
Model predictive control of uncertain

constrained linear systems; LMI-based

methods∗

Roy S. Smith†

June 6th, 2006

Abstract

The time-varying state-feedback control of a constrained linear
state-space system is addressed via Linear Matrix Inequality (LMI)
based optimization methods. The constraints are specified as ellip-
soidal or hyperplane constraints on the inputs and states, and the
approach presented allows these to be specified without any conserva-
tiveness. The control action is specified in terms of both feedback and
feedforward components. Uncertainty in the system is modeled by
perturbations in a linear fractional transform (LFT) representation,
and also by bounded disturbances. As a single-step design procedure
the approach gives a time-varying controller capable of steering the
state to a specified reference while satisfying the constraints. The
method can be applied in a model predictive strategy to allow for
higher performance as the state, and control input, move away from
the constraint boundaries.
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1 Introduction

The control of many systems is dominated by constraints and Model Predic-
tive Control (MPC) is a popular approach for the design of controllers re-
specting the constraints. MPC was initially developed in the process control
industries where the control problems typically have slow dynamics giving
ample time for the intersample solution of complex optimization problems.
As computational speeds increase MPC is finding application in domains
typically requiring higher bandwidth control, but also dominated by con-
straints. Aerospace and automotive applications fall within this class of
problems. MPC has been studied in academic and industrial contexts for
quite some time; see for example the survey papers of Rawlings [1], Mayne
et al. [2], Chen and Allgöwer [3], Morari and Lee [4], and the detailed book
of Maciejowski [5].

The closed-loop stability of MPC control systems was initially addressed
by Rawlings [6] and since that time most approaches use one of several strate-
gies to guarantee the closed-loop stability. These approaches can be loosely
categorized as: using an infinite prediction horizon; including terminal cost
functions or terminal constraints; and augmenting of the system with a sta-
bilizing feedback controller. The approaches taken here can be viewed as
specifying a terminal constraint set, together with a stabilizing controller
over that set.

The consideration of uncertain systems is more recent. Early work, based
on FIR models, appears in [7, 8, 9]. Robust linear control is a well developed
field but does not directly address constrained systems. The model class
typically used in robust control theory—model sets generated from a linear
model and a bounded set of perturbations—has been considered in an MPC
context in the work of Kothare et al. [10]. The work in [10] uses a conserva-
tive bounding approach for guaranteeing constraint satisfaction. The work
presented in this work instead limits the class of stabilizing controllers but,
it turn, gives exact constraint satisfaction. This is done by calculating the
constrained control of a prespecified ellipsoidal region. Aspects of our ap-
proach are similar to that of Kouvaritakis et al. [11], which uses feedforward
control and finds an invariant ellipse bounding the state. The feedforward
component of the control is manipulated to ensure constraint satisfaction.
Our work instead uses a combination of feedback and feedforward control,
designed simultaneously, to ensure constraint satisfaction and closed-loop
stability.

Our approach uses quadratic functionals to specify regions of state-space
over which the single-step controller must operate. This is a more general
specification that that used in [10, 11], and means that the regions need not
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be centered upon the origin. This allows us to take advantage of asymmetric
constraint regions.

One potential disadvantage of our approach should be noted. The opti-
mization results in a series of ellipses, each bounding the state at the future
time-steps, and converging to an ellipse at the reference state. This is not
optimal as it does not account for the effect of feedback in manipulating the
size and shape of the ellipse. However, in an MPC framework, subsequent
optimization recalculations do take advantage of the shrinking of an invariant
ellipse under feedback.

A preliminary version of some of the work described here was presented
in [12].

1.1 Notation

We will use a discrete-time formulation and the time index is denoted by
a subscript k. Scalar or matrix variables that are time dependent will also
be subscripted with k. The optimization results are presented as LMI con-
straints of the form S = ST ≤ 0. Because the LMI is always symmetric the
lower diagonal elements will usually not be explicitly indicated. For example,

S =

[

S11 S12

• S22

]

,

where • is taken to represent S21 = ST
12.

2 Problem description

The objective is to control the state of a linear system from an initial state,
x0, to a desired reference, which for notational simplicity we take to be the
origin. A discrete-time framework is used and we consider that the state is
measured at each time-step.

Uncertainty in the model is incorporated via a linear fractional perturba-
tion structure, described by the equations,

xk+1 = Axk + B uk + Bd dk + Bp pk, (1)

qk = Cq xk + Dqu uk + Dqd dk, (2)

pk = (∆q)k. (3)

The operator, ∆, is block diagonal,

∆ =







∆1 0
. . .

0 ∆m






,
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and is assumed to be norm bounded by one. This bound is without loss of
generality as any scalings can be included in Cq and Bp. One interpretation
is that at each time-step, k, the perturbation blocks, ∆l can be viewed as
an unknown, time-varying, matrix with σ̄ (∆l) ≤ 1. Denote the projection
onto the components associated with ∆l by Πl. The norm bound on each ∆l

implies that,

(Πlpk)
T (Πlpk) ≤ (Πlqk)

T (Πlqk) , for all l = 1, . . . ,m, and for all k. (4)

The above will be used to create equivalent matrix conditions to specify the
set of perturbations.

This formulation can also be viewed as replacing the state-space matrices,
(A,B), by (A,B) ∈ (A,B), where

(A,B) = { (A+Bp∆Cq, B +Bp∆Dqu) | σ̄ (∆l) ≤ 1 } . (5)

This perturbation framework for modeling uncertainty is widely used in ro-
bust control theory. Refer to Doyle and Packard [13, 14], or the Matlab

µ-Tools manual [15] for more details. Linear matrix inequality methods using
this framework are discussed in detail in Boyd et al. [16], and also considered
by Kothare et al. [10] in their work of robust LMI techniques for MPC. We
will largely follow the notation in [10] for ease of comparison.

The state equation, (1), also contains a disturbance input, dk, which is
modeled as coming from a bounded set, dk ∈ D. To begin we will consider
this to be specified by an l2 norm bound on dk at each time, k.

D =
{

dk

∣

∣ dT
k dk ≤ 1

}

. (6)

Again the unity bound is without loss of generality as scalings can be included
in Bd. It is also possible to include more general ellipsoidal or hyperplane
bounds on dk.

Our approach is based on maintaining the state within a series of invariant
ellipses. We define an ellipse, with size and shape defined by P > 0, and with
center zk,

Pk :=
{

x
∣

∣ (x− zk)
TP−1(x− zk)

}

. (7)

It is assumed that the initial state is within a known ellipse, x0 ∈ P0.
The robust MPC approach will be presented in three parts. We begin,

in Section 3, by considering only the nominal case: ∆ = 0 and dk = 0. We
first determine a series of feedback and feedforward controls that will take
an initial state, x0, lying within a prespecified ellipse, and move the state
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to the origin.1 This consists of two parts; an N step procedure to move the
prespecified ellipse to the origin, and a terminal controller to give asymptotic
convergence. The feedforward component of this work is similar to that of
Löfberg [17], which relies on MPC recalculation to provide feedback.

If at a subsequent time-step, there is an opportunity to recalculate the
future controls, this can be used to implement a model predictive approach.
Details are given in Section 4, and applying an MPC method allows the con-
trol to become more aggressive as the state approaches the origin. Section 5
extends the methods to handle the complete robust control model given in
Equations (1) to (3). Including a feedback component in the future controls
will allow us to handle the effects of perturbations and future disturbances.

