16.1, the problem addressed in

this part is formally defined. Section 16.2 demonstrates that the point location problem can

be posed as a nearest neighbour search over R points. Section 16.4 provides a brief overview

of the logarithmic nearest neighbour algorithm from [AMN+98]. Finally, Chapter 17 provides

numerical examples and compares the approach to the current state of the art.

computation times.

178

15.2 ACKNOWLEDGEMENTS

15.2 Acknowledgements

The work presented in this part is a collaborative effort with Pascal Grieder and Sasa Raković.

The text is based almost entirely on the following paper:

C.N. Jones, P. Grieder and S.V. Raković. A Logarithmic-Time Solution to the

Point Location Problem for Closed-Form Linear MPC. To appear in Proceedings

of the 16th IFAC World Congress, Prague, Czech Republic, 2005.

The examples in this part have been prepared with the MPT toolbox [KGBM04] and

Figure 17.3 was calculated using the ANN library [MA98].

179

Chapter 16
Logarithmic Point Location

16.1 Introduction

Consider the following multiparametric linear program:

f(θ) , min
y

bT y

subject to (y, θ) ∈ P.
(16.1)

Given a particular parameter θ ∈ R
d, the goal is to determine the primal and/or dual optimiser

of mpLP (16.1) for θ. This can be done by determining which critical region CR of the solution

complex S (f) contains the given parameter θ. Once the critical region has been found, the

primal and/or dual optimisers can be computed directly from the optimal basis as seen in (9.7)

and (9.8).

The point location problem can therefore be stated as:

Definition 16.1. (Point Location Problem) Given a vector θ and the solution complex

S (f) = {R1, . . . ,RR} of the mpLP (16.1), determine any integer1 i(θ) ∈ {1, . . . , R} such

that polytope Ri(θ) contains θ.

From Corollary 9.4, the epigraph of f can be written as:

epi(f) = {(θ, J) |1J ≥ Gθ + g, θ ∈ πθP }

and from the definition of the solution complex (Definition 9.5), there is a one-to-one mapping

from the facets of {(θ, J) |1J ≥ Gθ + g} to the critical regions of S (f). It follows that i(θ)

1The state may be on the boundary of several regions.

181

16. LOGARITHMIC POINT LOCATION

can be computed as [BBBM01]:

i(θ) = argmax
r∈{1,...,R}

{Grθ + gr} . (16.2)

As was proposed in [BBBM01], i(θ) can be computed from (16.2) by simply evaluating the

cost Grθ+gr for each r ∈ {1, . . . , R} and then taking the largest. This procedure requires 2dR

flops and has a storage requirement of (d + 1)R, where d is the dimension of the parameter.

In the following sections we will show that with a negligible pre-processing step, (16.2)

can be computed in logarithmic time, which is a significant improvement over the linear time

result of [BBBM01].

16.2 Point Location and Nearest Neighbours

In this section we show that for mpLPs, the point location problem can be written as an

additively weighted nearest neighbour search, or a search over R points in R
d to determine

which is closest to the parameter θ.

Consider the finite set of points called sites S , {s1, . . . , sR} and the weights W ,

{w1, . . . , wR}, where (si, wi) ∈ R
d × R, ∀i ∈ NR (recall that NR = {1, ,̇ R}). Given a point θ

in R
d, the weighted nearest neighbour problem is the determination of the point sr ∈ S that

is closest to θ, for all (sj , wj) ∈ S ×W, j ∈ {1, . . . , R}. Associated with each site is a set of

points Lr ⊂ R
d such that for each θ ∈ Lr, θ is closer to sr than to any other site:

Lr , {θ | ‖sr − θ‖22 + wr ≤ ‖sj − θ‖22 + wj , ∀j ∈ NR}. (16.3)

Note that the sets Lr form a complex CV , {L1, . . . ,LR} [Aur91]. If the weights wr are

all zero, then the sets Lr form a Voronoi diagram, otherwise they are called a power dia-

gram [Aur91]. An example Voronoi diagram is shown in Figure 16.1 for a random set of

sites.

We now state the main result that enables a logarithmic search time:

Theorem 16.2. If C is a solution complex, then C is the intersection of a power diagram

with the feasible region of mpLP (16.1).

Proof. It suffices to show that for any solution complex of mpLP (16.1), C , {R1, . . . ,RR},
it is possible to define a set of sites and weights such that their power diagram is equivalent

to C .

182

16.2 POINT LOCATION AND NEAREST NEIGHBOURS

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x 2

Figure 16.1: Example of a Random Voronoi Diagram

It follows from the definition of the solution complex (Definition 9.5) and from Corol-

lary 9.4 that θ ∈ πθP is contained in critical region Rr if and only if

Grθ + gr ≥ Gjθ + gj , ∀j ∈ NR,

or equivalently, if and only if:

−Grx− gr ≤ −Gjx− gj , ∀j ∈ NR.

