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Summary

This dissertation considers model (in)validation in the context of closed-loop con-

trol. Real-world data invariably differs from that predicted by mathematical models.

Discrepancies are due to modelling inaccuracy or exogenous noise. We address the

question of whether given data is consistent with a member model set consisting of

a ‘ball’ of systems in Vinnicombe’s ν-gap metric. Existence can be determined using

tangential Carathéodory-Fejér interpolation techniques, however the full necessary

and sufficient conditions are non-convex in the presence of noise. In previous work,

e.g. by Steele and Vinnicombe, these conditions are approximated to give sufficient

conditions for consistency. This work proposes a technique for improving these ap-

proximations by successive relinearization about previous solutions, extends this to

systems with non-zero initial conditions and proposes techniques for the construction

of interpolants using Nevanlinna-Pick methods.

The work also considers an approach put forward by Smith, Dullerud and Miller

in which the Yakubovich’s S-procedure is applied to problems with linear time-

varying perturbations. A claimed necessary and sufficient condition for invalidation

is shown to be sufficient only, a tighter sufficient condition is put forward, and a

similar condition for non-causal perturbations is proposed.

Finally, model (in)validation techniques are applied to flight test data from Qine-

tiQ’s VAAC Harrier. Two experiments are performed on the longitudinal dynamics

with different signal injection points. The techniques are seen to work effectively

for both, though one experiment is considered more informative than the other.

When the initial state is fixed at zero, causality and time-invariance are significant

constraints, but when the initial state could vary, only time-invariance is significant.

Two dynamic weighting strategies are considered, one based on the frequency-wise

optimal stability margin, the other on a simplified ‘proportional integral’ approxima-

tion with the same all-frequency stability properties. These give consistent results.

Interpolants are constructed and found to have unrealistically ragged frequency re-

sponses.
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Chapter 1

Introduction

The real world is a complicated place and our attempts to describe it will inevitably

fall short. This is immediately clear in the arts and humanities, but it is equally

true of the applied sciences. Though our mathematics—given certain axioms—can

be shown to be true in an absolute sense, any attempt to model a physical system,

say, a car suspension or an aeroplane in flight—will result in something that is ‘lesser’

than the original system. Even if our estimates of all relevant physical quantities are

correct, it is likely that we will have taken a simplified view of the system dynamics

and ignored the potential for interaction with the rest of the world. The problem is

concisely expressed in the introduction to [Vin01], the author of which is explaining

the only two motivations for using feedback in control:

‘There are two, and only two, reasons for using feedback. The first is to

reduce the effect of any unmeasured disturbances acting on the system.

The second is to reduce the effect of any uncertainty about the system

dynamics.’

If we want a model that will perfectly capture all aspects of a physical system’s

behaviour, it is most unlikely that we shall ever be satisfied. However as control

engineers, our real concern is to determine whether a given model captures the

system’s behaviour sufficiently well for us to achieve our given performance and

stability objectives. Again from [Vin01],
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‘One of the key aims of feedback is to minimize the effects of lack of

knowledge about a system which is to be controlled. Yet, one clearly

needs to know something about the system in order to be able to de-

sign an effective feedback compensator for it . . . “how much do we need

to know about a system in order to design a feedback compensator

that leaves the closed loop behaviour insensitive to that which we don’t

know?” ’

In this work, we shall consider the problem of determining whether a model sat-

isfactorily accounts for the measured behaviour of an actual system. This process

is often called ‘model validation’. After further developing existing techniques, we

shall demonstrate their practical application using flight test data from QinetiQ’s

VAAC Harrier.

Model Validation and the Modelling Process

Model validation is part of the modelling process, a general framework for which

follows:

1. Form a model based on physical insights and/or experimental data.

2. Test the model experimentally, taking measurements.

3. Compare the measurements with the model, and decide whether the model is

good enough. If so FINISH; otherwise continue.

4. Refine the model based on further experimentation/insight.

5. Return to step 2.

There are plenty of variations on this. One source [Lju99a] caracatures a control-

oriented modelling process as a ‘game’ involving the modeller and control designer:

the modeller tries to produce a model that is as good as possible; the control engineer

tries to design a controller that is robust as possible. The fundamental points,
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however, are the same. Validation involves the comparison of models against new

data, data from which they were not derived. The construction of a model that will

accurately fit a given data set is often relatively straightforward, though the model

may be complex; the true test of a model is its ability to predict the unknown.

An example of a practical application of ‘validation ideas’ is the notion of iter-

ative control design by falsification. [VW00, Chapter 11]. In this scheme, a robust

model set is progressively refined through experiment with controller designed for

an ‘optimistic’ model chosen to give the best possible results from the unfalsified

set. The control performance can be shown to converge to that ‘best achievable

performance and the practical potential has been demonstrated through published

simulation results. [Ver00] There are differences between that scheme and the work

presented herein, particularly parameterization of the model set. (‘Robust control’

is dealt with here in terms of coprime-factor perturbation model sets; in the itera-

tive design schemes the model sets based on a parameter vector θ are reminiscent

of those used in stochastic identification theory.[Lju99b])

There is a slight variation in terminology: some authors describe a model set that

has not been shown inconsistent with reality (given certain assumptions, of course)

as ‘unfalsified’; others describe the set as ‘not invalidated’. Both are, in a sense, ugly

expressions involving an inherent double negation (at least if one regards ‘false’ as

a negation). The body of published work that this most naturally follows on from

uses the ‘not invalidated’ terminology. The choice to continue in this tradition is

not intended to make a statement about the appropriateness of the alternatives.

