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Abstract: This paper is concerned with the control of constrained linear discrete-time
systems subject to bounded state disturbances and arbitrary convex state and input con-
straints. The paper employs a class of finite horizon feedback control policies parameter-
ized as affine functions of the system state, calculation of which has recently been shown
to be tractable via a convex reparameterization. When minimizing the expected value
of a finite horizon quadratic cost, we show that the value function in this finite horizon
control problem is convex. When policies of this type are used in the synthesis of a robust
receding horizon controller, we provide sufficient conditions under which the closed-loop
system is input-to-state stable (ISS).
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1. INTRODUCTION

This paper proposes a class of robust receding horizon
control (RHC) laws for constrained linear discrete-
time systems subject to bounded state disturbances.
We consider a class of affine feedback control poli-
cies parameterized as affine functions of the system
state, calculation of which has been shown to be
tractable via a convex reparameterization (Goulart et
al., 2006; Ben-Tal et al., 2006). When minimizing the
expected value of a quadratic function of the states
and inputs over a finite horizon, we show that the re-
sulting value function is convex and provide sufficient
conditions, when used in the design of a RHC law, to
establish that the closed-loop system is input-to-state
stable (ISS). This work is an extension of the results
in (Goulart et al., 2006) to the case where the state
and input constraints are general convex sets, and is
an abbreviated version of results appearing in (Goulart
and Kerrigan, 2005), where proofs of the supporting
results may be found.

In a recent publication (Goulart et al., 2006), the
authors demonstrate that the non-convex affine state
feedback optimization problem can be reparameter-
ized as an equivalent but convex problem by recasting
the optimization problem in terms of affine distur-
bance or error feedback laws (see also (Ben-Tal et
al., 2006) for the output feedback case). They further
demonstrate that, when implemented in a receding
horizon fashion with a particular cost function, the
closed-loop system is input-to-state stable (ISS) when
the constraints and disturbance sets are polytopic.

Such a control parameterization is attractive because
it serves as a computationally tractable alternative
(though with a potentially reduced region of attrac-
tion) to those control schemes based on optimization
over arbitrary control laws such as (Scokaert and
Mayne, 1998). In general, such methods require, at
each time step, the solution of an infinite dimensional
optimization problem when the disturbance set is non-
polytopic, or at best one whose dimension grows expo-



nentially with horizon length in the polytopic case. In
contrast the method proposed here requires the solu-
tion of a convex problem whose dimension grows only
quadratically with the horizon length, while poten-
tially providing a much larger region of attraction than
schemes that calculate a sequence of perturbations
to a fixed pre-stabilizing control law, such as (Chisci
et al., 2001; Lee and Kouvaritakis, 1999; Mayne et
al., 2005).

In this paper we present a generalization of the results
in (Goulart et al., 2006), using the expected value of
a quadratic cost. We demonstrate that, for systems
with arbitrary convex state and input constraints and
disturbance sets, the resulting value function is convex
and lower semicontinuous when optimizing over state
feedback policies, and provide conditions under which
input-to-state stability can be established for such sys-
tems using convex Lyapunov functions. Since the con-
straints and disturbance sets we consider are arbitrary
convex sets, the proofs differ substantially from those
required in the case where these sets are polytopic,
as in (Goulart et al., 2006). This generalization is of
particular interest, for example, in the case where the
constraint set is polytopic and the disturbance set is
2−norm bounded, so that the resulting optimization
problem can be solved as a tractable second-order
cone program (SOCP), but for which no proof of sta-
bility exists at present.

Notation: A continuous function γ : R≥0 → R≥0 is a
K-function if it is strictly increasing and γ(0) = 0;
it is a K∞-function if, in addition, γ(s) → ∞ as
s→∞. A continuous function β : R≥0 × R≥0 →
R≥0 is a KL-function if for all k ≥ 0, the function
β(·, k) is a K-function and for each s ≥ 0, β(s, ·)
is decreasing with β(s, k) → 0 as k → ∞. E is
the expectation operator. Given sets X and Y , X +
Y := {x+ y | x ∈ X, y ∈ Y }, intX represents the
interior of X and linX its linear hull (i.e. the smallest
subspace containing X). Given a vector x and matri-
ces A and B, A ⊗ B is the Kronecker product of A
and B,N (A) is the null space of A, tr(A) is the trace
of A, vec(A) denotes the vector formed by stacking
the columns of A into a vector, A � 0 (A � 0) means
that A is positive (semi)definite, ‖x‖2A := x′Ax and
‖x‖ :=

√
x′x.