Define the R sites and weights as:

sr ,
GT

r

2

wr , −gr −
∥∥∥∥
Gr

2

∥∥∥∥
2

2

= −gr − ‖sr‖22
(16.4)

For all r ∈ {1, . . . , R} and a given θ it follows that:

‖sr − θ‖22 + wr = −Grθ − gr + ‖θ‖22

183

16. LOGARITHMIC POINT LOCATION

Recalling the definition of Lr in (16.3) we obtain the following ∀j ∈ NR:

Lr ,

{
θ
∣∣∣ ‖sr − θ‖22 + wr ≤ ‖sj − θ‖22 + wj ,

}

=
{

θ
∣∣∣−Grθ − gr + ‖θ‖22 ≤ −Gjθ − gj + ‖θ‖22 ,

}

= {θ | −Grθ − gr ≤ −Gjθ − gj , }
= {θ |Grθ + gr ≥ Gjθ + gj , } (16.5)

We see from (16.5) and Corollary 9.4 that

Lr ∩ π {P} = Rr.

Thus the equivalence of the power diagram of the set of sites and weights (16.4) and the

solution complex C of a corresponding mpLP is established.

A very important consequence of Theorem 16.2 is that the point location problem (16.2)

can be solved by determining which site sr is closest to the parameter θ:

i(θ) =
{

r
∣∣∣ ‖sr − θ‖22 + wr ≤ ‖sj − θ‖22 + wj , ∀j ∈ NR

}

= min
r∈{1,...,R}

∥∥∥∥∥

(
sr
√

wr

)
−
(

θ

0

)∥∥∥∥∥

2

2

Since this problem has been well studied in the computational geometry literature we propose

to adapt an efficient algorithm introduced in [AMN+98] that solves the nearest neighbour

problem in logarithmic time and thereby solves the point location problem in logarithmic

time. Section 16.4 will give a brief introduction to the algorithm introduced in [AMN+98].

Remark 16.3. In [Aur87] it was shown that a complex is a power diagram if and only if there

exists a piecewise affine, continuous and convex function in R
d+1 such that the projection of

each affine piece of the function from R
d+1 to R

d is a cell in the complex. This piecewise

affine function is called a lifting of the complex. From the proof of Theorem 16.2, it is clear

that the solution complex of every mpLP has a lifting.

Remark 16.4. If the parametric program has a quadratic cost, rather than linear, then the

resulting solution complex may or may not have a lifting. Although it is not difficult to find

problems for which a lifting does not exist, general conditions for the existence of a lifting for

quadratic costs are not known. See [Aur91, Ryb99] for details on testing when a complex has

an appropriate lifting.

184

16.3 DEGENERACY

16.3 Degeneracy

As seen in Part II, if a critical region is degenerate, then a perturbation can be used to remove

this degeneracy and select a unique basis. The result of this is that there will be several critical

regions with the same minimal cost. In other words, a facet of the epigraph will project onto

the union of several critical regions. Clearly, the method described above can only be used

to determine which facet of the epigraph a parameter is in and not the critical region if there

is degeneracy.

However, once the facet of the epigraph has been determined, the approach can be applied

a second time on the complex formed within the degenerate region by the perturbed cost in

order to find the appropriate basis.

16.4 Approximate Nearest Neighbour: Logarithmic Solution

In this section, the key aspects of the approximate nearest neighbour search algorithm pre-

sented in [AMN+98] will be summarised. Given a point q ∈ R
d, a positive real ε and a set

of R points in R
d, the point p is a (1 + ε)-approximate nearest neighbour of q, if its distance

from q is within a factor of (1 + ε) of the distance from the true nearest neighbour.

Remark 16.5. The ε error is required in order to prove the logarithmic search time [AMN+98].

If the method proposed in Part II is used, then the primal optimiser is continuous and this

error in determining the region translates into a maximum error in the primal optimiser that

is proportional to ε. Therefore, the error in the optimiser can be made arbitrarily small with

an appropriate selection of ε.

As shown in [AMN+98], it is possible to pre-process the R data points in O(dR log R)

time and O(dR) space, such that the approximate nearest neighbour can be identified in

O(cd,ε log R) time, where cd,ε is a factor depending only on state-space dimension d and

accuracy ε.

The authors in [AMN+98] propose to construct a so-called balanced box-decomposition tree

or BBD-tree. The BBD-tree is a hierarchical decomposition of the state-space into hyper-

rectangles (cells) whose sides are orthogonal to the coordinate axes. The BBD tree has two

key properties which are vital in obtaining the logarithmic runtime bounds. Namely, as one

descends the BBD-tree, the number of points associated to each cell decreases exponentially

and the aspect ratio (ratio of longest to shortest side of each cell) is bounded by a constant.

The BBD-tree is constructed through the repeated application of two operations, splits

and shrinks. A split subdivides a cell into two equally sized children by adding an axis-

orthogonal hyperplane. This operation guarantees the exponential decrease in the number

185

16. LOGARITHMIC POINT LOCATION

of points associated to each cell but it cannot give bounds on the aspect ratio. The shrink,

partitions a cell into two subcells by using a hyper-rectangle that is located in the interior of

the parent cell. The shrink operation corresponds to ‘zooming in’ to regions where points are

highly clustered. A simple strategy to construct the BBD-tree is to apply splits and shrinks

alternately. This procedure is repeated until the number of points associated to each cell is

at most one.

