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Abstract

This paper considers output feedback control of linear discrete-time systems with con-
vex state and input constraints and subject to bounded state disturbances and output
measurement errors. We show that the non-convex problem of finding a constraint ad-
missible affine output feedback policy, to be used in conjunction with a fixed linear state
observer, can be converted to an equivalent convex problem. When used in the design
of a time-varying robust receding horizon control (RHC) law, we derive conditions under
which the resulting closed-loop system is guaranteed to satisfy the system constraints for
all time, given an initial state estimate and bound on the state estimation error. When
the state estimation error bound matches the minimal robust positively invariant (mRPI)
set for the system error dynamics, we show that this control law is actually time-invariant,
but its calculation generally requires solution of an infinite-dimensional optimisation prob-
lem. Finally, using an invariant outer approximation to the mRPI error set, we develop a
time-invariant control law that can be computed by solving a finite-dimensional, tractable
optimisation problem at each time step, which guarantees that the closed-loop system sat-
isfies the constraints for all time.

Keywords: Robustness; output feedback; constrained control; predictive control

1 Introduction

This paper considers the problem of output feedback control of linear discrete-time systems
with mixed state and input constraints, subject to bounded disturbances on the states and
measurements. The main aim is to provide a method for efficient calculation of feedback
policies that ensure that the state and input constraints are satisfied for all time, while
ensuring that the domain of attraction of the resulting closed-loop system is as large as
possible.

The problem of formulating robust control policies that guarantee constraint satisfaction
is a long-standing one in the control literature [9, 10, 43], and various methods have been
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devised for its solution; these include methods based on robust dynamic programming [8], set
invariance [11], `1 control [15], reference governors [17] and predictive control [4, 12, 27].

A variety of techniques have been proposed for the off-line calculation of output feedback
control laws which robustly satisfy system constraints for this type of problem. These in-
clude methods employing dynamic linear control laws [15, 40], set valued observers coupled
with static nonlinear set-valued maps [38, 39], and controllers based on robust dynamic pro-
gramming [1,31]; these methods typically suffer from very high computational complexity or
excessive conservativeness.

Within the predictive control literature, in which a finite-horizon optimal control problem
is solved on-line at each time instant and applied to the plant in receding horizon fashion,
techniques for guaranteeing stability and constraint satisfaction for undisturbed systems via
state feedback are now well established; see, for example, the excellent surveys in [16,29,32].
More problematic has been the development of robust receding horizon control policies (RHC)
for uncertain systems, where one wishes to guarantee constraint satisfaction for all possible
realizations of the system uncertainty. It is now generally accepted that, in order to provide a
reasonable domain of attraction, optimisation must be performed over a sequence of feedback
policies, rather than over fixed input sequences, otherwise problems of infeasibility may quickly
arise [4,29]. Unfortunately, optimisation over arbitrary nonlinear feedback policies is generally
computationally intractable, leading to optimisation problems whose size grows exponentially
with the problem data [37, 42].

For robust predictive control using output feedback, a common ad-hoc approach is to
employ an observer and substitute the resulting state estimate in place of the true system
state in conjunction with a standard predictive control scheme [16, 32]. However, in order to
ensure that the region of attraction is as large as possible while guaranteeing robust constraint
satisfaction, an explicit model of the estimation error seems necessary, and a number of control
schemes based on error set membership estimation [7, 36] have been proposed [3, 14]. When
the system dynamics are linear, a common approach is to employ a combination of a fixed
linear observer and associated estimation error set with a fixed stabilising linear control law,
to which a sequence of input perturbations is calculated at each time instant. Variations on
this theme have been proposed in [25, 35, 44], and may be considered the output feedback
counterparts to the state feedback methods proposed in [2, 13, 24].

A related technique from the predictive control literature is to define a ‘tube’ of trajectories
based on a controlled invariant set [23], within which the true state of the system is guaranteed
to remain, and to treat the problem as one of steering this set to the origin, where the initial
reference state (the ‘centre’ of the tube at the initial time) is treated as a decision variable. The
invariant set from which the tube is constructed is typically determined off-line by defining
a fixed linear feedback law (see [30] for the state feedback and [28] for the output feedback
case), though other methods for defining this set are possible [34].

An obvious method for increasing the domain of attraction using these methods is to
compute an affine feedback control law on-line at each sample time — a non-convex problem
which has until recently been thought to be intractable. However, in [20, 26] an alternative
convex parameterisation based on disturbance feedback was proposed for the full state in-
formation case, and was later shown to be equivalent to one based on affine state feedback
in [19]. In the present paper, an analogous reparameterisation for output feedback is pre-
sented, together with techniques for synthesising robust time-invariant RHC laws from this
parameterisation that guarantee constraint satisfaction for all time, and for which the control
input at each time instant can be solved via a single tractable convex optimisation problem.
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The proposed method has its origins in the recent work on robust optimisation of [6, 20],
which developed a novel method for the solution of adjustable robust counterpart (ARC)
optimisation problems, in which a subset of the decision variables may be selected after some
or all of the uncertain problem parameters are realized. It was shown that if these decision
parameters are restricted to be affine functions of the system uncertainty, rather than arbitrary
nonlinear functions, then the resulting optimisation problem is convex and tractable under
certain conditions.