3 Nominal ellipsoidal control

In the nominal case the dynamics are given by,

xk+1 = Axk + B uk. (8)

Given a measured initial state, x0, we choose an ellipse, P0, defined by,

P0 :=
{

x
∣

∣ (x−z0)
TP−1(x−z0) ≤ 1, P = P T > 0

}

,

such that x0 ∈ P0. The ellipse is centered at z0, and may be chosen in a
manner that reflects our uncertainty in the measurement of x0. Alternatively,
we may partition the state-space into a number of ellipses in advance of
attempting the control design. In either case we consider the matrix P to be
fixed. Assume also that P0 does not violate any of the state constraints to
be specified later.

We consider this problem in the context of a standard quadratic control
cost. Given Q = QT > 0 and R = RT > 0, the control cost is defined as,

V (x, u) :=
∞
∑

k=0

xT
kQxk + uT

kRuk. (9)

The control problem is made more interesting by the inclusion of input
and state constraints. Consider Mu hyperplane constraints on the input of
the form,

gT
j uk ≤ hj, j = 1, . . . ,Mu, and k = 0, 1, . . . (10)

1All of the results presented here are easily extended to any reference state, xref, for
which there exists an equilibrium input, vref, satisfying, xref = Axref + Bvref.
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In an analogous manner, we have Mx constraints on the state,

rT
i xk ≤ si, i = 1, . . . ,Mx, and k = 0, 1, . . . (11)

Output constraints can be transformed into state constraints by post-multiplying
by an output “C” matrix.

The formal specification of the nominal problem is as follows.

Problem 1 (Nominal design problem) Consider a system described by
(8). Given an initial ellipse, P0, and an initial state, x0 ∈ P0, find a sequence
of controls, uk, k = 0, 1, . . . , such that for all x0 ∈ P0, the resulting state and
input trajectories satisfy the following:

a) lim
k−→∞

xk = 0;

b) xk satisfies the state constraints (11), for all k > 0;

c) uk satisfies the input constraints (10); for all k ≥ 0.

and minimizes the cost, V (x, u).

A combination of N feedback and feedforward controls will be used to
move the center of the initial ellipse from z0 to the origin. This is then
followed by a transition controller for one time-step and then a stabilizing
terminal controller to give convergence to the origin with bounded cost. The
transitional controller is used to tighten the bound of the performance cost.
It can be viewed as optional and in the MPC context detailed in Section 4,
it may provide little additional benefit.

The control signal is specified in the form,

uk =











Kk (xk − zk) + vk, k = 0, . . . , N − 1

KN xk k = N

K∞ xk k > N.

If the feedforward components, vk, are chosen to satisfy,

zk+1 = Azk + B vk,

with zN = 0, this has the effect of generating a series of ellipses,

Pk :=
{

x
∣

∣ (x−zk)
TP−1(x−zk) ≤ 1

}

,

with the Nth ellipse,

PN :=
{

x
∣

∣ xTP−1x ≤ 1
}

,
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ri x > si

ri x < s i

State constraint

zN = 0

Figure 1: Nominal ellipsoidal control. The feedforward component moves
the ellipse centers, zk, to the origin. The feedback component maintains the
state within the corresponding ellipse and gives convergence to the origin in
the final ellipse.

centered at the origin. It is a simple matter to show that this then gives,

xk+1 − zk+1 = (A+BKk)(xk − zk). (12)

The purpose of the feedback term, Kk, is to maintain the next state, xk+1

within the shifted ellipse, Pk+1. For k ≥ N , the ellipse is centered at the ori-
gin and the terminal controller gives the required convergence. This control
strategy is illustrated in Figure 1.

In this description we give a time-varying control gain, Kk. This is not
essential and the calculations are significantly simplified by simply choosing
a fixed value of K. In an MPC context this may not be conservative as K is
recalculated at each time-step in any case.

We leave open the problem of choosing a value for N . In the uncon-
strained case, observability implies that the choice of N equal to the state
dimension is sufficient. In the presence of constraints the required value for
N is problem dependent.

In the following the design formulation is presented via three theorems.
Theorem 2 gives sufficient LMI conditions on the design variables to move
the state from ellipse to ellipse with bounded cost and constraint satisfaction.
It applies for time-steps k = 0, . . . , N − 1. The control design for k = N is
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addressed in Theorem 10, and Theorem 11 gives the analogous result for the
terminal control design (k > N).

Theorem 2 (Nominal ellipse-to-ellipse) Given a nominal system described
by (8) and an ellipse size and shape specified by P = P T > 0. If there exist
auxiliary variables, 0 ≤ ξk ≤ 1, βk ≥ 0, ηk,j ≥ 0, j = 1, . . . ,Mu, ζk,i ≥ 0,
i = 1, . . . ,Mx, and design variables, Kk, vk, zk+1, and γk such that the linear
constraint,

a)

zk+1 = Azk + B vk; (13)

and the 2 +Mu +Mx linear matrix inequality constraints,

b)

Sk :=

[

−ξkP
−1 (A+BKk)

T

• −P

]

≤ 0; (14)

c)

Tk :=













−βkP
−1 0 (A+BKk)

T KT
k

• −γk + βk zT
k+1

vT
k

• • −Q−1 0

• • • −R−1













≤ 0; (15)

d)

Uk,j :=

[

−ηk,jP
−1 gT

j Kk

• ηk,j + 2gT
j vk − 2hj

]

≤ 0; j = 1, . . . ,Mu; (16)

e)

Xk,i :=

[

−ζk,iP
−1 (A+BKk)

T ri

• ζk,i + 2rT
i zk+1 − 2si

]

≤ 0; i = 1, . . . ,Mx; (17)

are satisfied, then given

xk ∈ Pk =
{

x
∣

∣ (x−zk)
TP−1(x−zk) ≤ 1

}

,

the control, uk = Kk(xk − zk) + vk, maps xk to xk+1 such that Kk, uk and
xk+1 satisfy the following conditions:
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f) A+BKk is Hurwitz;

g) xk+1 ∈ Pk+1 =
{

x
∣

∣ (x−zk+1)
TP−1(x−zk+1) ≤ 1

}

;

h) xT
k+1

Qxk+1 + uT
kRuk ≤ γk.

i) uk satisfies the Mu input constraints, (10); and

j) xk+1 satisfies the Mx state constraints, (11);

The proof of this theorem will be given as a series of lemmas, and these
lemmas in turn rely on two well known results—the S-procedure and Schur
complements—which we present here for completeness. These are behind
many LMI results and much more detail can be found in Boyd et al. [16].

Lemma 3 (S-procedure) Given m + 1 quadratic functions of a variable
x ∈ Rn,

Fi(x) = xTAix+ 2bTi x+ ci, i = 0, . . . ,m,

where Ai = AT
i . If there exists, τi ≥ 0, such that,

for all x, F0(x) −
m
∑

i=1

τiFi(x) ≤ 0,

then F0(x) ≤ 0 for all x such that Fi(x) ≤ 0, i = 1, . . . ,m.
If m = 1 and there exists an x̂ such that F1(x̂) < 0, then this condition

is necessary and sufficient.