In order to describe the on-line search, we will introduce the following definition: the

distance between a point q and a cell is the closest distance between q and any part of the

cell. Given a query point q, the algorithm first identifies the associated leaf cell by a simple

descent through the tree in O(log R) time. It is possible to enumerate the s cells closest to q in

increasing order in O(sd log R) time [AMN+98]. The necessary number of cells s is bounded

by a constant which can be determined without constructing the BBD-tree [AMN+98]. Each

cell is then visited (closest cell first) and the closest point seen so far is stored as p. As soon

as the distance from a cell to q exceeds dist(p, q)/(1 + ε), it follows that the search can be

terminated and p can be reported as the approximate nearest neighbour [AMN+98].

In this chapter, we have shown that the point location problem can be posed as a weighted

nearest neighbour search. By using existing results from computer science, this equivalence

allows the point location problem to be solved in logarithmic time.

186

Chapter 17
Point Location Examples

In this chapter we consider various systems and compare the on–line calculation times of

the method proposed in this thesis to the scheme in [BBBM01]. Although the scheme

in [TJB03] may lead to more significant runtime improvements than [BBBM01], the nec-

essary pre-processing time is prohibitive for large partitions and we therefore refrain from

performing a comparison to that scheme.

17.1 Double Integrator

Consider the double integrator

x(k + 1) =

[
1 1

0 1

]
x(k) +

[
1

0.5

]
u(k)

The task is to regulate the system to the origin while fulfilling the input constraint ||u(k)||∞ ≤
1 and state constraint ||x(k)||∞ ≤ 5. For this system, we consider the optimisation prob-

lem (10.5) with a 2-norm objective for a prediction horizon N = 10. The objective weight

matrices are set to Q = QF = I and R = I. For this example, there exists a lifting according

to Remark 16.4 such that it is possible to construct the associated search tree. The construc-

tion process for Example 17.1 is depicted in Figure 17.1 and a rather fanciful version is given

in Figure 17.2.

Remark 17.1. For problems with a linear norm the lifting can be computed directly as the

epigraph. However, this is not the case for quadratic problems as their epigraphs are quadratic.

An appropriate lifting was computed for this example as a linear optimisation with the slopes

of the affine regions as decision variables and continuity across boundaries as constraints.

187

17. POINT LOCATION EXAMPLES

−8 −6 −4 −2 0 2 4 6 8

−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

(a) Controller parti-
tion with R = 65 re-
gions.

−5
0

5

−4
−2

0
2

4
0

0.5

1

1.5

2

2.5

x
1

x
2

f
(b) Lifting of the controller
partition (see Remark 16.4).

(c) Cells of the search tree
associated to the lifting.

Figure 17.1: Search Tree Construction for Example 17.1
The search tree was constructed using the MPT toolbox [KGBM04] whose search tree con-

struction differs slightly from the BBD-tree presented in Section 16.4

17.2 Large Random System

Consider the following 4-dimensional LTI system:

x(k + 1) =




0.7 −0.1 0 0

0.2 −0.5 0.1 0

0 0.1 0.1 0

0.5 0 0.5 0.5




x(k) +




0 0.1

0.1 1

0.1 0

0 0




u(k)

subject to constraints ||u(k)||∞ ≤ 5 and ||x(k)||∞ ≤ 5. This problem was solved for the

∞−norm, prediction horizon N = 5 and for weighting matrices Q = I and R = I. The

resulting controller partition consists of R = 12, 290 regions. The construction of the search

tree required 0.03 seconds. In comparison, the approach in [TJB03] would require the solution

to approximately 151, 000, 000 LPs, which is clearly prohibitive in terms of runtime. For

ε = 0.01, the average and worst-case number of floating point operations to compute the

input using ANN [MA98] are 29, 450 and 36, 910 respectively. In comparison, the approach

in [BBBM01] always takes exactly 160, 000 operations.

17.3 Randomly Generated Regions

In this section we compare the computational complexity of the approach presented in this

part with that discussed in [BBBM01] for very large systems. The currently available multi-

parametric solvers produce reliable results for partitions of up to approximately 30, 000 re-

gions. However, methods are currently being developed that will provide solutions for much

188

17.3 RANDOMLY GENERATED REGIONS

Figure 17.2: Controller Partition for the Double Integrator

larger problems. Therefore, in order to give a speed comparison we have randomly generated

vectors Gr and gr in the form of (16.2). The code developed in [AMN+98], which is available

at [MA98], was then used to execute 1, 000 random queries and the worst-case is plotted in

Figure 17.3. For all of the queries the error parameter ε was set to zero and therefore the

solution returned is the exact solution. It should be noted that the preprocessing time for

one million regions and 20 dimensions is merely 22.2 seconds.

Figure 17.3 shows the number of floating point operations (flops) as a function of the

number of regions for the two approaches and the dimension of the state-space. Note that

both axes are logarithmic.

A 3.0GHz Pentium 4 computer can execute approximately 800 × 106 flops/second (esti-

mated from timing large matrix multiplications in MATLAB). It follows that for a 10 dimen-

sional system whose solution has one million regions, the control action can be computed at

a rate of 20kHz using the proposed method, whereas that given in [BBBM01] could run at

only 35Hz.