2. DEFINITIONS AND STANDING
ASSUMPTIONS

Consider the following discrete-time linear time-
invariant system:

x+ = Ax+Bu+ w, (1)

where x ∈ Rn is the system state at the current time
instant, x+ is the state at the next time instant, u ∈ Rm
is the control input and w ∈ Rn is the disturbance. It
is assumed that (A,B) is stabilizable and that at each
sample instant a measurement of the state is available.

It is assumed that the current and future values of the
disturbance are unknown and may change from one
time instant to the next, but are contained in a compact
set W containing the origin in its relative interior, and
are independent and identically distributed with zero
mean and covariance E [ww′] =: Cw � 0. Finally, we
assume that the covarianceCw is sensibly defined with
respect to the set W , i.e. we assume that N (Cw) ∩
linW = {0}.
The system is subject to mixed convex constraints on
the state and input, so that the system must satisfy
(x, u) ∈ Z where Z ⊂ Rn × Rm is a convex and
compact set containing the origin in its interior. A
design goal is to guarantee that the state and input of
the closed-loop system remain in Z for all time and
for all allowable disturbance sequences. We further
assume that a target/terminal constraint set Xf ⊂ Rn
is given, which is convex, compact and contains the
origin in its interior.

In the sequel, predictions of the system’s evolution
over a finite control/planning horizon will be used
to define a suitable control policy. Let the length N
of this planning horizon be a positive integer and
define stacked versions of the predicted input, state
and disturbance vectors u ∈ RmN , x ∈ Rn(N+1)

and w ∈ RnN , respectively, as x := [x′0, . . . , x
′
N ]′,

u := [u′0, . . . , u
′
N−1]′ and w := [w′0, . . . , w

′
N−1]′,

where x0 = x denotes the current measured value
of the state and xi+1 := Axi +Bui + wi, for all
i ∈ {0, . . . , N − 1} denotes the prediction of the state
after i time instants. Let the se W := WN :=
W × · · · × W , so that w ∈ W . Define the matrix
Cw := I ⊗ Cw, so that E [ww′] = Cw andN (Cw)∩
linW = {0}. Define a convex and compact set Y ,
appropriately constructed from Z and Xf , such that
the constraints are equivalent to (x,u) ∈ Y , i.e.

Y :=

{
(x,u)

∣∣∣∣
(xi, ui) ∈ Z, ∀i∈{0, . . . , N−1}

xN ∈ Xf

}
. (2)

Finally, using the relation (1), it is straightforward to
define matrices A, B and E such that x = Ax+Bu+
Ew.

3. AFFINE FEEDBACK CONTROL POLICIES

For reasons of computational tractability, we elect to
work with the restricted class of finite horizon affine
state feedback policies for control of the system (1),
i.e. those where the control at each time is param-
eterized as ui = gi +

∑i
j=0 Li,jxj , rather than with

arbitrary functions of the state as in (Scokaert and
Mayne, 1998). Such an affine parameterization has
been shown (Goulart et al., 2006; Ben-Tal et al., 2006)
to be equivalent to the class of control policies param-
eterized as an affine function of the sequence of past
disturbances (Ben-Tal et al., 2004; Löfberg, 2003; van
Hessem and Bosgra, 2002), so that

ui = vi+
∑i−1

j=0
Mi,jwj , ∀i ∈ {0, . . . , N−1} (3)



where each Mi,j ∈ Rm×n and vi ∈ Rm. Note that
the past disturbances are easily recovered using the
relation wj = xj+1 − Axj − Buj . Define the vector
v ∈ RmN and the matrix M ∈ RmN×nN such that

M :=




0 · · · · · · 0
M1,0 0 · · · 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0


, v :=




v0

v1

...
vN−1




(4)
so that the control input sequence can be written in
vector form as u = Mw + v. Define the set of
admissible (M,v), for which the constraints (2) are
satisfied, as:

ΠN (x) :=





(M,v)

∣∣∣∣∣∣∣∣∣

(M,v) satisfies (4)
x = Ax+ Bu + Ew

u = Mw + v

(x,u) ∈ Y , ∀w ∈ W




, (5)

and define the set of states for which such an admissi-
ble control policy exists as

XN := {x ∈ Rn | ΠN (x) 6= ∅}. (6)

The parameterization (4) is of particular interest be-
cause the set ΠN (x) is convex (Goulart et al., 2006),
whereas the set of feasible state feedback parameters
is non-convex, in general.