The convex control parameterisation presented here was originally proposed for robust
control of linear systems in [5, 41]. We employ the parameterisation in conjunction with a
fixed linear state observer and a corresponding bound on the state estimation error, and show
that RHC laws synthesised from the parameterisation can guarantee constraint satisfaction
for all time. When the state estimation error bound matches the minimal robust positively
invariant (mRPI) set for the system error dynamics, we show that the control law is actually
time-invariant, but its calculation requires the solution of an infinite-dimensional optimisation
problem when the mRPI set is not finitely determined. Finally, by employing an invariant
outer approximation to the mRPI error set [33], we develop a time-invariant control law that
can be computed by solving a finite-dimensional tractable optimisation problem at each time
step.

The paper is organised as follows. Section 2 discusses the class of systems considered and
defines a number of standing assumptions. Section 3 defines the affine output feedback policies
considered throughout, and, in a manner similar to [5] but taking explicit account of the state
estimate and observer error dynamics, demonstrates that one can define an equivalent but
convex reparameterisation based on output error feedback. This equivalence is then exploited
in Section 4 which is concerned with results concerning invariance and constraint satisfaction,
and which contains the main contributions of the paper. Section 5 demonstrates how the
proposed control law may be implemented via the solution of a single linear program (LP) at
each time when all of the relevant constraints are polytopic, and provides a short numerical
example. Some concluding remarks are made in Section 6.

Notation: Z := {0, 1, . . . } is the set of non-negative integers and Z[k,l] represents the set
of integers {k, k + 1, . . . , l} . Bnp (r) := {x ∈ Rn | ‖x‖p ≤ r} is the p-norm unit ball in Rn,
where r ≥ 0. Given sets X ⊂ Rn and Y ⊂ Rn, the Minkowski sum is defined as X ⊕ Y :=
{x+ y | x ∈ X, y ∈ Y }. Given a sequence of sets {Xi ⊂ Rn}bi=a, define ⊕bi=aXi := Xa⊕· · ·⊕
Xb.

2 Problem Description

Throughout, we consider the following discrete-time linear time-invariant system:

x+ = Ax+Bu+ w (1)

y = Cx+ η (2)

where x ∈ Rn is the system state at the current time instant, x+ is the state at the next time
instant, u ∈ Rm is the system input, w ∈ Rn is a disturbance, y ∈ Rp is the system output and
η ∈ Rp is the measurement error. We assume that the pairs (A,B) and (C,A) are stabilisable
and detectable respectively, and that there exist a controller gain K and Luenberger type
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observer gain L such that the matrices AK := (A+BK) and AL := (A − LC) are strictly
stable. We define the estimated state s ∈ Rn at the current time instant such that

s+ = As+Bu+ L(y − Cs), (3)

and define the state estimation error e ∈ Rn as e := x− s, such that

e+ = (A− LC)e− Lη + w, (4)

where s+ and e+ represent the state estimate and estimation error at the next time instant.
The actual values of the state, state estimate, estimation error, input and output at time
instant k are denoted x(k), s(k), e(k), u(k) and y(k) respectively. We assume that the
system is subject to mixed constraints on the states and inputs, so that the system must
satisfy

(x, u) ∈ Z, (5)

where Z ⊂ Rn × Rm is a closed and convex set containing the origin in its interior, and note
that such a constraint may include constraints on the output y in (2). We further define a
closed and convex target/terminal set Xf ⊂ Rn × Rn for the state estimate and error, such
that (s, e) ∈ Xf . We assume that the disturbances w are unknown but contained in a compact
set W containing the origin, and that the measurement errors η are unknown but contained
in a compact set H, also containing the origin.

Before proceeding, we define some additional notation. In the sequel, predictions of the
system’s evolution over a finite control/planning horizon will be used to define a number of
suitable control policies. Let the length N of this planning horizon be a positive integer and
define stacked versions of the state estimate, estimation error, input, output, disturbance,
and measurement error vectors s ∈ Rn(N+1), e ∈ Rn(N+1), u ∈ RmN , y ∈ RpN , w ∈ RnN ,
and η ∈ RpN respectively, as

s :=
[
s′0, . . . , s

′
N

]′
, e :=

[
e′0, . . . , e

′
N

]′
, (6a)

u :=
[
u′0, . . . , u

′
N−1

]′
, y :=

[
y′0, . . . , y

′
N−1

]′
, (6b)

w :=
[
w′0, . . . , w

′
N−1

]′
, η :=

[
η′0, . . . , η

′
N−1

]′
, (6c)

where s0 := s and e0 := e denote the current values of the state estimate and estimation error
respectively, and si+1 := ALsi +Bui +Lyi and ei+1 = ALei −Lηi +wi, ∀i ∈ Z[0,N−1], denote
the predictions of the state estimate and estimation error after i time instants. The predicted
measurements after i time instants are yi = C(si + ei) + ηi, ∀i ∈ Z[0,N−1]. We define E to be
the set of all convex and compact subsets of Rn containing the origin. We assume that the
true initial state x is such that x = s0 + e0, where e0 ∈ E is the initial state estimation error
for some given E ∈ E. We let W := WN := W × · · · ×W and H := HN := H × · · · ×H, so
that w ∈ W and η ∈ H.
We define a closed and convex set Z, appropriately constructed from Z and Xf , such that
the constraints to be satisfied are equivalent to (s, e,u) ∈ Z, i.e.