Essentially, model validation always involves human decision making of some

kind. In chapter 7, for example, ‘trade off curves’ are presented showing the amount

of noise required for consistency plotted against the level of model perturbation

required. There are no hard-and-fast rules for deciding what is acceptable. In some

applications, large oscillations and near marginal stability may well be acceptable,

but sluggish performance may be wholly so; in other applications, the rise time

may be near irrelevant but solid stabilization of utmost importance. The techniques
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presented herein offer tools to those who make decisions on model quality; it is

beyond the scope of this work to judge exactly how these tools should be used.

Our Definition of Model Validation

The definition that follows shall be used universally throughout this work and is

common in some parts of the literature. [Dav96, SV01]. 1

Strictly speaking, a model P is valid if for all possible input-output pairs (u, y),

the standard interpolation equation y = Pu is satisfied. Similarly, a model set P

is valid if there exists a single model P̂ ∈ P satisfying y = P̂ u. In practice, this is

impossible to determine since we can never have access to all input pairs, merely a

subset of them.

In practice, the problem considered is more usually one of invalidation or non-

invalidation. Clearly, a model or model set is not valid if it does not account for any

particular datum since it cannot account for the whole.

The robust control framework in which we are working is described in detail in

Chapter 3. The model sets in which we are principally interested are described in

terms of their robustness to coprime factor perturbations. Given a nominal model

P0 and a ν-gap radius beta, we shall attempt to establish the existence of a system

P̂ ∈ {P1 : δν(P0, P1) < β} that interpolates the measured data. We shall also allow

exogenous noise.

Gap-based model validation was considered by Davis [Dav96], who derived nec-

essary and sufficient conditions for validation in the gap and ν-gap metrics. These

dealt with linear uncertainty, both time-invariant and time-varying, using tangential

Carathéodory-Fejér interpolation techniques and their LTV equivalents [PKT+92,

1In other published works the term valid is used to describe extended parameter vectors con-
sistent with infinite time-horizon data sequences, with ‘unfalsified’ being used for time-truncated
sequences. [Ver00]
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PKT+94]. This resulted in constraints of the form




P ∗P + P ∗X + X∗P + X∗X Q∗ + Y ∗

Q + Y γI



 ≥ 0 (1.1)

where P and Q are related to the measurements, X represents the noise at the

input to the uncertainty, Y represents the noise at the output of the uncertainty

and γ ∈ R+. He noted that this was non-convex in X and Y , and simplified it by

setting X = 0. The resulting constraint




P ∗P Q∗ + Y ∗

Q + Y γI



 ≥ 0

is a linear matrix inequality in Y (and γ) and is thus convex. The condition is an

approximation, and neither sufficient nor necessary for validation. Davis’s work is

complemented by that of Chen [CW96], who showed that non-convexity occurred

whenever a noise signal was present at the input to an uncertainty.

In more recent work, Steele and Vinnicombe [SV01] noted that the non-convex

necessary and sufficient conditions would be convex were it not for the quadratic

term in the (1,1) element of (1.1). Since noise signals are likely to be small, a convex

constraint of the form




P ∗P + P ∗X + X∗P Q∗ + Y ∗

Q + Y γI



 ≥ 0

would be a good approximation. More importantly, the Schur complement shows

that it is a sufficient condition for validation: if a solution to the problem can be

found, then the model is not invalidated. This was applied to the LTI and LTV ν-

gap metric problems. Details are given in Chapter 4. New developments, including

the accommodation of an initial state, iterative relinearization of the approximated

perturbation block constraints to achieve something closer to the unapproximated
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constraints and construction of interpolant plants are presented in Chapter 5. Chap-

ter 6 considers invalidation methods using the S-procedure [Yak77], introducing

a convex necessary and sufficient invalidation condition for LFT model sets with

noncausal perturbation blocks and sufficient conditions for invalidation with LTV

perturbations. A contradiction is noted with a claim in [SDM00].

Throughout this dissertation, we assume that the system is adequately approx-

imated by discrete time systems. Alternative approaches based on ‘lifting’ are pre-

sented in [BP90, SD96, SDwn]. These allow systems to be ‘h-anticipatory’, i.e.

non-causal within the inter-sample period, and may be more appropriate than our

sample-and-hold approach in some applications.

The VAAC Harrier

The VAAC Harrier and its WEMSIM model is described in greater detail in Chapter

7, and is operated by QinetiQ (formerly DERA, etc.) to demonstrate advanced

control law concepts. Rick Hyde and others [Hyd91, HGS95, Hyd00] carried out

work on the application of McFarlane and Glover’s H∞ loopshaping robust control

technique [MG90]. Davis [Dav96] carried out gap-metric validation on the VAAC

Harrier (though with a different model) and some of his work has been implemented

as a real-time Simulink model by Mathworks, Inc. A new investigation, based on

validation in the ν-gap, is also presented in Chapter 7.

The ultimate aim of the application of (in)validation techniques in flight testing

would be to allow real-time flight envelope expansion. At present, the problems are

too complex for this though it may one day be a possibility.
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Chapter 2

Mathematical Preliminaries

The notation in this dissertation is as far as possible consistent with that in standard

text books, e.g. [CG00, ZDG95, Vin01], and the meaning is usually clear from the

context. Note that a positive feedback convention has been used. There are many

conventions for describing plant and controller; here, the symbols P and C denote

plant and controller respectively. G will often be used to denote a ‘general’ system.

An underlying assumption we shall make is that our validation experiments in-

volve data sampled at a constant rate, and we shall deal with discrete-time models

only. The standard z is used for the inverse of the unit delay, although very occa-

sionally λ = z−1 has been used.

2.1 Norms and signal spaces

A detailed discussion of norms and signal spaces may be found in a standard text

book [ZDG95]. The following reminders may be useful:

ℓp norm For a sequence x = (x0, x1, . . . )

‖x‖p :=

(
∞∑

i=0

|xi|
p

)1/p
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ℓ∞ norm For a sequence x = (x0, x1, . . . )

‖x‖∞ := sup
i

|xi|

power For a sequence x = (x0, x1, . . . , xN−1)

pow(x) :=
1

N

N−1∑

i=0

|xi|
2

The symbol Sk denotes a signal with k elements, i.e. x = {x0, x1} ∈ S2. (Sm
k

indicates that each element of the sequence is a vector with m elements.)