The Schur complement formula below is stated for non-strict inequalities.
A proof of this generalization is given by Boyd et al. [16, p. 28].

Lemma 4 (Schur complement) Given Q = QT and R = RT , the condi-
tion,

[

Q S

ST R

]

≤ 0,

is equivalent to

R ≤ 0, Q− SR†ST ≤ 0, S(I −RR†) = 0,

where R† denotes the Moore-Penrose inverse of R.
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The following lemma is useful in forming LMIs from quadratic form con-
straints. A proof of a similar lemma can be found in [18].

Lemma 5 Given a quadratic functional defined by F (x) = xTXx+2yTx+z.
The quadratic constraint F (x) ≤ 0 is satisfied for all x if and only if the

matrix

[

X y

yT z

]

is negative semidefinite.

We now proceed with the lemmas addressing the LMI conditions of the
theorem.

Lemma 6 (Nominal stability) If there exists 0 ≤ ξk ≤ 1 such that Sk ≤ 0
(Equation 14) then A+BKk is Hurwitz, and xk+1 ∈ Pk+1, where zk+1 is given
by (13).

Proof of Lemma 6: Applying the Schur complement (Lemma 4) to the
condition (14) shows (14) to be equivalent to,

−ξkP
−1 + (A+BKk)

TP−1(A+BKk) ≤ 0,

As 0 < ξk ≤ 1 and P > 0, this implies that,

(A+BKk)
TP−1(A+BKk) − P−1 < 0,

The matrix P−1 > 0 can therefore be seen as a solution to the discrete
Lyapunov equation proving the stability of A+BKk.

The condition that xk ∈ Pk is equivalent to the quadratic functional
condition,

(xk − zk)
TP−1(xk − zk) − 1 ≤ 0.

Under the action of the control, xk+1 − zk+1 = (A + BKk)(xk − zk), and so
xk+1 ∈ Pk+1 is equivalent to,

(xk − zk)
T (A+BKk)

TP−1(A+BKk)(xk − zk) − 1 ≤ 0.

By the S-procedure, the requirement that xk ∈ Pk implies that xk+1 ∈ Pk+1

is equivalent to the existence of ξk ≥ 0 such that,

(xk+1−zk+1)
TP−1(xk+1−zk+1)−1−ξk

(

(xk − zk)
TP−1(xk − zk) − 1

)

≤ 0.

Expressing this as a quadratic functional, and applying Lemma 5 gives, as
an equivalent LMI condition,

[

(A+BKk)
TP−1(A+BKk) − ξkP

−1 0
0 ξk − 1

]

≤ 0, and ξk > 0.
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Note that this condition can be decoupled to give, 0 ≤ ξk ≤ 1, and,

(A+BKk)
TP−1(A+BKk) − ξkP

−1 ≤ 0.

Application of the Schur complement shows that this is equivalent to Sk ≤ 0.

Lemma 7 (Nominal ellipse-to-ellipse cost) For all xk ∈ Pk, the con-
trol, uk = Kk (xk − zk) + vk, with vk satisfying (13), gives xk+1 such that,

xT
k+1Qxk+1 + uT

kRuk ≤ γk, (18)

if and only if Tk ≤ 0 (Equation 15).

Proof of Lemma 7: As uk = Kk(xk − zk)+ vk and xk+1 = (A+BKk)(xk −
zk) + zk+1, the condition expressed in (18) is equivalent the quadratic func-
tional constraint,

((A+BKk)(xk − zk) + zk+1)
T
Q ((A+BKk)(xk − zk) + zk+1)

+ (Kk(xk − zk) + vk)
T
R (Kk(xk − zk) + vk) − γk ≤ 0. (19)

Requiring (19) to hold for all xk ∈ Pk, is equivalent—via the S-procedure—to
the existence of βk ≥ 0, such that,

((A+BKk)(xk − zk) + zk+1)
T
Q ((A+BKk)(xk − zk) + zk+1)

+ (Kk(xk − zk) + vk)
T
R (Kk(xk − zk) + vk) − γk

− (xk − zk)βkP
−1(xk − zk) + βk ≤ 0, (20)

for all xk. This can be expressed quadratic functional constraint in (xk −zk),

F (xk − zk) :=

(xk − zk)
T
(

(A+BKk)
TQ(A+BKk) +KT

k RKk − βkP
−1
)

+ 2
(

zT
k+1Q+ vT

k RKk

)

(xk − zk)

+ zT
k+1Qzk+1 + vT

k Rvk − γk + βk ≤ 0. (21)

Requiring F (xk −zk) ≤ 0 for all xk is equivalent to requiring F (x) ≤ 0 for all
x. Using Lemma 5 to formulate an LMI and applying the Schur complement
twice shows that this is equivalent to Tk ≤ 0.
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Lemma 8 (Nominal state constraint) For all xk ∈ Pk, the control uk =
Kk (xk − zk) + vk generates xk+1 satisfying the state constraint,

rT
i xk+1 ≤ si, (22)

if and only if there exists ζk,i ≥ 0 such that Xk,i ≤ 0 (Equation 15).

Proof of Lemma 8: The hyperplane constraint, (22) can be expressed in
terms of xk as,

2rT
i (A+BKk)(xk − zk) + 2rT

i zk+1 − 2si ≤ 0.

Using the S-procedure, this is satisfied for all xk ∈ Pk if and only if there
exists ζk,i ≥ 0 such that,

2rT
i (A+BKk)(xk − zk) + 2rT

i zk+1 − 2si

− ζk,i

(

(xk − zk)
TP−1(xk − zk) − 1

)

≤ 0.

This is a quadratic functional constraint of the form F (xk − zk) ≤ 0, and is
satisfied for all xk if and only if F (x) ≤ 0 is satisfied for all x. By Lemma 5
this is then equivalent to Xk,i ≤ 0.

Lemma 9 (Input constraint) For all xk ∈ Pk, the control uk = Kk (xk −
zk) + vk satisfies the input constraint,

gT
j uk ≤ hj, (23)

if and only if there exists ηk,j ≥ 0 such that Uk,j ≤ 0 (Equation 16).

Proof of Lemma 9: Substituting uk = Kk(xk − zk) + vk into (23) and
following the line of argument given in the proof of Lemma 8 gives the desired
result.

Proof of Theorem 2: This is simply a matter of identifying the appropriate
lemmas for each part. Lemma 6 shows that the constraints a) and b) imply
f) and g). Lemma 7 shows that the constraints a) and c) imply h). Lemma 9
shows that constraint d), when applied to each of the Mu input constraints,
implies i). Lemma 8 shows that the constraint, e), when applied to each of
the Mx state constraints, implies j).

Analogous results, for both the input and state constraints, hold if the
hyperplane constraints, (22) and (23), are replaced by ellipsoidal constraints.
The corresponding LMI condition is easily derived using the arguments pre-
sented in Lemma 8. It is interesting to note that Lemmas 8 and 9 are both
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necessary and sufficient. Moreover, for multiple constraints, multiple LMI
conditions are applied and all constraints are satisfied if and only if all LMIs
are satisfied. This exact constraint specification differs significantly from
most other LMI-based approaches in model predictive control.