Z :=

{
(s, e,u)

∣∣∣∣
(si + ei, ui) ∈ Z, ∀i ∈ Z[0,N−1]

(sN , eN ) ∈ Xf

}
. (7)
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Finally, we define the matrices A,B,E,L,B,Φ and Γ (given in the Appendix) and affine
functions fe and fs such that the vectors s and e can be written as

s =fs(s0, e0,u,w,η) := As0 + Bu + EL(Ce + η) (8)

e = fe(e0,w,η) := Φe0 − ΓLη+ Γw, (9)

and such that s may alternatively be expressed directly as an affine function of y, i.e.

s = Φs0 + ΓBu + ΓLy. (10)

3 Affine Feedback Parameterisations

3.1 Output Feedback

As a means of controlling the system (1) while ensuring the satisfaction of the constraints (7)
for all possible realizations of the system uncertainty, we wish to construct a control policy
such that each control input ui is affine in the measurements {y0, . . . , yi−1}, i.e.

ui = gi +

i−1∑

j=0

Ki,jyj (11)

where each Ki,j ∈ Rm×p and gi ∈ Rm. For notational convenience we define the vector
g ∈ RmN and matrix K ∈ RmN×pN as

K :=




0 · · · · · · 0

K1,0
. . . · · · 0

...
. . .

. . .
...

KN−1,0 · · · KN−1,N−2 0



,g :=




g0

g1
...

gN−1


 (12)

so that the control input sequence can be written as u = Ky + g.
For a given initial state estimate s and estimation error set E ∈ E, the set of feasible

output feedback policies which are guaranteed to satisfy the constraints Z for all possible
uncertainty realizations is

Πof
N (s, E) :=





(K,g)

∣∣∣∣∣∣∣∣∣∣∣∣

(K,g) satisfies (12)
s = fs(s, e,u,w,η)

e = fe(e,w,η)
y = C(s + e) + η

u = Ky + g, (s, e,u) ∈ Z
∀e ∈ E , ∀w ∈ W, ∀η ∈ H





. (13)

Given an initial estimation error set E , we define the set of all initial state estimates for which
a constraint admissible policy exists as

SofN (E) :=
{
s
∣∣∣ Πof

N (s, E) 6= ∅
}
.
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Remark 1. The feedback policy (11) subsumes the class of “pre-stabilising” control policies
in which the the control is based on perturbations {ci}N−1

i=0 to a fixed linear state feedback gain
K, so that ui = Ksi+ci, since the estimated state si may be expressed as an affine function of
the measurements {y0, . . . , yi−1} (cf. (10)). Such a scheme is commonly employed for robust
control of constrained systems under state feedback [2, 13, 24], or employed in conjunction
with a stabilising linear observer gain L for output feedback [25, 35, 44]. It can also be shown
to subsume tube-based schemes such as [28, 30] when the invariant sets defining the tube are
based on static linear feedback, though these methods also confer additional stability properties
which we do not address here.

Remark 2. As in the full state information case considered in [19], the set Πof
N (s, E) is

non-convex, in general, due to the nonlinear relationship between the estimated states s and
feedback gains K in (13).

3.2 Output Error Feedback

As an alternative to the parameterisation (11), we consider a control policy parameterised as
an affine function of the uncertain parameters w, η and e0; a related parameterisation was first
suggested as a means for finding solutions to a general class of robust optimisation problems,
called affinely adjustable robust counterpart (AARC) problems [6,20], and recently as a means
for robust control of systems with full state feedback [19,26] and output feedback [5,41]. The
control policy is parameterized as

ui = vi +

i−1∑

j=0

Mi,j(yj − Csj) (14)

where each Mi,j ∈ Rm×p and vi ∈ Rm, and note that (yi−Csi) = (Cei+ηi) for all i ∈ Z[0,N−1].

We further define matrices M ∈ RmN×nN and vector v ∈ RmN as

M :=




0 · · · · · · 0
M1,0 0 · · · 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0


 ,v :=




v0

v1
...

vN−1


 (15)

so that the control input sequence can be written as

u = M(y −Cs) + v (16)

= M(Ce + η) + v. (17)

By virtue of the relation (9), this control parameterization is affine in the unknown parameters
e0, w, η. For a given initial state estimate s and error set E , the set of feasible feedback policies
that are guaranteed to satisfy the system constraints for all possible uncertainty realizations
is

Πef
N (s, E) :=





(M,v)

∣∣∣∣∣∣∣∣∣∣∣∣

(M,v) satisfies (15)
s = fs(s, e,u,w,η)

e = fe(e,w,η)
y = C(s + e) + η

u = M(Ce+η)+v, (s, e,u) ∈ Z
∀e ∈ E , ∀w ∈ W, ∀η ∈ H





. (18)
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For a given error set E , define the set of all constraint admissible initial state estimates to be

SefN (E) :=
{
s
∣∣∣ Πef

N (s, E) 6= ∅
}
.

We next characterise two critical properties of the parameterisation (14), which make it
attractive in application to control of the system (1), and which parallel the results in [19]
for the full state feedback case.

3.2.1 Convexity

Theorem 1. The set of constraint admissible feedback policies Πef
N (s, E) is convex and closed,

and the set of feasible initial states S efN (E) is convex.