H∞ norm For a a system F

‖F‖∞ := sup
|z−1|<1

σ[F (z−1)]

H∞ Space H∞ is a closed subspace of matrix-valued functions that are analytic

and bounded inside the unit circle. RH∞ is the subspace of real-rational functions

in H∞.

L∞ Space L∞ is a closed subspace of matrix-valued functions that are essentially

bounded on the unit disc, with norm

‖F‖∞ := ess supΩ∈(−2π,2π]σ
[
F
(
ejΩ
)]

H−
∞ Space H−

∞ is a (closed) subspace of L∞ with functions that are analytic and

bounded in the open unit disc. [ZDG95, Chapter 4].

||G||i2 denotes the induced 2-norm of G, namely

sup
u

||G ∗ u||2
||u||2

D, δD D represents the open unit disk; δD represents the unit circle.
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Sp
k represents the space of all real-valued finite-length signals of the form {u0, u1, . . . , uk−1}

where ui ∈ Rp

L2, H2, H⊥
2 L2 is the space of square integrable functions on δD. H2 is the

subspace of square integrable functions on δD analytic in the unit circle; H⊥
2 is the

subspace of square integrable functions on δD analytic outside the unit circle.

G∼ G∼(z) := GT (z−1).

As indicated at the start of this chapter, notation is generally standard, following

the pattern of texts such as [ZDG95].

2.2 Stacking and truncation of sequences

Consider a sequence u = {u0, u1, u2, . . . }. We define the vec operation as follows:

vec (u) =





u0

u1

...




(2.1)

Remark 2.1 The vec notation is cumbersome, and will be dropped from time to

time, the context (usually being an interpolation problem) dictating the meaning.

♥

The symbol Πk is the k-step truncation operator, i.e. the operator that truncates

a sequence to its first k elements. (When applied to a Toeplitz operator (see below)

it works in the logical sense.)

2.3 Hankel and Toeplitz operators

The Hankel Operator is discussed in detail in Zhou et al [ZDG95] and Chen and

Gu [CG00] and is in essence a mapping from past inputs to future outputs. It has
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a number of applications in control theory, amongst these being the solution of the

Nehari problem (Section 2.6.1).

The Toeplitz Operator is a mapping from inputs at and after some instant to

outputs at and after that instant and is closely related to the impulse response of

the system.

In order to define the operators, it is useful to define some orthogonal projections:

P+ : l2(−∞,∞) 7→ l2[0,∞) or L2(∂D) 7→ H2(∂D)

P− : l2(−∞,∞) 7→ l2(−∞, 0) or L2(∂D) 7→ H⊥
2 (∂D)

The notation used in the following definitions is taken from [ZDG95, Section 8.1],

where it is illustrated in diagramatic form.

Definition 2.2 (Hankel Operator) Consider a matrix function Gd(λ) ∈ L∞.

The discrete time Hankel Operator is defined as follows:

ΓGd
: l2(−∞, 0) 7→ l2[0,∞) or H⊥

2 (∂D) 7→ H2(∂D)

ΓGd
= P+MGd

|H⊥

2 (∂D) (2.2)

Definition 2.3 (Toeplitz Operator) The corresponding Toeplitz Operator is de-

fined as

TGd
: l2[0,∞) 7→ l2[0,∞) or H2(∂D) 7→ H2(∂D)

TGd
= P+MGd

|H2(∂D) (2.3)

Let Gd(λ) =
∑∞

i=−∞ Giλ
i ∈ L∞. We can obtain the output sequence {yi} from

the input {uk} by convolution:

yk =

∞∑

i=−∞

Giuk−i

10



We can thus write an expression relating the input to the output:





y0

y1

...

y−1

y−2

...





=





G0 G−1 • G1 G2 •

G1 G0 • G2 G3 •

• • • • • •

G−1 G−2 • G0 G1 •

G−2 G−3 • G−1 G0 •

• • • • • •









u0

u1

...

u−1

u−2

...





=:




T1 H1

H2 T2









u0

u1

...

u−1

u−2

...





(2.4)

The ‘purpose’ of each of these blocks is as follows:

T1 maps ‘future’ inputs to ‘future’ outputs;

T2 maps ‘past’ inputs to ‘past’ outputs;

H1 maps ‘past’ inputs to ‘future’ outputs; and

H2 maps ‘future’ inputs to ‘past’ outputs.

T1 and T2 are called block Toeplitz matrices, and T1 is the matrix representation of

the Toeplitz operator. Similarly, H1 and H2 are called block Hankel matrices and

H1 is the matrix representation of the Hankel operator.

Some useful results relating to this form may be found in, for example, Zhou et

al [ZDG95]: firstly,

‖Gd(λ)‖∞ =

∥∥∥∥∥∥∥




T1 H1

H2 T2





∥∥∥∥∥∥∥
, ‖ΓGd

‖ = ‖H1‖, and ‖TGd
‖ = ‖T1‖

and, secondly, under the bilinear transformation, the discrete time and continuous

time Hankel norms are unchanged.

11



Causality

For a causal system, Gi = 0, ∀i < 0. Consequently, we will find that H2 = 0, i.e.,

no ‘future’ inputs are mapped to ‘past’ outputs. Equation (2.4) becomes:





y0

y1

...

y−1

y−2

...





=





G0 0 0 G1 G2 •

G1 G0 0 G2 G3 •

• •
. . . • • •

0 0 0 G0 G1 •

0 0 0 0 G0 •

0 0 0 0 0
. . .









u0

u1

...

u−1

u−2

...