Theorem 2 gives a means of calculating a controller,Kk, and a feedforward
input, vk that will take all xk in the ellipse Pk and move it to the ellipse Pk+1,
centered at zk+1. The input signal and all xk+1 ∈ Pk+1 satisfy hyperplane or
ellipsoidal bounds. We will apply this approach N times to achieve an ellipse
centered at the origin (i.e. zN = 0). At k = N , xk ∈ PN and a transition
controller, bounding only the input cost is applied for a single time-step. The
details of this are specified in Theorem 10 below. The motivation for this
step is to give a closer bound on the quadratic cost function (Equation 9).

Theorem 10 (Nominal transitional ellipse) Given a nominal system de-
scribed by (8) and an ellipse size and shape specified by P = P T > 0. Assume
also that the quadratic input cost weight satisfies R ≥ 0. If there exists aux-
iliary variables, ζN,j, j = 1, . . . ,Mu, βN ≥ 0, ξN ≥ 0, and design variables,
KN and γN > 0 such that:

a)

SN :=

[

−ξNP
−1 (A+BKN)T

• −P

]

≤ 0; (24)

b)

TN :=

[

−βNP KT
N

• −R−1

]

≤ 0; (25)

c)

βN ≤ γN ; (26)

d)

UN,j :=

[

−ζN,jP
−1 gT

j KN

• ζN,j − 2hj

]

≤ 0, j = 1, . . . ,Mu, (27)

then for all xk ∈ PN the control, uN = KN xN , gives

e) A+BKN is Hurwitz and xN+1 ∈ PN ;
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f) uT
NRuN ≤ γN ;

g) uN , satisfies the Mu input constraints, (10).

Proof of Theorem 10: If SN ≤ 0 (Equation 24) Lemma 6 implies that
A+ BKN is Hurwitz, and, as zN = 0, xN+1 ∈ PN , implying part e). For all
xN ∈ PN , the cost bound uT

NRuN ≤ γN is equivalent—via the S-procedure—
to the condition that,

xT
NK

T
NRKNxN − γN − xT

NβNPxN + βN ≤ 0,

for all xN . Application of the Schur complement procedure shows the equiv-
alence between conditions b) and c) and the bound in part f). Lemma 9,
with zN = 0 and vN = 0, shows that part d) is equivalent to part g).

For k ≥ N , the ellipse bounding the state is centered at the origin. For
k > N , a terminal controller is applied to give asymptotic convergence to the
origin with bounded quadratic cost. Theorem 11 below gives the conditions
required for the calculation of the terminal controller.

Theorem 11 (Nominal terminal ellipse) Given a nominal system de-
scribed by (8) and an ellipse size and shape specified by P = P T > 0. Assume
also that the quadratic cost weightings satisfy Q > 0 and R ≥ 0. If there ex-
ists auxiliary variables, η∞,j, j = 1, . . . ,Mu, and design variables, K∞ and
γ∞ > 0 such that:

a)

T∞ :=













−P−1 (A+BK∞)T I KT
∞

• −P−1 0 0

• • −γ∞Q
−1 0

• • • −γ∞R
−1













≤ 0; (28)

b)

U∞,j :=

[

−η∞,jP
−1 gT

j K∞

• η∞,j − 2hj

]

≤ 0, j = 1, . . . ,Mu, (29)

then for all xk ∈ P∞ the control, uk = K∞xk, gives state and input trajecto-
ries satisfying the following conditions.

c) A+BK∞ is Hurwitz and xk ∈ P∞, for all k;
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d) lim
k−→∞

xk = 0;

e)
∞
∑

l=k

xT
l Qxl + uT

l Rul ≤ γ∞;

f) uk, satisfies the Mu input constraints, (10) for all k.

Proof of Theorem 11: Applying the Schur complement lemma twice shows
that T∞ ≤ 0 is equivalent to,

(A+BK∞)TP−1(A+BK∞) − P−1 ≤
−1

γ∞

(

Q+KT
∞RK∞

)

. (30)

As γ∞ > 0, Q > 0, and R ≥ 0,

(A+BK∞)TP−1(A+BK∞) − P−1 < 0. (31)

The matrix P−1 > 0 can be interpreted as the solution to a discrete Lyapunov
equation proving that A + BK∞ is Hurwitz. It also follows that the ellipse
xT

kP
−1xk ≤ 1 is invariant under xk+1 = (A + BK∞)xk proving part c). The

strict inequality in (31) shows that d) also holds.
To show part e), define a positive definite function, V (x) := xTP−1x.

Now,

V (xl+1) − V (xl) = xT
l

(

(A+BK∞)TP−1(A+BK∞) − P−1
)

xl,

which implies, by (30),

V (xl+1) − V (xl) ≤
−1

γ∞
xT

l

(

Q+KT
∞RK∞

)

xl.

Sum both sides of this equation from l = k to l −→ ∞ to get,

lim
l−→∞

V (xl) − V (k) ≤
−1

γ∞

∞
∑

l=k

xT
l

(

Q+KT
∞RK∞

)

xl.

By part d) above, and the positive definiteness of the function V (x),

lim
l−→∞

V (xl) = 0,

giving,

1

γ∞

∞
∑

l=k

xT
l

(

Q+KT
∞RK∞

)

xl ≤ V (xk).
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As, for all xk ∈ P∞, V (xk) ≤ 1, this gives, part e) as required. Applying
Lemma 9 to c), with η∞,j replacing ηk,j, K∞ replacing Kk, and vk = 0,
implies that g) is satisfied.

The above results naturally suggest an optimization-based algorithm for
solving Problem 1.

Problem 12 [Nominal Ellipse Optimization] Solve the following LMI opti-
mization problem for the design variables: Kk, vk,

γ∗ = xT
0Qx0 + min

γk,γ∞

(

N
∑

k=0

γk + γ∞

)

,

subject to the LMI constraints:

Sk ≤ 0, k = 0, . . . , N − 1, (Eqn. 14)

Tk ≤ 0 k = 0, . . . , N − 1, (Eqn. 15)

Uk,j ≤ 0, k = 0, . . . , N − 1, j = 1, . . . ,Mu, (Eqn. 16)

Xk,i ≤ 0, k = 0, . . . , N − 1, i = 1, . . . ,Mx, (Eqn. 17)

SN ≤ 0, (Eqn. 24)

TN ≤ 0 (Eqn. 25)

βN ≤ γN (Eqn. 26)

UN,j ≤ 0, j = 1, . . . ,Mu, (Eqn. 27)

T∞ ≤ 0, (Eqn. 28)

U∞,j ≤ 0, j = 1, . . . ,Mu, (Eqn. 29)

and the linear constraint:










z1

z2

...
zN











=











A

A2

...
AN











z0 +











B 0
AB B
...

. . .

AN−1B · · · B





















v0

v1

...
vN−1











, (32)

with zN = 0.
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The control strategy involves using feedforward control to shift the initial
ellipse, P0, to the origin. To make this a well posed problem we assume
that the terminal shifted ellipse, P∞, does not violate the state constraints.
Stated formally,

Assumption A1 For all x ∈ P∞, x satisfies the state constraints, rT
i x ≤ si,

i = 1, . . . ,Mx.

This assumption may be relaxed in an MPC context (see Section 4). It is
practically useful, although not strictly necessary, to also assume that the
initial ellipse, P0, also satisfies the state constraints.