Proof. Define the set

CN (E) :=
⋂

w∈W ,
η∈H, e∈E





(M,v, s)

∣∣∣∣∣∣∣∣∣∣

(M,v) satisfies (15)
s = fs(s, e,u,w,η)

e = fe(e,w,η)
y = C(s + e) + η

u = M(Ce+η)+v, (s, e,u) ∈ Z





(19)

which is closed and convex, since it is the intersection of closed and convex sets. The set
SefN (E) is a projection of this set, and is thus convex. The set Πef

N (s, E) can similarly be
written as an intersection of closed and convex sets, so is also closed and convex.

Remark 3. In certain cases it is possible to find a feasible policy (M,v) ∈ Πef
N (s, E) given

an initial state estimate s using standard techniques in convex optimisation similar to those
required in the case of robust control with state feedback [19]. For example, if the constraint
set Z and uncertainty sets W , H and E are polytopes, a constraint admissible policy (M,v) ∈
Πef
N (s, E) can be found by solving a single tractable linear program (LP). If Z is a polytope

and the sets E, H and W are ellipsoids, then a constraint admissible policy can be found by
solving a single tractable second-order cone program (SOCP).

3.2.2 Equivalence

Theorem 2. Given an initial state estimation set E, the sets S efN (E) and SofN (E) are equal.

For a given state estimate s, for every pair (K,g) ∈ Πof
N (s, E), there exists a pair (M,v) ∈

Πef
N (s, E) giving the same sequence of inputs and states for all possible realizations of the

system uncertainty, and vice-versa.

Proof. SofN (E) ⊆ SefN (E): By definition, for any s ∈ SofN (E), there exists a pair (K,g) ∈
Πef
N (s, E). A bit of algebra shows that, given any uncertainty realization e, η and w, the

input sequence u can be written as

u = ∆−1K [C(Ae+ Ew) + η] + ∆−1(KCAs+ g), (20)

where ∆ := (I −KCB), and the matrix ∆ is always invertible since KCB is strictly lower
triangular. Noting the identity C(Ae+ Ew) + η = (I + CEL)(y −Cs), the input sequence
u can thus be written as

u = ∆−1K(I + CEL)(y −Cs) + ∆−1(KCAs+ g)
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A constraint admissible policy (M,v) ∈ S efN (E) can then be found by selecting

M = ∆−1K(I + CEL), v = ∆−1(KCAs+ g). (21)

Thus, s ∈ SefN (E) for all s ∈ SofN (E), so SofN (E) ⊆ SefN (E).

SefN (E) ⊆ SofN (E): By definition, for any s ∈ SefN (E), there exists a pair (M,v) ∈ Πof
N (s, E).

Using the relation (10), the output error terms can be written as y − Cs = (I − CΓL)y −
CΦs− CΓBu, and the control input sequence u = M(y −Cs) + v as

u = ∆̂−1M(I −CΓL)y + ∆̂−1(v −MCΦs),

where ∆̂ := (I+MCΓB), and the matrix ∆̂ is always invertible since MCΓB is strictly lower

triangular. A constraint admissible policy (K,g) ∈ S ofN (E) can then be found by selecting

K = ∆̂−1M(I −CΓL), g = ∆̂−1(v −MCΦs) (22)

Thus, s ∈ SofN (E) for all s ∈ SefN (E), so SefN (E) ⊆ SofN (E).

Remark 4. A control policy based on the measurement prediction error terms (y −Cs) was
proposed in [41], and independently in the context of robust optimization in [5], which gives
an equivalence proof similar to that presented here but without the inclusion of a non-zero
initial state estimate or observer dynamics. We make explicit use of these error dynamics to
derive conditions under which receding horizon control (RHC) laws based on the parameteri-
zation (14) can be guaranteed to satisfy constraints for the resulting closed-loop system for all
time.

4 Geometric and Invariance Properties

In this section, we characterise some of the geometric and invariance properties associated
with control laws synthesised from the feedback parameterisation (14). We first require the
following assumption about the terminal constraint set Xf :

A1 (Terminal constraint) The state feedback gain matrix K and terminal constraint set
Xf have been chosen such that:

• Xf is consistent with the set of states for which the constraints Z in (5) are satisfied
under the control u = Ks, i.e. (s, e) ∈ Xf implies (s+ e,Ks) ∈ Z.

• Xf is robust positively invariant for the closed-loop system under the control u = Ks.
Thus (s, e) ∈ Xf guarantees (s+, e+) ∈ Xf for all w ∈ W and for all η ∈ H, where
s+ = (A+BK)s+ L(Ce+ η) and e+ = ALe− Lη + w.

Remark 5. If the set W ×H is a polytope or affine map of a p-norm ball and the constraints
Z are polyhedral, then one can calculate an invariant set which satisfies the conditions A1 by
applying the techniques in [11, 22, 24] to the augmented system

[
s+

e+

]
=

[
(A+BK) LC

0 (A− LC)

] [
s
e

]
+

[
0 L
I −L

] [
w
η

]
(23)
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Proposition 1 ((Monotonicity)). If A1 holds, then the following set inclusions hold:

Sof1 (E) ⊆ · · · ⊆ SofN−1(E) ⊆ SofN (E) ⊆ SofN+1(E) . . . (24)

Sef1 (E) ⊆ · · · ⊆ SefN−1(E) ⊆ SefN (E) ⊆ SefN+1(E) . . . (25)

Proof. The proof of the first relation is by induction. Suppose that s ∈ S ofN (E) and (K,g) ∈
Πof
N (s, E). Recalling the relation (10), the state estimates s can be found as an affine function

of the measurements y using

s = Γ(BK + L)y + ΓBg + Φs0 (26)