It is clear from Figure 17.3 that the calculation speed of the proposed method is very

good for systems with a large number of regions. Furthermore note that controller partitions

where ANN does worse than [BBBM01] are virtually impossible to generate, i.e. a partition

in dimensions n = 10 with less than R = 100 regions is very difficult to contrive. Hence, it can

be expected that for all systems of interest, the proposed scheme will result in a significant

increase in speed. Since explicit feedback MPC is generally being applied to systems with

189

17. POINT LOCATION EXAMPLES

101 102 103 104 105 106

10−4

10−3

10−2

10−1

100

101

102

N
r

M
i
l
l
i
o
n
s

o
f

F
l
o
p
s

+ Dim = 2
x Dim = 10

−− [BBBM01]
− ANN [AMN+98]

Figure 17.3: Comparison of ANN [AMN+98] (Solid lines) to [BBBM01] (Dashed lines)

very fast dynamics, any speedup in the set-membership test is useful in practice, i.e. the

scheme proposed here is expected to significantly increase sampling rates.

190

Part V

Conclusions and Future Research

191

Chapter 18
Conclusions

In conclusion, the main contributions of this thesis and directions for future research are

outlined.

18.1 Main Contributions

The main focus of this thesis has been the use of linear polyhedral computations in control.

The specific contributions in this area are detailed as follows:

Part I: Equality Set Projection (ESP)

This part presented the ESP algorithm, which is a new approach for the projection of poly-

topes in halfspace form. The proposed algorithm requires a linear number of linear programs

per output facet in the absence of degeneracy and, as shown by simulation, degrades grace-

fully in its presence. If the size (dimension and number of inequalities) of the polytope is kept

constant, it has been shown that the complexity becomes linear in the number of facets of the

projection. ESP is an important contribution to the field of computational geometry, as it

is currently the only output sensitive algorithm for projection. The loss of output sensitivity

for degenerate problems is a common problem across most geometric algorithms, and so work

continues towards resolving this problem.

The algorithm has been implemented in MATLAB and comparative simulations were

given in Section 6.1, which greatly favoured ESP. The simulations presented were targeted at

a class of polytopes for which ESP is particularly suited, namely those of interest to control.

We do not claim, however, that ESP is the best algorithm in all cases. For example, there is

a large class of polytopes for which the projection cone has a very small number of extreme

rays or the number of vertices of the polytope is small, such as in a simplex. However, the

193

18. CONCLUSIONS

simulations demonstrate that there is a large class of polytopes for which ESP is uniquely

suited and is able to calculate projections of polytopes in significantly higher dimensions than

existing methods. Of particular note are high dimensional polytopes that are to be projected

to a low dimension, polytopes represented by a small number of inequalities and hypercubes.

Part II: Multi-Parametric Linear Programming

Three significant contributions were made in this part. First, the structure of the multi-

parametric linear program was explored and it was proven that if the mpLP is non-degenerate,

then the solution forms a complex, which is a vital property for the proof of completeness of

the algorithms presented in this part. Second, a modification of the problem was introduced,

which maintains this property in the presence of degeneracy. Furthermore, the modifica-

tion also ensures that the primal optimiser is continuous, which is a very desirable property

for the computation of control laws. Finally, four algorithms were presented to enumerate

the critical regions of the solution complex, each with different strengths and weaknesses.

The algorithms were compared in simulation for problems of interest to control, where they

performed favourably.

Part III: Projection and multi-Parametric Linear Programs

In this part an important link was made between multi-parametric linear programs and pro-

jection. Namely, an mpLP algorithm can be used to compute a projection and a projection

algorithm can be used to compute mpLPs.

Part IV: Point Location Problem

The promise of closed-form MPC computation is that the online calculation can then be done

much faster than standard MPC, in which an optimisation problem must be solved at each

time step. This allows the application of MPC to small, fast systems. However, if the number

of regions is large, then the online calculation is not necessarily faster than solving the online

optimisation.

This part introduced a new method of solving the point location problem for linear-cost

MPC problems. If the controller partition exhibits a specific structure, the proposed scheme

can also be applied to quadratic-cost MPC problems. It has been shown that the method is

linear in the dimension of the state-space and logarithmic in the number of regions. Numerical

examples have demonstrated that this approach is superior to the current state of the art and

that for realistic examples, several orders of magnitude improvement in sampling rates are

possible.

194

18.2 FUTURE RESEARCH

18.2 Future Research

Possible directions for future research are outlined as follows.

Approximation

As was seen in the simulations presented in this thesis, it is often the case that the number of

critical regions or the number of facets in a projection is very large, and grows quickly with

the problem size. From [AZ96], it is known that the worst-case complexity of a projection is in

fact exponential. As was shown in Part III, mpLPs are equivalent to projection and therefore

the worst-case number of critical regions is also exponential. This result threatens to limit

the application of closed-form MPC (for linear costs) to very small problems, certainly less

than ten dimensions, and probably less than five.

Recent work [Gri04] has shown how this complexity can be reduced by modifying the

statement of the problem. A second method to reduce this is to approximate the projection

directly. The ideal outcome would be an algorithm that would return a polytope of fixed

complexity with a minimum fitting error to the projection.

Parametric Quadratic Programming

While this thesis has focused on linear problems, of which there are many applications both

in and out of control, the norm most used in control is the 2−norm, which results in a multi-

parametric quadratic program (mpQP). There is still much work to be done to fully under-

stand the mpQP problem. First, there is as yet no proof that the set of critical regions forms

a complex [SKJ+04]. This lack means that the current state-of-the-art algorithm [Bao02]

must assume this result and therefore there is no proof that it will find the complete solution

even if the cost is positive definite. Second, it would be useful to handle degeneracy in a sim-

ilar manner as in Part II by applying an appropriate perturbation. A similar idea has been

suggested in [STJ05b], where a perturbation is made to the cost when there is degeneracy.