Theorem 13 Under assumption A1, if, for a given N , there exists a solution
to Problem 12, then, for all x0 ∈ P0, the control,

uk =











Kk(xk − zk) + vk, k = 0, . . . , N − 1

KN xk k = N

K∞ xk k > N

solves Problem 1 with cost V (x, u) ≤ γ∗.

Proof of Theorem 13: A solution to Problem 12 gives design variables
satisfying the conditions of Theorems 2, 10 and 11. The linear constraint
in (32) ensures that vk is chosen such that the after the control actions,
k = 0 to k = N − 1, the ellipse center, zN , is at the origin. As each of
the feedback controllers, Kk, KN , and K∞ is Hurwitz, lim xk−→∞ = 0 giving
condition a). Input state constraint satisfaction (condition c) in Problem 1)
is given by input constraint satisfaction in each of Theorems 2, 10 and 11.
State constraint satisfaction (condition d) in Problem 1) is ensured for k =
0, . . . , N −1, by state constraint satisfaction in Theorem 2. For k ≥ N , state
constraint satisfaction is given by Assumption A1.

To show the cost bound express γ∗ as,

γ∗ = xT
0Qx0 +

N−1
∑

k=0

(

xT
k+1Qxk+1 + uT

kRuk

)

+ uT
NRuN +

∞
∑

k=N+1

(

xT
kQxk + uT

kRuk

)

. (33)

By Theorem 2, the first summation is bounded by
∑N−1

k=0
γk. Theorem 10

gives the bound on the uN term as γN , and Theorem 11 bounds the remaining
infinite summation by γ∞.
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The algorithm presented in Problem 12 gives a time-varying feedback
gain. It is a simple matter to pose this problem for a fixed feedback gain,
K, and doing so reduces the number of LMI constraints from 3+2N +(N +
2)Mu +NMx to 3 +N + (N + 1)Mu +NMx (i.e. N +Mu fewer constraints).
Note also that imposing time-varying input or state constraints can be done
with no additional computational cost. The additional degrees of freedom
in the time-varying design problem may make it feasible in cases where the
time-invariant one is not. An alternative method of calculating time-varying
controllers is discussed an the end of the following section.

4 Model predictive control

The approach described in Section 3 has a potentially significant conservative
aspect: the computation assumes that the ellipse, specified by P > 0, is of
the same size and shape at each future time instance. This assumption is
required to give a convex optimization problem. In reality, the feedback gain,
Kk, will shrink and reshape the ellipse. In an MPC context, the optimization
problem is resolved at each time-step and the knowledge that xk+1 is in a
smaller ellipse may be exploited.

Two further aspects require description in an MPC context: the size and
shape of the new ellipse, and a guarantee that feasibility of the optimization
will be maintained from time-step to time-step. To adequately describe these
aspects a “conditional” notation is introduced. The ellipse,

Pk|n :=
{

xk

∣

∣

∣
(xk−zk|n)TP−1

k|n(xk−zk|n) ≤ 1
}

,

is calculated at time n, and contains the state at time k, where k ≥ n. A
similar notation applies to the control input;

uk|n = Kk|n

(

xk − zk|n

)

+ vk|n, (34)

is the actuation calculated at time-step n, to be applied at time-step k.
The MPC approach is described in terms of a time index n as follows:

1. Initialize n = 0, and choose P0|0 such that x0 ∈ P0|0 and PN |0 satisfies
the state constraints.

2. Solve Problem 12 to calculate,

uk|n =











Kk|n(xk − zk|n) + vk|n, k = n, . . . , n+N − 1

KN |n xk k = n+N

K∞|n xk k > n+N

18



z

P
n n

z

zn+1 n    = A + Bvn nn nz

z

P
n+2 n

P
n+1  n

n+1 n

n n

n+2 n

P
n+1  n+1

P
n+2  n+1

z n+2 n+1

z n+1 n+1

zn+2 n+1    = A + Bvn+1 n+1z n+1 n+1

zn+2 n    = A + Bvn+1 nz n+1 n

Figure 2: The evolution of bounding ellipses in the MPC approach. At
each time-step a recalculation may shrink the size of the current and future
bounding ellipses.

3. Apply the actuation, un|n, to the plant.

4. n = n+ 1:

5. Given Pn−1|n−1 from the previous time-step, calculate a new ellipse Pn|n

containing xn (see Theorem 14 below).

6. Go to step 2.

Step 5. in the above exploits the knowledge of the previous feedback
step to calculate a smaller ellipse containing the new state. This concept is
illustrated in Figure 2. The method of calculation is given in Theorem 14
below.

Theorem 14 If (A + BKn|n)−1 exists then for all xn ∈ Pn|n, the control in
(34) gives xn+1 ∈ Pn+1|n+1 where,

Pn+1|n+1 = (A+BKn|n)TPn|n(A+Bn|n). (35)

Proof of Theorem 14: This follows immediately from (12).
Note that the recalculation changes Pn+1|n+1; it does not change the ellipse

center and so zn+1|n+1 = zn+1|n. However, in general, zk|k 6= zk|n for k > n+1
as future ellipse centers are recalculated in Step 2 of the algorithm above.
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The invertibility assumption in Theorem 14 is required to maintain the
assumption that all ellipses are described by a matrix P > 0. If this is not
satisfied then the next ellipse is a thin set in the state-space. This may
happen if the control is “deadbeat” in one or more state directions. To avoid
numerical problems in such cases one can expand the collapsed directions
slightly by instead using,

Pn+1|n+1 = (A+BKn|n)TPn|n(A+Bn|n) + ǫU⊥U
T
⊥ ,

where U⊥ is a basis for the null space of A+BKn|n.
An important aspect of the application of optimization based methods is

the feasibility of subsequent optimization steps. Regions of the state-space
can be tested for feasibility off-line, but some assurance that a problem that
is feasible at the initial time remains feasible is required. Theorem 15 below
addresses this point.

Theorem 15 If at time, n = 0, the ellipsoidal control design optimization
(Problem 12) is feasible, then it is feasible for all n > 0.

Proof of Theorem 15: This follows simply from the fact that Pn+1|n+1 ⊂
Pn|n, the solution at time-step n satisfies all of the constraints of the design
at time-step n+ 1.

Note that the MPC concept described above may be applied off-line in an
iterative fashion to optimize the calculation of a time-varying control. Doing
this takes advantage of the knowledge the the feedback reduces the size of
the subsequent ellipses and may lead to a lower quadratic cost.

5 Robust ellipsoidal control

In the robust case we must contend with the fact that both the perturbations,
∆, and the disturbances, dk, influence the transition to the next state, xk+1.
The formal specification of the robust problem is as follows.

Problem 16 (Robust design problem) Consider the system defined by
Equations (1), (2) and 3, with perturbation constraints, (4), and a bounded
disturbance, dk ∈ D (6). Given an initial ellipse, P0, and an initial state,
x0 ∈ P0, find a sequence of controls, uk, k = 0, 1, . . . , such that for all
x0 ∈ P0, the resulting state and input trajectories satisfy the following:

a) xk ∈ P∞ for all k ≥ N .

b) xk satisfies the state constraints (11), for all k > 0;
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c) uk satisfies the input constraints (10); for all k ≥ 0.

Furthermore, if dk = 0,

d) lim
k−→∞

xk = 0,

and the cost function, V (x, u), is minimized.