One can thus find a pair (K̄, ḡ) ∈ Πof
N+1(s, E), where K̄ :=

[
K 0
K̄1 K̄2

]
and ḡ :=

[ g
ḡ

]
, by defining

the matrices K̄1 := AL(BK+L) and K̄2 := 0 and vector ḡ :=
(
AL(BK + L)g +ANL s0

)
, where

AL := [AN−1
L ··· AL I ], such that the final stage input is uN = KsN . Since s ∈ SofN (E) implies

(sN , eN ) ∈ Xf by definition, then it follows that (sN + eN , uN ) ∈ Z and (sN+1, eN+1) ∈ Xf

for all w ∈ W and all η ∈ H if A1 holds. Thus (K̄, ḡ) ∈ Πof
N+1(s, E) and s ∈ XN+1(E). The

second relation then follows from Theorem 2.

4.1 Invariance Properties

We next consider some properties of receding horizon control (RHC) laws synthesised from
the parameterization (11) (equivalently, (14)). In particular, we develop conditions under
which such a RHC law can be guaranteed to be robust positively invariant for the resulting
closed-loop system.

We define the set-valued map κN : SofN × E→ 2R
m

as

κN (s, E) :=
{
u
∣∣∣ ∃(K,g) ∈ Πof

N (s, E) s.t. u = g0

}
(27)

=
{
u
∣∣∣ ∃(M,v) ∈ Πef

N (s, E) s.t. u = v0

}
(28)

where 2R
m

is the set of all subsets of Rm, and (28) follows directly from Theorem 2. We define

a function µN : SofN × E → Rm as any selection from the set κN , i.e. given E ∈ E, µN (·, E)
must satisfy

µN (s, E) ∈ κN (s, E), ∀s ∈ SofN (E)

We wish to develop conditions under which time-varying or time-invariant control schemes
based on the functions µN can be guaranteed to satisfy the system constraints Z for all time.
We first introduce the following standard definition from the theory of invariant sets [22,33]:

Definition 1 (Minimal Robust Positively Invariant (mRPI) Error Set). The set Ei
is defined as

Ei :=
i⊕

j=0

AjL(W ⊕ L(−H)), ∀i ∈ Z. (29)

The minimal robust positively invariant (mRPI) set E∞ is defined as the limit set of the
sequence {Ei : i ∈ Z}, i.e. E∞ := limi→∞ Ei.
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Remark 6. As noted in [22], unless the observer gain L is selected such that there exists a
k ∈ Z and 0 ≤ α < 1 such that AkL = αAL (e.g. when L is a deadbeat observer so that AL is
nilpotent), then the set E∞ may not be characterised by a finite number of inequalities, since
it is a Minkowski sum with an infinite number of terms. However, in [33] it is shown how one
can calculate a so-called ε-outer approximation EI to the set E∞ (which can be represented by
a tractable number of inequalities if W and H are polytopes) such that E∞ ⊆ EI ⊆ E∞⊕Bnp (ε)
and such that the set EI is robust positively invariant. Further, it is shown in [33] that, if only
the support function of the set EI is required, then calculation of an explicit representation of
EI via Minkowski summation is not necessary, a fact which we exploit in the computational
results of Section 5.

4.1.1 Time-Varying and mRPI-based RHC Laws

We first consider the implementation of a time-varying receding horizon control (RHC) law
based on the function µN (·, ·). Taking the initial time to be 0 (note that this is always possible
since the system (3)–(4) is time invariant), and given an initial state estimate s(0) and initial
state estimation error set E , we define the time-varying RHC control law ν : Rn×Z×E→ Rm
as

ν(s(k), k, E) :=

{
µN (s(k), E), if k = 0

µN (s(k), AkLE ⊕ Ek−1), if k > 0
. (30)

Note that the error sets required in the calculation of ν(s(k), k, E) can be defined recursively,
i.e. Ak+1

L E ⊕ Ek = AL[AkLE ⊕ Ek−1]⊕ E0, though an explicit calculation of E via Minkowski
summation is not required (cf. Section 5). The resulting closed-loop system can be written
as:

x(k + 1) = Ax(k) +Bν(s(k), k, E) + w (31)

s(k + 1) = As(k) +Bν(s(k), k, E) + L(y(k)− Cs(k)) (32)

e(k + 1) = (A− LC)e(k)− Lη(k) + w(k) (33)

y(k) = Cx(k) + η(k), (34)

Note that given the estimation error set E at time 0, the estimation errors {e(i)}∞i=0 in (33)
are only known by the controller to satisfy e(i) ∈ AkLE⊕Ek−1 for all i ∈ Z. Our first invariance
result follows immediately:

Proposition 2. If A1 holds and s(0) ∈ SofN (E), then the closed-loop system (31)–(34) satisfies
the constraints (5) for all time and all possible uncertainty realizations if and only if the true
initial state x(0) ∈ {s(0)} ⊕ E.