However, it should be possible to apply lexicographic perturbation methods by posing the

mpQP as a parametric linear complementarity problem (LCP) [MY88]. In [TJB01], it was

shown that for a non-degenerate problem, the active constraints in an adjacent region can be

derived directly from those that are active on the boundary facet. Formulating the problem

as an LCP may allow for a result similar to that in Section 9.3, which would extend this result

to the degenerate case.

195

18. CONCLUSIONS

Exploitation of Structure

The problems of most interest in control generally have a very similar structure. Namely, up-

per and lower bounds are placed on all states and inputs and these variables are linked through

linear equations representing the dynamics. This results in a polytope that is a hypercube

intersected with a cut-plane. It was found in early work that the projection of a rotated hyper-

cube (zonotope) could be computed extremely quickly using ESP, as the inequalities defining

ridges could be identified without any LPs and adjacent equality sets could be computed in

a single pivot. While this result did not extend to axis-aligned hypercubes intersected with a

subspace, the potential is there to exploit the known structure to an advantage.

Redundancy Elimination

Despite all complexity results that show that the primary cost depends on the adjacency oracle

for both ESP and mpLP calculations, every example presented in this thesis has demonstrated

that for problems that are small enough to be calculable, redundancy elimination takes the

majority of the time. The primal-dual algorithm of Section 9.4.3 was an effort to combat

this problem, but its application is limited to small problems. Redundancy elimination is a

fundamental problem in computational geometry and any improvement in this area would

have a significant impact on many fields.

196

Bibliography

[AF92] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enu-

meration of arrangements and polyhedra. Discrete and Computational Geometry,

8:295–313, 1992.

[AF96] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Math,

65:21–46, 1996.

[AGG03] H. Alt, M. Glisse, and X. Goaoc. On the worst-case complexity of the silhouette

of a polytope. In Proceedings of the 15th Canadian Conference on Computational

Geometry (CCCG’03), pages 51–55, 2003.

[AMN+98] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal

algorithm for approximate nearest neighbor searching fixed dimensions. Journal

of the ACM, 45(6):891–923, 1998.

[Arm93] P. Armand. Bounds on the number of vertices of perturbed polyhedra. Annals

of Operations Research, (47):249–269, 1993.

[Aur87] F. Aurenhammer. A criterion for the affine equivalence of cell complexes in R
d

and convex polyhedra in R
d+1. Discrete and Computational Geometry, 2:49–64,

1987.

[Aur91] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data

structure. ACM Computing Surveys, 23(3), September 1991.

[Avi00] D. Avis. lrs: A revised implementation of the reverse search vertex enumeration

algorithm. In G. Kalai and G. Ziegler, editors, Polytopes - Combinatorics and

Computation, DMV Seminar Band 29, pages 177–198. Birkhauser-Verlag, 2000.

197

BIBLIOGRAPHY

[AZ96] N. Amenta and G.M. Ziegler. Shadows and slices of polytopes. In Proceedings

of the twelfth annual symposium on computational geometry, pages 10–19. ACM

Press, 1996.

[Bal61] M.L. Balinski. On the graph structure of convex polyhedra in n-space. Pacific

Journal of Math, 95(11):431–434, 1961.

[Bal98] E. Balas. Projection with a minimum system of inequalities. Computational

Optimization and Applications, 10:189–193, 1998.

[Bao02] M. Baotić. An efficient algorithm for multi-parametric quadratic programming.

Technical report, ETH Zürich, Institut für Automatik, Physikstrasse 3, CH-8092,

Switzerland, 2002.

[BBBM01] F. Borrelli, M. Baot́ıc, A. Bemporad, and M. Morari. Efficient on-line computa-

tion of constrained optimal control. In Proceedings of the 40th IEEE Conference

on Decision and Control, pages 1187–1192, Orlando, Florida, December 2001.

[BBM00] A. Bemporad, F. Borrelli, and M. Morari. Explicit solution of constrained

1\∞−norm model predictive control. In Proceedings of the 39th IEEE Conference

on Decision and Control, 2000.

[BBM03] F. Borrelli, A. Bemporad, and M. Morari. Geometric algorithm for multipara-

metric linear programming. Journal of Optimization Theory and Applicaitons,

118(3):515–540, September 2003.

[BDH96] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for

convex hulls. ACM Trans. Math. Softw., 22(4):469–483, 1996.

[Bem03] A. Bemporad. Hybrid Toolbox - User’s Guide, December 2003. http://www.dii.

unisi.it/hybrid/toolbox/.

[BFM98a] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and

facet enumeration. Discrete and Computational Geometry, 20:333–357, 1998.

[BFM98b] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and

facet enumeration. Discrete and Computational Geometry, 20:333–357, 1998.

[Bla99] F. Blanchini. Set invariance in control - a survey. Automatica, 35(11):1747–1768,

November 1999.

198

BIBLIOGRAPHY

[BMDP02] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear

quadratic regulator for constrained systems. Automatica, 38(1):3–20, January

2002.

[BO98] E. Balas and M. Oosten. On the dimension of projected polyhedra. Discrete

Applied Mathematics, 87:1–9, 1998.