The problem is again broken up into three parts: an N step implemen-
tation keeping xk ∈ Pk and moving the ellipses to the origin at step k = N ;
a transitional step bounding the actuation cost at k = N ; and a terminal
controller maintaining xk ∈ Pk for all k > N with bounded cost. To do
this, we replace each of the LMI constraints in Problem 12 with an LMI
constraint guaranteeing the same objective in the presence of perturbations,
∆, and disturbances, dk.

Because of the effects of perturbations and the disturbances, it is not
necessarily true that the feedforward component has the effect,

zk+1 = Azk + B vk. (36)

However, we can still use the nominal case in (36) as a definition of the
next ellipse center, zk+1. The effects of the perturbations and disturbances
will then be reflected in the feedback controller Kk required to maintain the
invariant ellipsoid.

The following lemma is a direct replacement for Lemma 6.

Lemma 17 (Robust stability) Given, a perturbed state-space system de-
scribed by (1), (2), (3), the block diagonal perturbation constraints (4), and
a bounded disturbance, dk ∈ D (Equation 6). If there exists, 0 ≤ ξk ≤ 1,
νk ≥ 0, and Λk = diag(λ1,kI, · · · , λm,kI) > 0, such that,

SR
k :=
















−ξkP
−1 0 0 0 (A+BKk)

T (Cq +DquKk)
T

• −νkI 0 0 BT
d DT

qd

• • −Λ−1

k 0 Λ−1

k BT
p 0

• • • ξk + νk − 1 0 (Cqzk +Dquvk)
T

• • • • −P 0
• • • • • −Λ−1

k

















≤ 0, (37)

then A+BKk is Hurwitz, and the control,

uk = Kk(xk − zk) + vk, (38)

results in xk+1 ∈ Pk+1, where zk+1 is defined by (36).

21



The notation SR
k is used to distinguish the robust LMI condition from the

equivalent nominal LMI condition, Sk.
Proof of Lemma 17: Pre- and post-multiplying SR

k by,
[

I 0 0 0 I 0
]

and its transpose implies that,
[

−ξkP
−1 (A+BKk)

T

(A+BK) −P

]

≤ 0.

A Schur complement operation shows that this is equivalent to,

(A+BKk)
TP−1(A+BKk) − ξkP

−1 ≤ 0,

and as 0 ≤ ξk ≤ 1, P−1 is the solution to a Lyapunov equation proving that
A+BKk is Hurwitz.

Note that under the operation of the control in (38),

xk+1 − zk+1 = (A+BKk)(xk − zk) +Bddk +Bppk.

the requirement that xk+1 ∈ Pk+1 is therefore equivalent to the quadratic
functional,

F0 =




(xk − zk)
dk

pk





T 



(A+BKk)
T

BT
d

BT
p



P−1
[

(A+BKk) Bd Bp

]





(xk − zk)
dk

pk





− 1 ≤ 0.

Each of the conditions implied by xk ∈ Pk, dk ∈ D, and the perturbation con-
straints can also be expressed as quadratic functionals of the vector variable,
[

(xk − zk)
T dT

k pT
k

]T
. The requirement that xk ∈ Pk is equivalent to,

F1 =





(xk − zk)
dk

pk





T 



I

0
0



P−1
[

I 0 0
]





(xk − zk)
dk

pk



− 1 ≤ 0.

The requirement that dk ∈ D is equivalent to,

F2 =





(xk − zk)
dk

pk





T 



0
I

0



 I
[

0 I 0
]





(xk − zk)
dk

pk



− 1 ≤ 0.

Under the action of the control in (38),

qk = (Cq +DquKk)(xk − zk) +Dqddk + Cqzk +Dquvk.
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Each of the m perturbation constraints,

(Πlpk)
T (Πlpk) ≤ (Πlqk)

T (Πlqk) , for all l = 1, . . . ,m,

is therefore equivalent to,

F3l =





(xk − zk)
dk

pk





T 







0
0
I



ΠT
l Πl

[

0 0 I
]

−





(Cq +DquKk)
T

DT
qd

0



ΠT
l Πl

[

(Cq +DquKk) Dqd 0
]









(xk − zk)
dk

pk





− 2(Cqzk +Dquvk)
T ΠT

l Πl

[

(Cq +DquKk) Dqd 0
]





(xk − zk)
dk

pk





− (Cqzk +Dquvk)
T ΠT

l Πl(Cqzk +Dquvk) ≤ 0.

Now, via the S-procedure, the requirements of the lemma are met if there
exists, ξk ≥ 0, νk ≥ 0 and λl,k > 0 for l = 1, . . . ,m, such that,

F0 − ξkF1 − νkF2 −
m
∑

l=1

λl,kF3l ≤ 0. (39)

To simplify the last summation, define,

Λk :=
m
∑

l=1

λl,kΠ
T
l Πl = diag(λ1,kI, · · · , λm,kI).

Note that we impose the slightly stricter requirement that λl,k > 0 in order
to be able to express the final LMI in terms of Λ−1

k . The quadratic functional,

(39) is a function of
[

(xk − zk)
T dT

k pT
k

]T
which is required to hold for all

xk, dk and pk. This is equivalent to requiring it to hold as a function of
an arbitrary argument, and by Lemma 5, we can express this as a negative
semidefinite matrix constraint. Applying the Schur complement operation
twice gives the matrix constraint,

















−ξkP
−1 0 0 0 (A+BKk)

T (Cq +DquKk)
T

• −νkI 0 0 BT
d DT

qd

• • −Λk 0 BT
p 0

• • • ξk + νk − 1 0 (Cqzk +Dquvk)
T

• • • • −P 0
• • • • • −Λ−1

k

















≤ 0,
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Pre- and post-multiplying the above by, diag(I, I,Λ−1

k , I, I, I) shows it to be
equivalent to SR

k ≤ 0.
Unlike the nominal ellipse-to-ellipse constraints, Sk, the robust constraints,

SR
k each depend on the ellipse centers, zk, and feedforward controls, vk. This

is due to the fact that the perturbations in the system dynamics are re-
flected in the mapping of the ellipse centers under the feedforward control.
One consequence of this is that there is no reduction in complexity in posing
a time-invariant control design problem over a time-varying control design
problem.

The following lemma is a robust replacement for Lemma 7 and bounds
the cost in moving from ellipse xk ∈ Pk to ellipse xk+1 ∈ Pk+1.

Lemma 18 (Robust ellipse-to-ellipse cost) Given, a perturbed state-space
system described by (1), (2), (3), the block diagonal perturbation constraints
(4), and a bounded disturbance, dk ∈ D (Equation 6). If there exists,
0 ≤ βk ≤ 1, αk ≥ 0, and Ψk = diag(ψ1,kI, · · · , ψm,kI) > 0, such that,

TR
k :=





















−βkP 0 0 0 (A+BKk)
T KT

k (Cq +DquKk)
T

• −αkI 0 0 BT
d 0 DT

qd

• • −Ψ−1

k 0 Ψ−1

k BT
p 0 0

• • • βk + αk − γk zT
k+1

vT
k (Dquvk + Cqzk)

T

• • • • −Q−1 0 0
• • • • • −R−1 0
• • • • • • −Ψ−1

k





















≤ 0, (40)

then for all xk ∈ Pk, the control, uk = Kk (xk − zk) + vk, gives xk+1 such
that,

xT
k+1Qxk+1 + uT

kRuk ≤ γk, (41)
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Proof of Lemma 18: The cost bound in (41) is equivalent to the quadratic
functional,

F0 :=




(xk − zk)
dk

pk





T 







(A+BKk)
T

BT
d

BT
p



Q
[

(A+BKk) Bd Bp

]

+





KT
k

0
0



R
[

Kk 0 0
]









(xk − zk)
dk

pk





+ 2
(

zT
k+1Q

[

(A+BKk) Bd Bp

]

+ vT
k R
[

Kk 0 0
])





(xk − zk)
dk

pk





+ zT
k+1Qzk+1 + vT

k Rv
T
k − γk ≤ 0.