=:




T1 H1

H2 T2









u0

u1

...

u−1

u−2

...





(2.5)

The Toeplitz matrices have now taken on a triangular form: T1 is a lower block

Toeplitz matrix and T2 is an upper block Toeplitz matrix.

Note that when we use the state space form Gd(λ) =




Φ Γ

C D



 we can find T1 as

follows:

T1 =





D 0 0 · · · 0

CΓ D 0 · · · 0

CΦΓ CΓ D · · · 0

CΦ2Γ CΦΓ CΓ
. . . 0

...
...

... D





(2.6)

Remark 2.4 Given a p × q system P , the notation ‘TP ’ indicates the lower block

Toeplitz matrix corresponding to ‘T1’ in the text above.
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The notation ΠlTP , denoting the pℓ×qℓ upper-left partition of the TP is cumber-

some. When working with finite data sequences, it will often be abbreviated to ‘TP ’;

it will be clear that a truncated matrix is meant by the context, and readability will

be greatly improved.

The notation Tu applied to some infinite sequence {u0, u1, . . .} indicates an infi-

nite lower block Toeplitz matrix of the form





u0 0 · · ·

u1 u0 · · ·

...
...

. . .





Similarly, when dealing with finite-length sequences the same notation will indicate

a finite matrix. ♥
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2.4 The Schur complement and LMIs

Given the partitioned matrix

A :=




A11 A∗

21

A21 A22



 = A∗

the Schur complement of A11 in A is

X := A22 − A21A
−1
11 A∗

21;

and the Schur complement of A22 in A is

X̂ := A11 − A∗
21A

−1
22 A21.

If A11 > 0, then A ≥ 0 if and only if X ≥ 0. Similarly, if A22 > 0, then A ≥ 0 if

and only if X̂ ≥ 0. (This is discussed in more detail in, for example, [ZDG95, Ch.

2 Sec. 3].)

This has applications in interpolation theory, where a common problem is to find

the smallest feasible γ in

γ2T ∗
s Ts − T ∗

t Tt ≥ 0.

This can be formulated as a Linear Matrix Inequality (LMI) minimization problem

in x = γ2: What is the smallest x for which




xT ∗

s Ts T ∗
t

Tt I



 ≥ 0 ? (2.7)

or as an LMI minimisation problem in x̂ = γ2: What is the largest x̂ for which




T ∗

s Ts T ∗
t

Tt x̂I



 ≥ 0 ? (2.8)
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Similarly, the constraint

A2 − v∗T ∗
PTP v ≥ 0

or

A − v∗T ∗
P

1

A
TP v ≥ 0

with A > 0 may be represented as




A v∗T ∗

P

TP v AI



 ≥ 0

or equivalently 


A2 v∗T ∗

P

TP v I



 ≥ 0 (2.9)

Convexity A function f(x) is said to be convex in [a, b] if for all λ ∈ [0, 1],

f(λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b)

When a convex function is minimized over a convex set, any local minimum will turn

out to be a global minimum. [CG00, Appendix B] Convex problems are considered

to be computationally tractable. [Dav96] provides a number of results relating to the

convexity of model validation problems, noting that many are ‘NP hard’. Chapter

4 of [Dav96] discusses this in further detail. One property of NP hard problems is

that the number of computations required to find the solution is not polynomially

bounded in the problem size.1

If a problem can be formulated as an LMI, this implies convexity [CG00, Appendix

B]. MATLAB’s LMI Control Toolbox solves LMI problems efficiently using interior

point algorithms, although they take much longer to solve than, say, a Riccati

equation.

1Examples of non-polynomial bounds are factorials and exponentials.
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2.5 The S-procedure

The S-procedure is stated in the following form in [SDM00]:

Proposition 2.5 (S-Procedure) Let Q0(χ), Q1(χ), . . . Qn(χ) be quadratic matrix

functions of vector χ ∈ R
ℓ. If there exist scalars τi ≥ 0, i = 1, . . . , n, such that

Q0(χ) −
n∑

i=1

τiQi(χ) ≥ 0, for all χ, (2.10)

then, for all χ such that Qi(χ) ≥ 0, i = 1, . . . , n;

Q0(χ) ≥ 0. (2.11)

If n = 1 then this condition is necessary and sufficient.

The sufficiency of Proposition 2.5 is easy to see: if all Qi(χ) ≥ 0, i = 1, . . . , n then

(2.11) must hold true. The necessity when n = 1 is described in [Boy04] as ‘not

easy to prove’ and the interested reader may wish to follow this up in the original

sources [Yak77].2

2.6 Interpolation problems

2.6.1 The Nehari problem

The Nehari problem is discussed in detail by Zhou et al [ZDG95] and by Chen and

Gu [CG00].

Nehari Problem Given G ∈ L∞, determine

inf
Q∈H−

∞

‖G − Q‖∞ (2.12)

and find a minimizer Q ∈ H−
∞.

2The form when n = 1 the S − procedure is ‘lossless’.
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The solution is given by Nehari’s Theorem:

Theorem 2.6 (Nehari’s Theorem [ZDG95]) Suppose G ∈ L∞, then

inf
Q∈H−

∞

‖G − Q‖∞ = ‖ΓG‖

and the infimum is achieved.

Corollary 2.7 Suppose G ∈ L∞ and let Γ̂G = Γ∗
G∼ . Then

inf
Q∈H∞

‖G − Q‖∞ = ‖Γ̂G‖

and the infimum is achieved.

2.6.2 The Nevanlinna-Pick Interpolation Problem

The Nevanlinna-Pick Interpolation Problem is described for continuous SISO prob-

lems in Doyle et al [DFT92], and in the general discrete time case in Chen and Gu

[CG00], for example.