[Bor02] F. Borrelli. Discrete Time Constrained Optimal Control. PhD thesis, Swiss Fed-

eral Institute of Technology (ETH), October 2002.

[Bor03] F. Borrelli. Constrained Optimal Control Of Linear And Hybrid Systems, volume

290 of Lecture Notes in Control and Information Sciences. Springer, 2003.

[BP83] E. Balas and W.R. Pulleybank. The perfectly matchable subgraph polytope of a

bipartite graph. Networks, (13):495–516, 1983.

[Bre99] D. Bremner. Incremental convex hull algorithms are not output sensitive. Discrete

and Computational Geometry, 21(1):57–68, January 1999.

[BT97] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, 1997.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[Cam85] S.A. Cameron. A study of the clash detection problem in robotics. In IEEE Proc.

Int. Conf. Robotics Automation, volume 1, page 488, Saint Louis, March 1985.

[Cha52] A. Charnes. Optimality and degeneracy in linear programming. Econometrica,

(20):160–170, 1952.

[CL97] T. Christof and A. Loebel. porta. Version 1.3.1, March 1997.

[Cla] K.L. Clarkson. hull 1.0. AT&T Bell Labs.

[Cla94] K.L. Clarkson. More output-sensitive geometric algorithms. In 35th Annual IEEE

Symposium on the Foundations of Computer Science, pages 695–702, 1994.

[CLL00] V. Chandru, C. Lassez, and J-L. Lassez. Qualitative theorem proving in linear

constraints. Working Paper 00-04, Systems Engg., UPenn, March 2000.

[Dan48] G.B. Dantzig. Programming in a linear structure. In Comptroller, Washington

D.C., 1948. USAF.

199

BIBLIOGRAPHY

[Dan51] G.B. Dantzig. Maximization of a Linear Function of Variables Subject to Lin-

ear Inequalities, in Activity Analysis of Production and Allocation, chapter XXI.

Wiley, New York, 1951.

[DOW55] G.B. Dantzig, A. Orden, and P. Wolfe. The generalized simplex method for

minimizing a linear form under linear inequality restraints. Pacific Journal of

Mathematics, (5):183–195, 1955.

[EM90] H. Edelsbrunner and E.P. Mücke. Simulation of simplicity: A technique to cope

with degenerate cases in geometric algorithms. ACM Transactions on Graphics,

9(1):66–104, 1990.

[FLL00] K. Fukuda, T.M. Liebling, and C. Lütolf. Extended convex hull. In 12th Canadian

Conference on Computational Geometry, pages 57–64, July 2000.

[FLN97] K. Fukuda, H.J. Lüthi, and M. Namkiki. The existence of a short sequence of

admissible pivots to an optimal basis in lp and lcp. International Transactions

of Operational Research, 4(4):273–384, 1997.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza,

R. Euler, and I. Manoussakis, editors, Combinatorics and Computer Science,

volume 1120 of Lecture Notes in Computer Science, pages 91–111. Springer-

Verlag, 1996. Postscript file available from ftp://ftp.ifor.math.ethz.ch/pub/

fukuda/reports/ddrev960315.ps.gz.

[Fuk99] K. Fukuda. Vertex enumeration for polyhedra algorithms and open problems.

Seminar given at the University of Illinois in the course Advanced Topics in

Analysis of Algorithms, 1999.

[Fuk00] K. Fukuda. Frequently asked questions in polyhedral computation. http://www.

ifor.math.ethz.ch/fukuda/polyfaq/polyfaq.html, October 2000.

[Gal95] T. Gal. Postoptimal Analyses, Parametric Programming and Related Topics.

Walter de Gruyter, 2nd edition, 1995.

[GBTM04] P. Grieder, F. Borrelli, F. Torrisi, and M. Morari. Computation of the constrained

infinite time linear quadratic regulator. Automatica, 40:701–708, 2004.

[Gri04] P. Grieder. Efficient Computation of Feedback Controllers for Constrainted Sys-

tems. PhD thesis, Swiss Federal Institute of Technology (ETH), Zürich, 2004.

200

BIBLIOGRAPHY

[Grü00] Branko Grünbaum. Convex Polytopes. Springer-Verlag, second edition, 2000.

[JMSY93] J. Jaffar, M.J. Maher, P.J. Stuckey, and R.H.C. Yap. Projecting clp(R) con-

straints. New Generation Computing, 11(3,4):449–469, 1993.

[Ker00] E.C. Kerrigan. Robust Constraint Satisfaction: Invariant Sets and Predictive

Control. PhD thesis, University of Cambridge, 2000.

[KGBM04] M. Kvasnica, P. Grieder, M. Baotić, and M. Morari. Multi Parametric Toolbox

(MPT). In Hybrid Systems: Computation and Control, volume 2993 of Lecture

Notes in Computer Science, pages 448–462, Philadelphia, Pennsylvania, USA,

March 2004. Springer Verlag. http://control.ee.ethz.ch/~mpt.

[MA98] D.M. Mount and S. Arya. Ann: Library for approximate nearest neighbour

searching, June 1998. http://www.cs.umd.edu/~mount/ANN/.

[MS] W. Murray and M. Saunders. Systems Optimization Laboratory (SOL).

http://www.sbsi-sol-optimize.com.

[Mur83] K.G. Murty. Linear Programming. John Wiley & Sons, 1983.