The remainder of the proof now follows the line of argument given in the
proof of Lemma 17 by defining the auxiliary variables and applying the S-
procedure to give,

F0 − βkF1 − αkF2 −

m
∑

l=1

ψl,kF3l ≤ 0.

The input constraints, (10), are imposed on the current control and there-
fore specified as a function of xk ∈ Pk. A robust version of the input con-
straint LMI, Uk,j (see Equation 16), is not required; the input constraint
requirement given in Lemma 9 is also relevant to the robust case. However,
the state constraints are imposed on xk+1 and therefore require the robust
version of Lemma 8 given below.

Lemma 19 (Robust state constraint) If there exists ζk,i ≥ 0, ρk,i ≥ 0
and Θk,i = diag(θ1,k,iI, · · · , θm,k,iI) > 0, such that,

XR
k,i :=












−ζk,iP
−1 0 0 (A+BKk)

T ri (Cq +DquKk)
T

• −ρk,iI 0 BT
d ri DT

qd

• • −Θ−1

k,i Θ−1

k,iB
T
p ri 0

• • • ζk,i + ρk,i + 2rT
i zk+1 − 2si (Cq +Dquvk)

T

• • • • −Θ−1

k,i













≤ 0, (42)
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for all i = 1, . . . ,Mx, then, for all xk ∈ Pk, the control, uk = Kk (xk−zk)+vk,
generates xk+1 satisfying the state constraint,

rT
i xk+1 ≤ si, for all i = 1, . . . ,Mx. (43)

Proof of Lemma 19: Each state constraint in (43) is equivalent to the
linear functional,

F0 = 2rT
i

[

(A+BKk) Bd Bp

]





xk − zk

dk

pk



+ 2rT
i zk+1 − 2si ≤ 0.

The argument again proceeds as in Lemma 17 by defining the auxiliary vari-
ables and applying the S-procedure to give,

F0 − ζk,iF1 − ρk,iF2 −

m
∑

l=1

θl,k,iF3l ≤ 0.

The transitional case (k = N) is again simplified by the conditions, zN = 0
and vN = 0. The following replaces Theorem 10 in the robust case. It is
presented without proof as it follows from straightforward simplification of
Lemma 17. Because the transitional cost does not depend on xk+1 there is
no need to consider perturbations or disturbances in developing the LMIs
bounding the cost.

Theorem 20 (Robust transitional ellipse) Given, a perturbed state-space
system described by (1), (2), (3), the block diagonal perturbation constraints
(4), and a bounded disturbance, dk ∈ D (Equation 6), and an ellipse size and
shape specified by P = P T > 0. Assume also that the quadratic input cost
weight satisfies R ≥ 0.

If there exists auxiliary variables, ξN ≥ 0, νN ≥ 0,
ΛN = diag(λ1,NI, · · · , λm,NI) > 0, βN ≥ 0, ζN,j ≥ 0, j = 1, . . . ,Mu, and
design variables, KN and γN > 0 such that:

a)

SR
N :=












−ξNP
−1 0 0 (A+BKN)T (Cq +DquKN)T

• −νNI 0 BT
d DT

qd

• • −Λ−1

N Λ−1

N BT
p 0

• • • −P 0
• • • • −Λ−1

N













≤ 0; (44)
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b)

ξN + νN ≤ 1; (45)

c)

TN :=

[

−βNP KT
N

• −R−1

]

≤ 0; (46)

d)

βN ≤ γN ; (47)

e)

UN,j :=

[

−ζN,jP
−1 gT

j KN

• ζN,j − 2hj

]

≤ 0, j = 1, . . . ,Mu, (48)

then for all xk ∈ PN the control, uN = KN xN , gives

e) A+BKN is Hurwitz and xN+1 ∈ PN ;

f) uT
NRuN ≤ γN ;

g) uN satisfies the Mu input constraints, (10).

We now consider the robust terminal control case. The ellipse centers
and feedforward control inputs are both zero for k ≥ N . We will again use
assumption A1 to ensure that all x ∈ Pk, k > N satisfy the state constraints.

The presence of a disturbance input, dk, complicates the choice of per-
formance function. As dk 6= 0, it is no longer true that limk−→∞ xk = 0.
Furthermore any quadratic cost function, such as V (x, u) in Equation 9,
will no longer be monotonically decreasing. The previous robust stability
condition—that for all xk ∈ P∞, and all dk ∈ D, and all perturbations,
σ̄ (∆l) ≤ 1, the next state satisfies xk+1 ∈ P∞—can be enforced and does
give a degree of performance.

In the following we present an LMI which can be used to minimize the cost
function, V (x, u) in (9), in the case where dk = 0 for k > N , but the system
is still subject to dynamic perturbations, ∆. Note that if this particular LMI
is not employed then it would suffice to use K∞ = KN to satisfy the robust
stability and input constraints.
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Theorem 21 (Robust terminal ellipse) Given, a perturbed state-space sys-
tem described by (1), (2), (3), the block diagonal perturbation constraints
(4), and a bounded disturbance, dk ∈ D (Equation 6), and an ellipse size
and shape specified by P = P T > 0. Assume also that the quadratic cost
weightings satisfy Q > 0 and R ≥ 0.

If there exists auxiliary variables, ξ∞ ≥ 0, ν∞ ≥ 0,
Λ∞ = diag(λ1,∞I, · · · , λm,∞I) > 0, Ψ∞ = diag(ψ1,∞I, · · · , ψm,∞I) > 0,
η∞,j ≥ 0, j = 1, . . . ,Mu, and design variables, K∞ and γ∞ > 0 such that:

a)

SR
∞ :=












−ξ∞P
−1 0 0 (A+BK∞)T (Cq +DquK∞)T

• −ν∞I 0 BT
d DT

qd

• • −Λ−1
∞ Λ−1

∞ BT
p 0

• • • −P 0
• • • • −Λ−1

∞













≤ 0; (49)

b)

ξ∞ + ν∞ − 1 ≤ 0; (50)

c)

TR
∞ :=
















−P−1 0 (A+BK∞)T (Cq +DquK∞)T I KT
∞

• −Ψ−1
∞ Ψ−1

∞ BT
p 0 0 0

• • −P 0 0 0
• • • −Ψ−1

∞ 0 0
• • • • −γ∞Q

−1 0
• • • • • −γ∞R

−1

















≤ 0; (51)

d)

U∞,j :=

[

−η∞,jP
−1 gT

j K∞

• η∞,j − 2hj

]

≤ 0, j = 1, . . . ,Mu, (52)
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then for all xk ∈ P∞ the control, uk = K∞xk, gives state and input trajecto-
ries satisfying the following conditions.

e) A+BK∞ is Hurwitz and xk ∈ P∞, for all k;

f) uk, satisfies the Mu input constraints, (10) for all k.