Remark 1. The method of proof for convexity of the
set ΠN (x) in (Goulart et al., 2006) is insufficient for
the general convex state and input constraints pre-
sented here. However, proof of convexity is straight-
forward by noting that the set

CN :=
⋂

w∈W





(M,v, x)

∣∣∣∣∣∣∣

(M,v) satisfies (4)
x = Ax+ Bu + Ew

u=Mw+v, (x,u)∈Y





is closed and convex, since it is the intersection of
closed and convex sets.

We note that policies in this class can, in many
cases, provide a larger region of attraction than poli-
cies based on perturbations to fixed linear feedback
laws as in (Chisci et al., 2001; Lee and Kouvari-
takis, 1999; Mayne et al., 2005), regardless of horizon
length. Before proceeding, we demonstrate this via the
following example:

Example 2. Consider the system

x+ = 2x+ 2u+ w,

subject to the following input and terminal constraints:

u ∈ {u | |u| ≤ 0.7}
Xf = {x | |x| ≤ 0.5}

and subjected to bounded disturbances |w| ≤ 0.25.
We define a stabilizing controller K = -1.25, so that
(A + BK) = − 1

2 and the set Xf is robust positively
invariant for the system x+ = (A + BK)x + w.
For increasing horizon length N , we consider the size
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Fig. 1. Sizes of XN and XK
N with increasing N

of the set XN in (6) for this system, as well as
the size of the set of feasible initial conditions XK

N

when the control policy for the system is restricted to
perturbations to the fixed linear feedback law u = Kx,
i.e. those parameterized as ui = Kxi + gi. The sizes
of these sets with increasing horizon length are shown
in Figure 1, where it is clear that XK

N ⊂ X4 for any
N .

4. AN EXPECTED VALUE COST FUNCTION

We consider a function which is quadratic in the
state and control sequence, and seek a control policy
that will minimize its expected value (over all distur-
bances) over the planning horizon. We define

VN (x,M,v) := E

[
‖xN‖2P +

N−1∑

i=0

(‖xi‖2Q+‖ui‖2R)

]
,

(7)
where, for all i, xi+1 = Axi + Bui + wi, u :=
Mw + v, and Q, R and P are positive definite. We
define an optimal policy (M∗(x),v∗(x)) to be one
which minimizes VN (x, ·, ·) over the set of feasible
control policies, i.e.

(M∗(x),v∗(x)) := argmin
(M,v)∈Π

N
(x)

VN (x,M,v). (8)

We also define the value function V ∗N : XN → R≥0 to
be

V ∗N (x) := min
(M,v)∈Π

N
(x)
VN (x,M,v). (9)

We assume for the moment that the minimizer in (8)
exists and is well-defined. The receding horizon con-
trol policy µN : XN → Rm is defined by the first
part of the optimal affine feedback control policy, i.e.
µN (x) := v∗0(x). Note that the control law µN (·) is
time-invariant and is, in general, a nonlinear function
of the current state. The closed-loop system becomes

x+ = Ax+BµN (x) + w. (10)

We first demonstrate that VN (x, ·, ·) is convex, so
that (9) represents a convex optimization problem.



Proposition 3. (Convex Cost Function). The function
(x,M,v) 7→ VN (x,M,v) is convex and quadratic in
the state x and parameter M, and strictly convex and
quadratic in the parameter v.

PROOF. Since E [w] = 0 and w is independent of
both v and M, the cost function can be written as:

VN (x,M,v) = E
[
‖v‖2S + x′Hvv + w′HMMw

+ ‖Mw‖2S + ‖Ax‖2Q + ‖Ew‖2Q
]

where Q :=
[
I⊗Q

P

]
, R := I ⊗ R, Hv := 2A′QB,

HM := 2E′QB, and S := B′QB+R. Recalling that
E [w′Xw] = tr(XCw) = tr(CwX) for anyX yields

VN (x,M,v) = ‖v‖2S + x′Hvv+tr(M′SMCw)

+ tr(CwHMM) + γ (11)

= ‖v‖2S+x′Hvv+‖vec(M)‖2(Cw⊗S)

+ [vec(H ′MCw)]′vec(M) + γ. (12)

where γ := tr(E′QECw) + ‖Ax‖2Q. The result
follows immediately, since Cw � 0 implies (Cw ⊗
S) � 0 (Horn and Johnson, 1991, Thm. 4.2.12), and
S � 0 since R � 0 by assumption. 2

Proposition 4. The functionVN (x, ·, ·) attains its min-
imum on the set ΠN (x).