Nevanlinna-Pick interpolation problem Let D and D denote the open and

closed unit discs respectively. Given zi ∈ D and wi in D, i = 1, 2, . . . , n, where zi

are distinct, find an interpolant, i.e. a function Q ∈ BH∞(D) such that

Q(zi) = wi, i = 1, 2, . . . , n (2.13)

where BH∞(D) is the closed unit ball in H∞(D), i.e.

BH∞(D) := {G ∈ H∞(D), ‖G‖∞ ≤ 1}

It is demonstrated in [CG00] that this interpolation problem can be reformulated

as a Nehari problem. This can be seen by considering some polynomial P ∈ H∞(D)
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such that P (zi) = wi—this can always be obtained by Lagrange interpolation3—and

observing that Q − P must have zeros at all zi. We can thus write

Q − P = BG

where G ∈ H∞(D) and B =
∏n

i=1
λ−zi

1−z̄iλ
. The problem is thus to find a function

satisfying
∥∥B−1P + Q

∥∥
∞

≤ 1

which is essentially the Nehari Problem.

Full details of the Nevanlinna-Pick algorithm, which gives the entire family of in-

terpolants, are extensive and may be found in Chen and Gu [CG00]. One important

theorem—that as to whether a solution exists—is reproduced here:

Theorem 2.8 Given zi ∈ D and wi ∈ D, i = 1, 2, . . . , n, where zi are distinct, there

exists an interpolant Q ∈ BH∞(D) such that (2.13) holds if and only if the Pick

matrix Q defined by

Qij =

[
1−wiw̄j

1−ziz̄j

]
(2.14)

is positive semidefinite.

Furthermore, the solution is unique if and only if det Q = 0.

2.6.3 Carathéodory-Fejér interpolation

The Carathéodory-Fejér problem is stated by Chen and Gu [CG00] as follows:

Carathéodory-Fejér Problem Given complex numbers ci, i = 0, 1, . . . , n − 1,

find a function ĥ ∈ BH∞(D) such that

ĥ(λ) = co + c1λ + · · ·+ cnλn−1 + λnĝ(λ) (2.15)

where ĝ ∈ BH∞(D).

3An explanation of this is given, for example, in [CG00, Ch. 2 Sec. 3.2]
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In other words, the Carathéodory-Fejér problem is to find a function whose

impulse response is the data sequence in question.

The first n coefficients of the Taylor expansion of ĥ are required to match the

given numbers, that is

ĥ(k)(0)

k!
= ck, k = 0, 1, . . . , n − 1

This is similar to the Nevanlinna-Pick problem, but we have interpolation condi-

tions repeated at the origin. Similarly, the Carathéodory-Fejér problem can also be

posed as one of Nehari best approximation. This is not used in this work, but the

interested reader may find more on the subject in a standard work on interpolation

such as [Dym89].

To see how this relates to time-domain model validation, we need to write our

transfer function in terms of λ = z−1, the unit delay operator. The k-th derivative

of the transfer function G(λ) is thus

G(k)(λ) =






D + C(I − λA)−1λB, k = 0,

k!C(I − λA)−(k+1)A(k−1)B, k = 1, 2, . . .

this gives

G(k)(0)

k!
=






D, k = 0,

CA(k−1)B , k = 1, 2, . . .

This relates the norm-bounded impulse-response fitting problem directly to the

Carathéodory-Fejér problem.

The condition for the existence of solutions to such problems is simple:

Theorem 2.9 ([CG00]) Given ci, i = 0, 1, . . . , n − 1, there exists a function ĥ ∈

BH∞(D) such that (2.15) is satisfied if and only if

I − T ∗
c Tc ≥ 0 (2.16)
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where Tc is the lower triangular Toeplitz matrix





c0 0 · · · 0

c1 c0
. . .

...

...
. . .

. . . 0

cn−1 cn−2 · · · c0





Moreover, this function is non-unique if and only if I − T ∗
c Tc > 0 and unique if and

only if I − T ∗
c Tc is rank deficient.

Chen and Gu also give a procedure for finding all interpolating functions.

There are a number of variations on the Carathéodory-Fejér theme. For model

validation, the tangential Carathéodory-Fejér interpolation problem, which may be

found in Foias et al [FF90] is of particular importance.

The Tangential Carathéodory-Fejér Interpolation Problem Given two vec-

tors u and y of the form

u =





u1

u2

...

un





y =





y1

y2

...

yn





find the necessary and sufficient conditions for the existence of an infinite contractive

Toeplitz matrix Â∞ satisfying y = Ânu where Ân is the n×n analytic Toeplitz matrix

in the upper left hand corner of Â∞.

The condition for the existence of such a matrix is given in [FF90]. What follows

is a generalized version, allowing for a non-unit norm constraint.

Theorem 2.10 ([PKT+92]) Given sequences u ∈ ΠlS
m
+ and y ∈ ΠlS

n
+, and a

positive real number γ, there exists a stable, causal, linear, time-invariant operator
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∆ satisfying

‖∆‖i2 ≤ γ

Πl∆





u0

u1

...

ul−1





=





y0

y1

...

yl−1





if and only if

T T
y Ty ≤ γ2T T

u Tu (2.17)

The same source provides a similar result for norm-bounded time-varying uncer-

tainty, be it linear or not:

Theorem 2.11 ([PKT+92],[PKT+94]) Given sequences u ∈ ΠlSm
+ and y ∈ ΠlSn

+,

and a positive real number γ, there exists a stable, causal, time-varying operator ∆

satisfying

‖∆‖i2 ≤ γ

Πl∆





u0

u1

...

ul−1





=





y0

y1

...

yl−1





if and only if

‖Πky‖2 ≤ γ ‖Πku‖2 (2.18)

for all k = {1, 2, . . . , l}.

These theorems can be applied to the uncertainty representations in Section 3.1.