Proof. If s ∈ SofN (Ẽ) for some Ẽ ∈ E, then there exists an output feedback policy pair

(K,g) ∈ Πof
N (s, Ẽ) for which µN (s, Ẽ) = g0. It is then easy to show that

s+ = As+BµN (s, Ẽ) + L(Ce+ η) ∈ Xof
N−1(ALẼ ⊕ E0), ∀e ∈ Ẽ ,

since one can construct a feasible policy pair (K̃, g̃) ∈ Πof
N−1(s+, ALẼ ⊕ E0) from (K,g) by

dropping the first element of g and the first block row and column of K. If A1 holds,
then s+ ∈ Xof

N−1(ALẼ ⊕ E0) implies s+ ∈ Xof
N (ALẼ ⊕ E0) from Proposition 1, and the result

follows.
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We note that if the state estimation error set E = E∞, then the control law ν(·) defined
in (30) is actually time-invariant, so that

ν(s(k), k, E∞) = µN (s(k), E∞), ∀k ∈ Z. (35)

The next result follows immediately:

Corollary 1. The set SofN (E∞) is robust positively invariant for the closed-loop system (31)–

(34) under the time-invariant control law (35), i.e. if s(0) ∈ S ofN (E∞), then s(k) ∈ SofN (E∞)
for all k ∈ Z and for all possible uncertainty realizations. The constraints (5) are satisfied
for all time and all possible uncertainty realizations if and only if the true initial state x(0) ∈
{s(0)} ⊕ E∞.

4.1.2 A Time-Invariant Finite-Dimensional RHC Law

The central difficulty with the control law defined in (35) is that, in general, the set E∞ is not
finitely determined (cf. Remark 6). The calculation of the control law ν(·, ·, E) in (30) is thus
of increasing complexity with increased time, and the calculation of the control law ν(·, ·, E∞)
in (35) requires the solution of an infinite-dimensional optimisation problem. We thus seek a
control law which is of fixed and finite complexity, while preserving the time-invariant nature
of (35). To this end, we define a robust positively invariant (RPI) error set EI ∈ E which
satisfies the following:

A2 (Invariant Error Set) The set EI ∈ E is chosen such that it is robust positively invariant
for the system e+ = ALe− Lη + w, so that ALe − Lη + w ∈ EI for all e ∈ EI , for all w ∈ W
and for all η ∈ H. Furthermore, for some p-norm, EI is an ε-outer approximation for E∞, so
that there exists some ε > 0 such that E∞ ⊆ EI ⊆ E∞ ⊕ Bnp (ε).

Remark 7. If A2 holds, then ALEI ⊕ (W ⊕ L(−H)) ⊆ EI and E∞ ⊆ EI . Such a set
can be calculated efficiently using standard techniques for finding maximal RPI sets [22] (cf.
Remark 6), or as an outer approximation to the mRPI set using results from [33]. In both
cases, the resulting set is polytopic when all of the relevant constraints and uncertainty sets
are polytopic, and the set EI can be characterised by a finite number of linear inequalities,
though an explicit representation of the set EI is not required (cf. Remark 6 and the results
of Section 5).

We can now guarantee an invariance condition similar to that in Proposition 2 using the
finitely determined set EI , by slightly enlarging the disturbance set W from which feedback
policies of the form (14) are selected. We define

Wε := W ⊕ Bnp (ε) (36)

where p and ε satisfy the conditions of A2 for the set EI , and similarly define Wε := WN
ε .

Using this enlarged disturbance set, we define a modified target/terminal constraint set Xf,ε ⊆
Rn × Rn which is closed and convex and which satisfies the following condition:

A3 (Modified terminal constraint) The state feedback gain matrix K and modified
terminal constraint set Xf,ε have been chosen such that:

11



• Xf,ε ⊆ Xf is consistent with the set of states for which the constraints Z in (5) are
satisfied under the control u = Ks, i.e. (s, e) ∈ Xf,ε implies (s+ e,Ks) ∈ Z.

• Xf,ε is robust positively invariant for the system s+ = (A + BK)s+ L(Ce + η), e+ =
ALe− Lη +w for all s ∈ Xf,ε, for all w ∈Wε and for all η ∈ H.

Using this modified target set, we define the modified constraint set Zε ⊆ Z as

Zε :=

{
(s, e,u)

∣∣∣∣
(si + ei, ui) ∈ Z, ∀i ∈ Z[0,N−1]

(sN , eN ) ∈ Xf,ε

}
. (37)

We also use the enlarged disturbance set Wε to define a new set of feasible feedback control
policies

Πof
N,ε(s, E) :=





(K,g)

∣∣∣∣∣∣∣∣∣∣∣∣

(K,g) satisfies (12)
s = fs(s, e,u,w,η)

e = fe(e,w,η)
y = C(s + e) + η

u = Ky+g, (s, e,u) ∈ Zε
∀e ∈ E , ∀w ∈ Wε, ∀η ∈ H





, (38)

and feasible set
SofN,ε(E) :=

{
s
∣∣∣ Πof

N,ε(s, E) 6= ∅
}
. (39)

In the sequel, we will choose an invariant set E = EI satisfying the conditions of A3 in (38)

such that a time-invariant control law constructed from Πof
N,ε(s, EI) can be guaranteed to

satisfy the system constraints for all time.

Remark 8. An equivalent convex parameterisation can similarly be defined using the feedback
parameterisation (14), so that an admissible pair (K,g) ∈ Πof

N,ε(s, EI) can be calculated using
standard convex optimisation techniques (cf. Remark 3 and Theorem 2), where the optimisa-
tion problem to be solved is finite-dimensional, since the set EI can be implicitly characterised
by a finite number of inequalities (cf. Remark 6). We show in Section 5 that if all of the
relevant constraint sets are polytopic, then such a policy can be found via the solution of a
single, tractable linear program.