Remark 5. Since the cost function VN (x, ·, ·) and set
of feasible policies ΠN (x) are convex, the problem (9)
can be solved using standard methods in convex opti-
mization. In particular, if the constraints Y are poly-
topic, then (9) can be expressed as a second-order cone
program (SOCP) when W is ellipsoidal or 2−norm
bounded, and as a quadratic program (QP) when W is
polytopic (Goulart et al., 2006), both in a polynomial
number of variables and constraints.

5. PRELIMINARY RESULTS

We wish to find conditions under which the closed-
loop system (10) is input-to-state stable (ISS). To do
this, we requires some preliminary results related to
the convexity of the value function V ∗N (·) in (9), and
to input-to-state stability for systems with convex Lya-
punov functions. We first consider convexity and con-
tinuity of the value function V ∗N (·) in (9); this property
will prove useful in our subsequent consideration of
stability for the closed loop system (10). Complete
proofs of the results in this section may be found
in (Goulart and Kerrigan, 2005).

Proposition 6. IfXN has non-empty interior, then the
receding horizon control law µN (·) is unique on XN

and continuous on intXN . The value function V ∗N (·)
is convex on XN , continuous on intXN and lower
semicontinuous everywhere on XN .

We next consider the input-to-state stability of systems
with convex value functions. We can then exploit
the convexity of the value function V ∗N (·) to provide
conditions in which the closed-loop system (10) is
input-to-state stable (ISS) when implemented in a
receding horizon fashion.

Consider a nonlinear, time-invariant, discrete-time
system of the form

x+ = f(x,w), (13)

where x ∈ Rn is the state and w ∈ Rl is a disturbance
that takes on values in a compact set W ⊂ Rl
containing the origin. It is assumed that the state is
measured at each time instant, that f : Rn×Rl → Rn
is continuous at the origin and that f(0, 0) = 0.
Given an initial state x and a disturbance sequence
w(·), let the solution to (13) at time k be denoted by
φ(k, x, w(·)), where w(·) is taken fromMW , the set
of infinite disturbance sequences drawing values from
W . For systems of this type, a useful definition of
stability is input-to-state stability:

Definition 7. (ISS). The system (13) is input-to-state
stable (ISS) in X ⊆ Rn if there exist a KL-function
β(·) and a K-function γ(·) such that for all initial
states x ∈ X and disturbance sequences w(·) ∈MW ,
the solution of the system satisfies φ(k, x, w(·)) ∈ X
and for all k ∈ N,

‖φ(k, x, w(·))‖ ≤ β(‖x‖ , k) +

γ (sup {‖w(τ)‖ | τ ∈ {0, . . . , k − 1}}) (14)

Lemma 8. (ISS-Lyapunov function). (Jiang and Wang,
2001, Lem. 3.5): The system (13) is ISS in X ⊆ Rn if
the following conditions are satisfied:

• X contains the origin in its interior and is robust
positively invariant for (13), i.e. f(x,w) ∈ X for
all x ∈ X and all w ∈ W .
• There existK∞ functions α1(·), α2(·) and α3(·),

a K-function σ(·), and a function V : X → R≥0

such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖)
V (f(x,w)) − V (x) ≤− α3(‖x‖) + σ(‖w‖)

A function V (·) that satisfies these conditions is called
an ISS-Lyapunov function.

Proposition 9. Let X ⊆ Rn be a compact robust
positively invariant set for (13) containing the origin in
its interior. Furthermore, let there exist K∞-functions
α1(·), α2(·) and α3(·) and a function V : X → R≥0

that is convex on X such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (16a)
V (f(x, 0))− V (x) ≤− α3(‖x‖) (16b)

The function V (·) is an ISS-Lyapunov function and
the origin is ISS for the system (13) with region of
attraction X if f(·) can be written as f(x,w) :=



g(x) + w, and W is compact and convex, containing
the origin in its relative interior.