The applications of this form the basis of Chapter 4.
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2.6.4 Construction of interpolants

The three interpolation problems discussed are closely interrelated and it is often

possible to express them in terms of each other. To do so here would be lengthy, and

the interested reader will find a full and detailed discussion in [Dym89] or a simi-

lar text book. Such texts provide methods of constructing interpolants functions,

though many deal only with a one-sided Carathéodory-Fejér problem, neglecting the

tangential variant. This limits the useful application to single-input problems.

Insights into the problem—and examples of the conversion between Nevanlinna-

Pick and Carathéodory-Fejér problems in the context of multi-rate periodic systems—

are given in [CQ04], who quotes a parameterization of all interpolant systems ob-

tained from [FFGK91], of which the following result is part:

Let u ∈ Sq
k , y ∈ Sp

k be input-output data sequences and define U ∈ Rq×k, Y ∈

Rp×k as follows:

U :=

[
u0 u1 · · · uk−1

]

Y :=

[
y0 y1 · · · yk−1

]

Let Z :=




0k−1×1 Ik−1

0 01×k−1



 and let Q, Q̃ ∈ Rk×k be the solution to the Lyapunov

equations

Z∗QZ − Q + U∗U = 0

Z∗Q̃Z − Q̃ + Y ∗Y = 0

Lemma 2.12 Given sequences u ∈ Sq
k , y ∈ Sp

k satisfying the tangential Carathéodory-

Fejér type condition T ∗
y Ty ≤ T ∗

uTu, there exists a stable LTI system G(z) =




A B

C D




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such that ||G||∞ ≤ 1 and





y0

y1

...

yk−1





=





D 0 · · · 0

CB D · · · 0

...
...

...

CAk−2 CAk−3 · · · D0









u0

u1

...

uk−1





and one such system is G1(z) =




A1 A1B1

C1 C1B1



 where A1 = (Q−Z∗Q̃Z)−1Z∗(Q−Q̃),

B1 = (Q − Z∗Q̃Z)−1U∗, C1 = Y .

Outline of proof. The existence of G is a direct consequence of Theorem 2.10 and

requires no further proof. The rest may be found in [CQ04]. We can characterise

all interpolant systems in terms of a LFT model set:

G(z) ∈ {G1(z) : Fℓ(Φ(z), ∆(z)), ||∆||∞ ≤ 1)}

where Φ(z) =




Φ11(z) Φ12(z)

Φ21(z) Φ22(z)



 and Φ11(z) = C1(I − z−1A1)
−1B1. The simplest

solution G1 = Fℓ(Φ(z), 0) = Φ11(z) is as satisfactory as any other. The (non-

standard) state-space description of G1(z) is

x(k + 1) = A1x(k) + B1u(k + 1)

y(k) = C1x(k)

The state transformation ξ(k) = x(k)−B1u(k) gives a more conventional state-space

form—

ξ(k + 1) = A1ξ(k) + A1B1u(k)

y(k) = C1ξ(k) + C1B1u(k)
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—which is as desired. �

Remark 2.13 A system constructed using Lemma 2.12 will contain q stable un-

observable modes with poles at the origin, which may readily be removed from the

system since they affect neither the input-output behaviour nor the H∞-norm. A

satisfactory way of eliminating these modes is balanced truncation. ♥

Corollary 2.14 Given sequences u ∈ Sq
k , v ∈ Sp

k satisfying the tangential Carathéodory-

Fejér type condition T ∗
v Tv ≤ γ2T ∗

uTu for γ > 0, let y = 1
γ
v. Then there exists a stable

LTI system G(z) =




A B

C D



 such that ||G||∞ ≤ γ and





v0

v1

...

vk−1





=





D 0 · · · 0

CB D · · · 0

...
...

...

CAk−2 CAk−3 · · · D0









u0

u1

...

uk−1





and one such system is G1(z) =




A1 A1B1

γC1 γC1B1



 where A1, B1, C1 are constructed to

interpolate (u, y) using Lemma 2.12.

Outline of proof. This this follows trivially from Lemma 2.12. The problem is

simplified by re-scaling, and the re-scaling is removed from the final system. �

2.6.5 Parameterization of all degree-N interpolants

Interpolants constructed using the above methods have the potential to be very

‘ragged’ in the frequency domain. An obvious question to ask is whether there are

other interpolants of the same degree with smoother frequency responses. There is

a body of work including, for example, [Geo01] which considers the construction of

all solutions to the Nevanlinna-Pick problem with degree N . Essentially, the idea is

that where interpolants exists, it is possible to find degree-N polynomials a(z), b(z)
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such that

f(z) =
b(z)

a(z)

is an interpolant and

a(z)b∗(z) + a∗(z)b(z) = σ(z)σ∗(z)

for any N -degree polynomial σ(z) with all its roots in the unit disk. The work

of [BN02] provides an algorithm for solving the degree-constrained Nevanlinna-Pick

interpolation problem with derivative constraints. (This problem is often referred to

as the ‘NPDC’ problem.) This paper provides further insight into the theory, and the

authors have also developed software to solve this problem, avaliable on the Internet

at http://www.math.kth.se/∼andersb/software.html. The problem description in

[BN02] supposes that we have two sets of complex numbers:

Z := {zj : j = 0, 1, . . . , n, zi 6= zj if i 6= j}

and

W := {wjk : j = 0, 1, . . . , n, k = 0, 1, . . . , mj − 1}

where all elements of Z satisfy |zj| < 1. The algorithm given attempts to construct

an interpolant that satisfies three conditions:

1. Interpolation:

f (k)(zj)

k!
= wjk,

j = 0, 1, . . . , n

k = 0, 1, . . . , mj − 1

2. Strict positive realness, i.e. f is analytic in an open region containing the closed

unit disc, and Re(f(z)) > 0 for all z in the closed unit disc.