We define the set-valued mapping κN,ε : SofN,ε × E→ 2R
m

as

κN,ε(s, EI) :=
{
u
∣∣∣ ∃(K,g) ∈ Πof

N,ε(s, EI) s.t. u = g0

}
, (40)

and define the time-invariant control law νε : SofN,ε → Rm as any selection from this set:

νε(s) ∈ κN,ε(s, EI). (41)

When applied to the control of the system (1), the closed-loop system dynamics become

x+ = Ax+Bνε(s) + w (42)

s+ = As+Bνε(s) + L(y − Cs). (43)

e+ = ALe− Lη + w (44)

y = Cx+ η, (45)

12



where w ∈ W and η ∈ H. It is critical to note that, though the control law (41) is con-
servatively constructed using the enlarged disturbance set Wε, the disturbances w in (42)
are generated from the original disturbance set W . It is this conservativeness which will
ensure that the time-invariant control law (41) can guarantee constraint satisfaction of the
closed-loop system for all time. We can now state our final result:

Theorem 3. If A2 and A3 hold, then the set SofN,ε(EI) is robust positively invariant for the

closed-loop system (43), i.e. if s ∈ SofN,ε(EI), then s+ ∈ SofN,ε(EI) for all e ∈ EI , for all η ∈ H
and for all w ∈W . Furthermore, the closed-loop system (42) satisfies the constraints (5) for
all time and all possible uncertainty realizations if and only if the true initial state x(0) ∈
{s(0)} ⊕ EI .

Proof. If A3 holds then it can be shown, using arguments identical to those in the proof of
Proposition 2, that s ∈ SofN,ε(EI) implies that the successor state s+ ∈ SofN,ε(ALEI ⊕ Wε ⊕
L(−H)) = SofN,ε(ALEI ⊕ E0 ⊕ Bnp (ε)). If A2 holds, then E∞ ⊆ ALEI ⊕ E0 ⊆ EI , and thus

EI ⊆ E∞⊕Bnp (ε) ⊆ ALEI ⊕E0⊕Bnp (ε). Writing the set Πof
N,ε(s, E) in terms of set intersections

as in (19) it is easy to verify that, for any sets E ′ ∈ E and E ′′ ∈ E, E ′ ⊆ E ′′ implies Πof
N,ε(s, E ′′) ⊆

Πof
N,ε(s, E ′) for all s ∈ Rn, and thus SofN,ε(E ′′) ⊆ S

of
N,ε(E ′). It follows that

SofN,ε(ALEI ⊕ E0 ⊕ Bnp (ε)) ⊆ SofN,ε(EI)

and thus that s+ ∈ SofN,ε(EI) for all e ∈ EI , for all η ∈ H and for all w ∈ W . Finally
we verify that the closed-loop system (42)–(45) satisfies the constraints Z for all time; we
again use set intersection arguments and the fact that Xf,ε ⊆ Xf in A3 to confirm that

Πof
N,ε(s, EI) ⊆ Πof

N (s, EI). This implies that κN,ε(s, EI) ∈ κN (s, EI), which guarantees that

(s+ e, νε(s)) ∈ Z for all e ∈ EI if and only if s ∈ SofN,ε(EI).

We note that, when the initial estimation error set E is large, it may be undesirable to
immediately employ a time-invariant policy of the form (41) with E ⊆ EI . In this case, one
may prefer to employ a time-varying policy of the form (30) for some period of time, and
transition to the time-invariant policy (41) when the initial estimation error is sufficiently
reduced.

5 Computation of Feedback Control Laws

We next demonstrate how one may actually calculate feedback policies of the form (18) for the
implementation of the control law (30). We consider the particular case when the constraint
sets Z and Xf and uncertainty sets W , H and E are polytopes, so that the set Z defined
in (37) is also polytopic. In this case one can define matrices S, T and U and a vector b of
appropriate dimensions such that Z can be expressed as

Z = {(s, e,u) | Ss + Te + Uu ≤ b} (46)
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so that the set of feasible control policies can be expressed as

Πof
N (s, E) =





(M,v)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(M,v) satisfies (15)
SAs+ Pv + δe + δw + δη ≤ b

δe = (PMQe +Re )e

δw = (PMQw+Rw)w

δη = (PMQη +Rη )η
∀e ∈ E , ∀w ∈ W, ∀η ∈ H





. (47)

Recall that aTy ≤ e for all y ∈ Y if and only if sup
{
aTy | y ∈ Y

}
≤ e, where a is a vector of

appropriate length, e is a scalar and sup
{
aTy | y ∈ Y

}
is the value of the support function

of the set Y evaluated at a [22]. Hence, one can eliminate the universal quantifiers in (47) to
obtain the equivalent expression

Πof
N (s, E) =





(M,v)

∣∣∣∣∣∣∣∣∣∣∣

(M,v) satisfies (15)
FAs+ Pv + δe + δw + δη ≤ b
δe = max e∈E (PMQe +Re )e

δw = maxw∈W(PMQw+Rw)w

δη = maxη∈H (PMQη +Rη )η





, (48)

where the matrices P , Qe, Qw, Qη, Re, Rw and Rη are defined in the Appendix, and the
maximisations are performed row-wise. Note that all of the maxima in (48) are attained since

the sets E , W and H are assumed compact. A pair (M,v) ∈ Πof
N (s, E) can thus be found by

forming the dual optimisation problem associated with each element of the vectors δe, δw and
δη and introducing slack variables to form a single linear program, whose size is polynomial
in the number of constraints defining the sets Z, E , W and H. A procedure for doing this
can be found, for example, in [6, 19], and so is not repeated here.