[MY88] K.G. Murty and F.T. Yu. Linear Complementarity, Linear and Nonlinear Pro-

gramming. Helderman-Verlag, 1988. http://ioe.engin.umich.edu/people/

fac/books/murty/linear_complementarit%y_webbook/.

[OSS95] T. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumerating extreme points

in higher dimensions. In E.W. Mayer and C. Puech, editors, STACS 95: 12th

Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes

in Computer Science 900, pages 562–570. Springer-Verlag, 1995.

[Pad99] M. Padberg. Linear Optimization and Extensions. Algorithms and Combina-

torics. Springer Verlag, 1999.

[Pfa02] B. Pfaff. An Introduction to Binary Search Trees and Balanced Trees. Free

Software Foundation, Inc, http://benpfaff.org/, 2002.

[PSS+95] J. Ponce, S. Sullivan, A. Sudsang, J. Boissonnat, and J. Merlet. On computing

four-finger equilibrium and force-closure grasps of polyhedral objects. Interna-

tional Journal of Robotics Research, February 1995.

[RGJ04] S. Raković, P. Grieder, and C.N. Jones. Computation of Voronoi Diagrams and

Delaunay Triangulation via Parametric Linear Programming. Technical Report

201

BIBLIOGRAPHY

AUT04-03, Automatic Control Lab, ETHZ, Switzerland, 2004. http://control.

ethz.ch/.

[RKKM05] S. Raković, E.C. Kerrigan, K. Kouramas, and D. Mayne. Invariant approxi-

mations of the minimal robust positively invariant set. IEEE Transactions on

Automatic Control, 2005.

[Roc70] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Ryb99] K. Rybnikov. Stresses and liftings of cell complexes. Discrete and Computational

Geometry, 21(4):481 – 517, June 1999.

[SH95] V. Saraswat and P.V. Hentenryck, editors. Principles and Practice of Constraint

Programming, chapter 14, pages 245–268. The MIT Press, 1995.

[SKJ+04] J. Spjøtvold, E.C. Kerrigan, C.N. Jones, T.A. Johansen, and P. Tøndel. Con-

jectures on an algorithm for convex parametric quadratic programs. Technical

Report CUED/F-INFENG/TR.496, Department of Engineering, University of

Cambridge, Cambridge, UK, October 2004.

[SLG+04] R. Suard, J. Löfberg, P. Grieder, M. Kvasnica, and M. Morari. Efficient compu-

tation of controller partitions in multi-parametric programming. In IEEE Con-

ference on Decision and Control, Bahamas, 2004.

[STJ05a] J. Spjøtvold, P. Tøndel, and T.A. Johansen. A method for obtaining continuous

solutions to multiparametric linear programs. In accepted IFAC, 2005.

[STJ05b] J. Spjøtvold, P. Tøndel, and T.A. Johansen. Unique polyhedral representations to

continuous selections for convex multiparametric quadratic programs. In accepted

ACC, 2005.

[Sys] SysBrain Ltd., Southampton, UK. User’s Manual. Reference of the Geometric

Bounding Toolbox, March. Version 7.3.

[TJB01] P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm for multi-parametric

quadratic programming and explicit MPC solutions. In Proceedings of the 40th

IEEE Conference on Decision and Control, Orlando, Florida, USA, 2001.

[TJB03] P. Tøndel, T.A. Johansen, and A. Bemporad. Evaluation of piecewise affine

control via binary search tree. Automatica, 39:743–749, 2003.

202

BIBLIOGRAPHY

[TU03] C.E. Testuri and S. Uryasev. Handbook of Numerical Methods in Finance.

Birkhauser, 2003.

[TZ91] T. Terlaky and S. Zhang. A survey on pivot rules for linear programming. Tech-

nical Report 91-99, Delft University of Technology, 1991. ISSN 0922-5641.

[Č63] S.N. Černikov. Contraction of finite systems of linear inequalities (in russian).

Doklady Akademiia Nauk SSSR, 152(5):1075–1078, 1963. (English translation in

Societ Mathematics Doklady, Vol. 4, No. 5 (1963), pp.1520-1524).

[VSLS00] R. Vidal, S. Schaffert, J. Lygeros, and S. Sastry. Hybrid Systems: Computation

and Control, volume 1790 of Lecture Notes in Computer Science, chapter Con-

trolled Invariance of Discrete Time Systems, pages 437–450. Springer Verlag,

2000.

[Web94] R. Webster. Convexity. Oxford University Press, 1994.

[Zie95] G.M. Ziegler. Lectures on Polytopes. Springer-Verlag, New York, 1995.