3. f is rational and deg f ≤ m :=
∑n

j=0 mj − 1

The second condition may be converted into norm-bound by applying an appropriate

bilinear range transformation, e.g. g(z) = (−f(z) + 1)/(f(z) + 1), as described in
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[BN02, Lemma A2]. Choosing Z = {0} and W to be the first part of the impulse

response of the system to be constructed—uniquely determinable from single-input

data—gives the usual Carathéodory-Fejér problem.
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Chapter 3

Uncertainty, Stabilization and

Performance

3.1 Representing unstructured uncertainty

A detailed discussion of representations of uncertainty may be found in a standard

textbook on robust control [ZDG95]. This section looks at two representations: the

linear fractional transformation, which can accommodate most standard problems,

and the normalized coprime factorization.

3.1.1 Linear Fractional Transformations (LFTS)

Linear Fractional Transformations (LFTs) can be used to represent many forms

of unstructured uncertainty. The upper LFT (Fig. 3.1(a)) is commonly used to

represent uncertainty; the lower LFT (Fig. 3.1(b)) is generally used to represent

interconnections with controllers. If P =




P11 P12

P21 P22



, the resulting closed-loop

transfer functions are usually denoted Fu(P, ∆) and Fl(P, C).

The LFTs implicitly give a mapping from




u

t



 to




y

s



. It is often useful to
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[
P11 P12

P21 P22

]

∆

u - - y

t

-

s

�

(a) Upper LFT

[
P11 P12

P21 P22

]

C

u - - y

t

-

s

�

(b) Lower LFT

Figure 3.1: Linear Fractional Transformations

know the relationship between




u

y



 and




s

t



. For the upper LFT,




s

t



 =




P12 − P11P

−1
21 P22 P11P

−1
21

−P−1
21 P22 P−1

21








u

y



 if P21 is invertible (3.1)




u

y



 =




P−1

12 −P−1
12 P11

P22P
−1
12 P21 − P22P

−1
12 P11








s

t



 if P12 is invertible (3.2)

and for the lower LFT




s

t



 =




P21 − P22P

−1
12 P11 P22P

−1
12

−P−1
12 P11 P−1

12








u

y



 if P12 is invertible (3.3)




u

y



 =




P−1

21 −P−1
21 P22

P11P
−1
21 P12 − P11P

−1
21 P22








s

t



 if P21 is invertible (3.4)

The invertability of P12 and P21 is not in general guaranteed. Table 3.1 gives the

upper LFT form of some standard unstructured uncertainty representations. It can

be seen that for the last form (a left coprime factorization), P21 = M̃−1: this is

always invertible so it is always possible to find s and t from u and y.
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W1 ∈ RH∞ W2 ∈ RH∞, ∆ ∈ RH∞

Model Set P Upper LFT Form

(I + W1∆W2)P Fu

([
0 W2P

W1 P

]
, ∆

)

P (I + W1∆W2) Fu

([
0 W2

PW1 P

]
, ∆

)

(I + W1∆W2)
−1P Fu

([
W2 0

−W2W1 W2P

]
, ∆

)

P + W1∆W2 Fu

([
0 W2

W1 P

]
, ∆

)

(M̃ + ∆M̃)−1(N + ∆Ñ) P = M̃−1Ñ
∆ =

[
∆Ñ ∆M̃

] Fu









[
0

−M̃−1

] [
I

−P

]

M̃−1 P



 , ∆





Table 3.1: Some Unstructured Uncertainties and their LFT Representations

3.1.2 Normalized Coprime Factorizations (NCFs)

∆Ñ ∆M̃

Ñ M̃−1�

��
Σ

�

��
Σ

?

t

+

�−

-+

-

−s2s1

+ �-

-u y--

Figure 3.2: Left Coprime Factor Uncertainty

Normalized Coprime Factorizations (NCFs) are a convenient way of representing

uncertainty. The well-known left normalized coprime factorization is:

P = M̃−1Ñ

where M̃M̃∼ + ÑÑ∼ = I.
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Uncertainty may be represented by perturbations of the coprime factors (Fig. 3.2):

P =

{
P : P =

(
M̃ + ∆M̃

)−1 (
Ñ + ∆Ñ

)
, ∆ =

[
∆Ñ ∆M̃

]
∈ ∆

}
(3.5)

Remark 3.1 The left normalized coprime factorization fits into the LFT frame-

work: see Table 3.1. ♥

Remark 3.2 For convenience, the set of plants described by (3.5), with the addi-

tional constraint ‖∆‖i2 < γ will be denoted by

P = NCF
(
Ñ , M̃,∆, γ

)
(3.6)

♥

∆M ∆N

M−1 N

-�

?+

�

��
Σ

?−

�

��
Σ --+ -+

u y--

Figure 3.3: Right Coprime Factorization

The right normalized coprime factorization is:

P = NM−1

where M∼M + N∼N = I.

Uncertainty may be represented by perturbations of the coprime factors (Fig. 3.2):

P =





P : P = (N + ∆N ) , (M + ∆M)−1 ∆ =




∆N

∆M



 ∈ ∆





(3.7)
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�
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��
Σ �

w2+

(a) Small Gain Theorem

C

P�

��
Σ-u + - -

y

�

6+

(b) Controlled System

Figure 3.4: Small Gain Theorem and Robust Stability Margin

Remark 3.3 For convenience, the set of plants described by (3.7), with the addi-

tional constraint ‖∆‖i2 < γ will be denoted by

P = NCF (N, M,∆, γ) (3.8)

♥

3.2 Stabilization and robust performance

Stabilization of an uncertain system may be determined using the well-known small

gain theorem.