Furthermore, if dk = 0 for k > N , then

g) lim
k−→∞

xk = 0;

h)
∞
∑

l=k

xT
l Qxl + uT

l Rul ≤ γ∞;

Proof of Theorem 21: The robust stability LMI, SR
∞, (condition a)) is the

same as that in the k = N case and as before implies condition e). The input
constraint LMI, U∞,j, (condition d)) is the same as the prior time-steps and
Lemma 9 shows that condition d) implies condition f).

Now consider the dk = 0 case. The Hurwitz property given by SR
∞ implies

that xk decays to zero (condition g)). It remains to show that TR
∞ (condition

c)) gives the required cost bound. We again define a positive definite func-
tion, V (x) := xTP−1x and use an argument similar to that in the proof of
Theorem 11. To do this we need to develop the LMI constraint that implies,

V (xk+1) − V (xk) + xT
k

1

γ∞

(

Q+KT
∞RK∞

)

xk ≤ 0. (53)

In the dk = 0 case we have, in the closed-loop,

xk+1 = (A+BK∞)xk +Bppk,

which allows us to express (53) as the quadratic functional,

F0 =
[

xk

pk

]T ([

(A+BK∞)
BT

p

]

P−1
[

(A+BK∞) BT
p

]

−

[

P−1 0
0 0

]

+

[

γ−1
∞ (Q+KT

∞RK∞) 0
0 0

])[

xk

pk

]

. (54)

Under the assumption dk = 0, each of the m perturbation constraints,

(Πlpk)
T (Πlpk) ≤ (Πlqk)

T (Πlqk) , for all l = 1, . . . ,m,
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is equivalent to,

F3l =

[

xk

pk

]T ([

0
I

]

ΠT
l Πl

[

0 I
]

−

[

(Cq +DquK∞)T

0

]

ΠT
l Πl

[

(Cq +DquK∞) 0
]

) [

xk

pk

]

.

Applying the S-procedure gives the following sufficient condition for (54) for
all perturbations. The condition is,

F0 −

m
∑

l=1

ψl,∞F3l ≤ 0, (55)

and a series of Schur complement operations shows that this is equivalent to
TR
∞. From this point the argument in bounding the cost is equivalent to that

given in Theorem 11. Therefore condition c) implies condition h).
We can now put each of these ellipse optimization steps together to get

a solution to the robust problem.

Problem 22 [Robust Ellipse Optimization] Solve the following LMI opti-
mization problem for the design variables: Kk, vk,

γ∗ = xT
0Qx0 + min

γk,γ∞

(

N
∑

k=0

γk + γ∞

)

,
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subject to the LMI constraints:

SR
k ≤ 0, k = 0, . . . , N − 1, (Eqn. 37)

TR
k ≤ 0 k = 0, . . . , N − 1, (Eqn. 40)

Uk,j ≤ 0, k = 0, . . . , N − 1, j = 1, . . . ,Mu, (Eqn. 16)

XR
k,i ≤ 0, k = 0, . . . , N − 1, i = 1, . . . ,Mx, (Eqn. 42)

SR
N ≤ 0, (Eqn. 44)

ξN + νN ≤ 1 (Eqn. 45)

TN ≤ 0 (Eqn. 46)

βN ≤ γN (Eqn. 47)

UN,j ≤ 0, j = 1, . . . ,Mu, (Eqn. 48)

SR
∞ ≤ 0, (Eqn. 49)

ξ∞ + ν∞ ≤ 1, (Eqn. 50)

TR
∞ ≤ 0, (Eqn. 51)

U∞,j ≤ 0, j = 1, . . . ,Mu, (Eqn. 52)

and the linear constraint:










z1

z2

...
zN











=











A

A2

...
AN











z0 +











B 0
AB B
...

. . .

AN−1B · · · B





















v0

v1

...
vN−1











,

with zN = 0.

6 Computational issues

The formulation of this problem in terms of LMI constraints shows that the
resulting optimization is convex. General purpose LMI solvers can be com-
putationally demanding, and application of this approach to MPC control
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will likely require the development of specialized code. The potential for ef-
ficient code can be seen by noting that most of the LMIs presented differ in
only several entries enabling efficient low rank gradient updating.

The initial ellipse defined by Pk is not a variable in the LMI optimization,
which raises the question of how it should be chosen. One approach is to de-
sign a state feedback controller for the unconstrained problem. This feedback
controller specifies an invariant ellipse which can then be scaled so that the
resulting feedback gains, and the states contained within the ellipse, satisfy
the input and state constraints. We should also note that in the presence
of the disturbances, dk ∈ D, there is a minimum size to Pk. This can be
expressed by the requirement that there exists 0 ≤ α ≤ 1, such that,

[

−αI BT
d

Bd −P

]

≤ 0. (56)

If (56) is not satisfied then there exists a disturbance, dk ∈ D that would
move the state from the origin—where the control would be uk = 0—to
outside of Pk in a single step.

There are two features of this approach which are attractive. The first is
that the solution of the LMI problem generates a series of local controllers,
Kk, and a sequence of feedforward inputs, v(k), that is a feasible solution for
every subsequent problem. This solution can be used as an initialization for
the optimization at subsequent time-steps. It can also be used as a contin-
gency solution if a subsequent optimization does not converge in sufficient
time.

The second important feature arises from the convexity of the problem.
At each subsequent time-step, the objective of the optimization need only
be to improve the performance of the design by recalculating Kk and v(k).
It is not necessary to calculate the optimal Kk and v(k) in order to derive
benefit from the MPC approach. This means that the early termination
of an optimization method will yield some performance improvement in the
control design problem.

7 Conclusions

The solution of the constrained control problem presented here is base upon
two underlying ideas. The first is that once an invariant ellipse has been
specified, all of the desired control properties (ellipsoidal invariance, stabil-
ity, constraint satisfaction, and performance cost) can be expressed linearly
with respect to the feedback and feedforward control gains. This immedi-
ately leads to convex optimization problems for the calculation of the control
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action. This also means the input and state constraints are applied directly
to the design variables, Kk and vk, allowing multiple constraints without
introducing conservativeness into the design.

The second key point is that the feedback component of the design allows
us to provide rigorous robustness results with respect to both exogenous
disturbances and dynamic uncertainty. Many MPC approaches calculate a
feedforward control and use the MPC recalculation as the feedback step. This
makes it harder to give specific robust performance guarantees. Employing
both feedback and feedforward enables us to guarantee ellipsoidal invariance
and constraint satisfaction in the presence of uncertainty.

At each time step there is no requirement that same plant state-space
matrices (A, B) be used in the calculation. This allows us to extend the ap-
proach to a variety of nonlinear constrained control problems by considering
different linearizations in different regions of the state-space. The optimiza-
tion problem is now complicated by the fact that the appropriate linearization
will depend on zk. The inclusions of perturbations may alleviate this prob-
lem somewhat as long as we can “cover” the nonlinear linear behaviors of the
system by the perturbed set of linear behaviors. The extensions to nonlinear
and time-varying systems are an area of future work.
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[17] J. Löfberg, “A convex relaxation of a minimax MPC controller,” Tech.
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