203

Author Index

Alt, H. 2

Amenta, N. 11, 195

Armand, P. 88

Arya, S. 5, 6, 178, 179, 184–186, 188–190

Aurenhammer, F. 182, 184

Avis, D. 10, 11, 60, 67, 125–127

Balas, E. 10, 19, 23

Balinski, M.L. 29, 81

Baot́ıc, M. 177, 178, 182, 187–190

Barber, C.B. 11, 60, 67, 125, 139, 141, 144

Bemporad, A. 74, 75, 140, 143, 146, 147,

177, 178, 182, 187–190, 195

Bertsimas, D. 79, 81, 82

Blanchini, F. 9

Boissonnat, J. 1, 10, 11

Borrelli, F. 54, 74, 75, 140, 143, 146, 177,

178, 182, 187–190

Boyd, S. 154, 157

Bremner, D. 11, 60, 67, 120, 125

Cameron, S.A. 2

Chandru, V. 2

Charnes, A. 86

Christof, T. 11, 60, 67

Clarkson, K.L. 11, 60, 111

Dantzig, G.B. 83, 86

Dobkin, D.P. 11, 60, 67, 125, 139, 141, 144

Dua, V. 177

Edelsbrunner, H. 11

Fukuda, K. 10, 11, 16, 33, 59, 60, 67, 93,

111, 120, 125–127

Gal, T. 73, 76

Glisse, M. 2

Goaoc., X. 2

Grieder, P. 6, 75, 111, 140, 141, 143, 144,

178, 179, 188, 195

Grünbaum, Branko 100–102

Huhdanpaa, H. 11, 60, 67, 125, 139, 141, 144

Jaffar, J. 10

Johansen, T.A. 73, 77, 100, 177, 178, 187,

188, 195

Jones, C.N. 73, 100, 178, 195

Kerrigan, E.C. 2, 9, 66, 73, 100, 195

Kouramas, K. 66

Kvasnica, M. 6, 75, 111, 140, 143, 179, 188

Lassez, C. 2

Lassez, J-L. 2

Liebling, T.M. 33

Loebel, A. 11, 60, 67

Löfberg, J. 111

205

INDEX

Lüthi, H.J. 93

Lütolf, C. 33

Lygeros, J. 9

Maher, M.J. 10

Marzetta, A. 11, 60, 67, 120

Mayne, D. 66

Merlet, J. 1, 10, 11

Morari, M. 6, 74, 75, 111, 140, 143, 146,

177–179, 182, 187–190

Mount, D.M. 5, 6, 178, 179, 184–186,

188–190

Mücke, E.P. 11

Murray, W. 60, 138

Murty, K.G. 39, 79, 83, 86, 88, 90, 97, 195

Namkiki, M. 93

Netanyahu, N.S. 5, 178, 184–186, 189, 190

Oosten, M. 19, 23

Orden, A. 86

Ottmann, T. 111

Padberg, M. 161

Pfaff, B. 114

Pistikopoulos, E.N. 177

Ponce, J. 1, 10, 11

Prodon, A. 10, 11, 59, 60, 67

Pulleybank, W.R. 10

Raković, S. 66, 178

Rockafellar, R.T. 14, 15, 28

Rybnikov, K. 184

Sastry, S. 9

Saunders, M. 60, 138

Schaffert, S. 9

Schuierer, S. 111

Silverman, R. 5, 178, 184–186, 189, 190

Soundaralakshmi, S. 111

Spjøtvold, J. 73, 77, 100, 195

Stuckey, P.J. 10

Suard, R. 111

Sudsang, A. 1, 10, 11

Sullivan, S. 1, 10, 11

Terlaky, T. 83

Testuri, C.E. 2

Tøndel, P. 73, 77, 100, 177, 178, 187, 188,

195

Torrisi, F. 75

Tsitsiklis, J.N. 79, 81, 82

Uryasev, S. 2

Vandenberghe, L. 154, 157

Černikov, S.N. 10, 159

Vidal, R. 9

Webster, R. 23

Wolfe, P. 86

Wu, A.Y. 5, 178, 184–186, 189, 190

Yap, R.H.C. 10

Yu, F.T. 195

Zhang, S. 83

Ziegler, G.M. 11, 17, 18, 22, 23, 29, 91, 121,

159, 161, 169, 195

206

Index

additively weighted nearest neighbour, 182

affine hull, 14

calculation of, 54

affine set, 14

parallel, 14

translate, 14

affinely independent, 15

approximate nearest neighbour, 185

basis, 80

boundary complex, 101

complex, 100

convex, 15

convex combination, 15

convex hull, 15

critical region, 95

cycling, 84

degree of degeneracy, 87

diamond property, 18

duality, 97

edge, 17

epigraph, 100

equality set, 19

ESP

adjacency oracle, 29, 31–39

degeneracy, 51

degenerate, 51

Equality Set Projection, 27–50

ray-shooting oracle, 29

ridge oracle, 29, 39–46

shooting oracle, 46–48

face, 16

adjacent, 18

face lattice, 17

facet, 17

facet traversal method (FTM), 75

feasible direction, 81

fundamental duality theorem, 97

hyperplane, 14

irredundant, 16

lex-feasible, 87

lex-pivot, 90

lexico-positive, 87

lexicographic perturbation, 86

mpLP

critical region, 101

enumeration

basic, 114

facet-based, 117

primal-dual, 120

reverse search, 125

207

INDEX

neighbourhood problem, 109

adjacency oracle, 113

facet oracle, 111

solution complex, 100, 101

multi-parametric linear program, 73

point location problem, 181

pointed cone, 160

polyhedron, 15

power diagram, 182

projection, 22

projection lemma, 159

redundancy elimination, 111

redundant, 16

region compliment method (RCM), 75

ridge, 17

simplex method, 83

degeneracy, 83

dual, 90

primal, 84

leaving variable, 81

ratio test, 81

unique optimal basis, 92

subspace, 13

dimension, 13

vector space, 13

vertex, 17

adjacent, 80

voronoi diagram, 182

208