In particular, it is important to note that it is not necessary to explicitly perform the
Minkowski summation of error sets in the calculation of the time varying control law (30),
since only the support functions of these sets is of interest. Given an initial error set E at time
0, one needs to calculate at each time k a feasible policy pair (M,v) ∈ Πof

N (s(k), AkLE ⊕ Ek−1).
In this case the vector δe in (48) can be written as

δe = max
e∈AkLE+Ek−1

(PMQe +Re)e (49)

= max
e∈E

(PMQe +Re)A
k
Le+ max

e∈Ek−1

(PMQe +Re)e (50)

= max
e∈E

(PMQe +Re)A
k
Le+

k−1∑

i=0

max
e∈W⊕(−LH)

(PMQe +Re)A
i
Le, (51)

and one may dualise each row of each component of this summation, forming a single linear
program whose size increases polynomially with time k.

An identical procedure may be used in the computation of an element of the set Πof
N (s, EI)

in the implementation of the time-invariant control law (41) (cf. Remark 8), resulting in a
tractable LP of fixed and finite complexity, where once again it is not necessary to explicitly
form the Minkowski sum in (36), and where the support function of EI can be determined
using an implicit representation of a Minkowski sum of a finite number of polytopes as in [33].
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5.1 Numerical Example

We consider the discrete-time system

x+ =

[
1 1
0 1

]
x+

[
0.2
1

]
u+ w (52)

y =
[
1 1

]
x+ η (53)

with stable feedback gainK and observer gain L chosen asK = [−0.75 −1.85] and L = [1.15 0.65] ′.
The sets Z, E , W and H are defined as

Z :=





(x, u) ∈ R2 × R

∣∣∣∣∣∣∣

−3 ≤ x1 ≤ 25

−3 ≤ x2 ≤ 25

|u| ≤ 5





(54)

E :=
{
e ∈ R2 | ‖e‖∞ ≤ 0.4

}
(55)

W :=
{
w ∈ R2 | ‖w‖∞ ≤ 0.1

}
(56)

H :=
{
η ∈ R2 | ‖η‖∞ ≤ 0.1

}
(57)

where xi is the ith element of x. In order to obtain the set Xf , we calculate the maximal
RPI set compatible with Z for the system (23) using the method of [22, Alg. 6.2]. We

consider the set of feasible initial state estimates S ofi (equivalently Sefi ) for this system. For
comparison, we also consider the sets SKi for which a feasible control policy can be found
when the policy is parameterized in terms of perturbations to a fixed state feedback gain,
such that uj = Ksj + cj . Recall that SKi ⊆ Sofi for all i ∈ N (cf. Remark 1). The resulting
sets of feasible initial state estimates for this system are shown in Figure 1.

6 Conclusions

The main contribution of this paper is to propose a new class of time-invariant receding
horizon output feedback control laws for control of linear systems subject to bounded dis-
turbances that guarantee robust constraint satisfaction for the resulting closed-loop system
for all time. The proposed method is based on a fixed linear state observer combined with
optimisation over the class of feedback policies which are affine in the estimated system state;
this problem is non-convex, but can be convexified using an appropriate reparameterisation.
As a consequence, receding horizon control laws in the proposed class can be computed using
standard techniques in convex optimisation, while providing a larger region of attraction than
methods based on calculating control perturbations to a static linear feedback law.

We have only considered the problem of finding a feasible control policy at each time, without
regard to optimality. It is possible to define a variety of cost functions to motivate the selec-
tion from amongst this feasible set of policies, and we have not addressed any stability results
which may be derived based on this selection; see, however, [18, 19, 21] for related results in
the state feedback case.
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Figure 1: Feasible initial state estimate sets S ofi and SKi for i ∈ {2, 6, 10}

A Matrix Definitions

Define A ∈ Rn(N+1)×n and E ∈ Rn(N+1)×nN as

A(L) :=




In
(A− LC)
(A− LC)2

...
(A− LC)N


, E(L) :=




0 0 · · · 0
In 0 · · · 0

(A− LC) In · · · 0
...

...
. . .

...
(A− LC)N−1 (A− LC)N−2 · · · In




so that A := A(0), E := E(0), Φ := A(L) and Γ := E(L) The matrices B ∈ RnN×mN ,
L ∈ RnN×pN , B ∈ Rn(N+1)×mN , and C ∈ RpN×n(N+1) are defined as B := (IN ⊗ B),
L := (IN ⊗ L), B := EB and C := [(IN ⊗ C) 0] respectively.

If the constraint set Z is polytopic and defined as in (46), then we define the matrices in
(48) as P := (SB + U), Qe := CΦ, Re := (SELC + T )Φ, Qw := CΓ, Rw := (SELC + T )Γ,
Qη := (I −CΓL) and Rη := (SE(I −LCΓ)− TΓ)L.

A bit of algebra confirms that the matrix identities E = (I + ELC)Γ and A = (I + ELC)Φ
hold, so that one may also use the equivalent matrix definitions Re := SA − (S − T )Φ,
Rw := SE− (S − T )Γ and Rη := (S − T )ΓL above.
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