Remark 10. Note that unlike in (Goulart et al., 2006),
which requires Lipschitz continuity of V (·), Proposi-
tion 9 requires that V (·) be convex on X ; recall that,
in general, convex functions are not guaranteed to be
continuous. It is important to note that continuity of
the function V (·) is not required in the proof of (Jiang
and Wang, 2001, Lem. 3.5).

6. STABILITY OF RHC LAW

Given the results of the previous sections, we can
now provide conditions under which the closed-loop
system (10) is guaranteed to be ISS. We first make the
following assumption:

A1 (Terminal Cost and Constraint) The terminal
constraint set Xf is both constraint admissible and
robust positively invariant for the system (1) under the
control u = Kx, i.e.

Xf ⊆ {x | (x,Kx) ∈ Z } (17a)
(A+BK)x+ w ∈ Xf , ∀x ∈ Xf , ∀w ∈W (17b)

We further assume that the feedback matrix K and
terminal cost function P are derived from the solution
to the discrete algebraic Riccati equation:

P :=Q+A′PA−A′PB(R+B′PB)−1B′PA

K :=−(R+B′PB)−1B′PA

Remark 11. The reader is referred to (Blanchini, 1999;
Kolmanovsky and Gilbert, 1998; Lee and Kouvari-
takis, 1999) and the references therein for details on
how to compute a set Xf that satisfies (17). The ter-
minal cost F (x) := x′Px is a Lyapunov function in
the terminal set Xf for the undisturbed closed loop
system x+ = (A+BK)x, so that, for all x ∈ Xf ,

F ((A+BK)x)− F (x) ≤ −x′(Q+K ′RK)x

Remark 12. In the absence of constraints, the pro-
posed control policy minimizes both the expected
value function VN (x, , ·, ·) (assuming E [w] = 0), and
the value of the deterministic or certainty-equivalent
cost (van de Water and Willems, 1981). This certainty
equivalence property does not hold in the more gen-
eral constrained case considered here. However, it is
still true that v∗0(x) = Kx for all x ∈ Xf , since in
this case the conditions (17) guarantee that the optimal
unconstrained state feedback gainK is also constraint
admissible.

Theorem 13. (ISS for RHC). If A1 holds, then the ori-
gin is ISS for the closed-loop system (10) with re-
gion of attraction XN . Furthermore, the input and
state constraints (2) are satisfied for all time and all
allowable disturbance sequences if and only if the
initial state is in XN.

PROOF. For the system of interest, we select V (·) :=
V ∗N (·) − V ∗N (0), and let f(x,w) := Ax+BµN (x) +
w. The set XN is robust positively invariant for sys-
tem (10), with 0 ∈ intXN if A1 holds (Goulart et
al., 2006, Prop. 13). XN is compact since it is closed
(cf. Remark 1) and bounded because Z is assumed
bounded. Since 0 ∈ Xf , it is easy to show that
f(0, 0) = 0 and V is lower bounded by α1(‖x‖) :=

‖x‖2Q if A1 holds by exploiting equivalence between
affine disturbance and state feedback policies (Goulart
et al., 2006, Thm. 9). Since 0 ∈ intXN and VN (x, ·, ·)
has a finite upper bound on its domain, one can also
construct a functionα2(·) satisfying (16a). Using stan-
dard techniques (Mayne et al., 2000), one can show
that V (·) is a Lyapunov function for the undisturbed
system x+ = Ax + BµN (x) and, in particular,
that (16b) holds with α3(z) := λmin(Q)z2. Finally,
recall from Proposition 6 that V ∗N (·) is convex on XN

and continuous on intXN . By combining all of the
above, it follows from Proposition 9 that V ∗N (·) is an
ISS-Lyapunov function for system (10). 2

7. CONCLUSIONS

Using a finite horizon affine feedback policy param-
eterization and exploiting the results in (Goulart et
al., 2006), we have shown that receding horizon con-
trol laws can be constructed that guarantee input-to-
state stability for systems with general convex state
and input constraints, given appropriate terminal con-
ditions. The method is based on minimization of the
expected value of a finite horizon quadratic cost at
each time instant.

This result represents an important generalization of
the results in (Goulart et al., 2006), as it establishes
stability for a broad class of RHC problems using this
framework with non-polytopic convex disturbance
sets (e.g. ellipsoidal or 2-norm bounded disturbances),
or for problems with general convex constraints on the
states and inputs.
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