Theorem 3.4 (Small Gain Theorem [ZDG95]) Consider the interconnected sys-

tem of Fig. 3.4(a) Suppose M ∈ RH∞ and let γ > 0. Then the system is well-posed

and internally stable for all ∆ ∈ RH∞ with

1. ‖∆‖∞ ≤ 1/γ if and only if ‖M‖∞ < γ;

2. ‖∆‖∞ < 1/γ if and only if ‖M‖∞ ≤ γ.

Definition 3.5 The robust performance of a system is described by the robust
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stability margin:

bP,C :=










∥∥∥∥∥∥∥




I

C



 (I − PC)−1)
−1

[
I −P

]
∥∥∥∥∥∥∥
∞





−1

if C stabilizes P

0 otherwise

and

bopt := sup
C

bP,C

Remark 3.6 These quantities are derived from the application of the Small Gain

Theorem to an NCF-perturbed plant. A detailed derivation and methods of calcu-

lation may be found in a standard text [ZDG95] [Zho98].

The same sources also show that bP,C is a good measure of controller performance.

♥

3.2.1 The gap metric, δg

The gap metric δg(P1, P2) is a measure of the smallest perturbation of the coprime

factors of P1 producing P2.

The formal definition [Zho98] uses the notion of a graph: the graph of the oper-

ator P is the subspace of H2 consisting of all pairs (u, y) such that y = Pu:




M

N



H2

which is a closed subspace of H2. The gap between P1 and P2 is defined by

δg(P1, P2) =

∥∥∥∥∥∥∥∥∥∥∥∥∥

Π2

6

6

6

6

4

M1

N1

3

7

7

7

7

5

H2

− Π2

6

6

6

6

4

M2

N2

3

7

7

7

7

5

H2

∥∥∥∥∥∥∥∥∥∥∥∥∥
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where Mi, Ni are the right normalized coprime factors of Pi, and ΠH2
denotes the

orthogonal projection onto H2.

Theorem 3.7 ([QD92]) Suppose the feedback system with the pair (P0, C0) is stable.

Let P := {P : δg(P, P0) < r1} and C := {C : δg(C, C0) < r2}. Then

1. The feedback system with the pair (P,K) is stable for all P ∈ P and C ∈ C if

and only if

arcsin bPo,Co
≥ arcsin r1 + arcsin r2.

2. The worst possible performance resulting from these sets of plants and con-

trollers is given by

inf
P∈P,C∈C

arcsin bP,C = arcsin bP0,C0
− arcsin r1 − arcsin r2

Note that this theorem still holds if either P or C is taken as a closed ball.

Note that a ‘ball’ in the gap metric centred on some system P and satisfying

δg(P, P1) ≤ γ is identical to NCF(Ñ , M̃, ∆, γ).

3.2.2 The ν-gap metric, δν

The ν-gap metric, δν , is defined as follows:

Definition 3.8 ([Vin01])

δν(P1, P2) =






‖G̃2G1‖∞ if det(G∗
2G1(e

jΩ) 6= 0 ∀ Ω ∈ (−π, π]

and wno det(G∗
2G1) = 0

1 otherwise

where Gi :=




Mi

Ni



 and G̃i :=

[
−Ñi M̃i

]
, and Pi = NiM

−1
i = M̃−1

i Ñi are

normalized coprime factorizations.
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The ν-gap metric, δν , is less conservative than the gap metric, δg. An in-depth anal-

ysis can be found in Vinnicombe’s book [Vin01]. Some of the important properties

follow:

Remark 3.9 The ν-gap between two systems is never greater than the gap between

them, i.e.

δν(P1, P2) ≤ δg(P1, P2)

♥

Remark 3.10 1. Given a nominal system P1 ∈ Pp×q, a compensator C ∈ Pq×p

then:

[P2, C] is stable for all systems [P2] satisfying δν(P1, P2) ≤ β if, and only if,

bP1,C > β

2. Given a nominal system P1, a perturbed system P2 ∈ Pp×q and a number

β < bopt(P1) then:

[P2, C] is stable for all compensators C satisfying bP1,C > β if, and only if,

δν(P1, P2) ≤ β

♥

δν is thus less conservative than δg, since if bP1,C = γ and δν(P1, P2) > γ, there

exists at least one controller that will achieve the bP1,C but will not stabilize P2.

Definition 3.11 For convenience, the set of models lying within a ν-gap radius β

about P shall be denoted by Bν(P, β). Formally,

Bν(P, β) := {P1 : δν(P, P1) < β}
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3.2.3 Parameterization of a ball in the ν-gap metric

Given a nominal system P , and some β < bopt(P ) it is possible to synthesize a

‘central controller’

M =




M11 M12

M21 M22





such that bP,C > β ∀ C ∈ CP,β where

CP,β = {C1 : C1 = Fℓ(M, Q), Q ∈ RH∞, ||Q||∞ < 1}

and the inverses M−1 and M−1
21 exist [GGLD90]. Computation using the small

gain theorem is straightforward, either using readily-available H∞ synthesis soft-

ware1 or by directly solving the relevant Riccati equations [Can01]. The inverse of


0 I

I 0



M




0 I

I 0



, which we shall denote as G, forms the basis for an LFT param-

eterization of a ball of systems in the ν-gap. This was first shown in [VG94], and

discussed in [Dav96, Chapter 5.3]. Defining

BLTI
ν (P, β) := {P1 : P1 = Fu(G, ∆), ∆ ∈ RH∞, ‖∆‖∞ < 1}

it is shown in [Vin01, Chapter 9] that Bν(P, β) ≡ BLTI
ν (P, β).

Remark 3.12 The perturbation block in the set BLTI
ν (P, β) is linear and time-

invariant uncertainty. We can use the same G as the basis for similar sets

BLTV
ν (P, β) :=

{
P1 : P1 = Fu(G, ∆), sup

||s||2=1

||∆s||2 < 1, ∆ LTV

}

and

BNC
ν (P, β) :=

{
P1 : P1 = Fu(G, ∆), sup

||s||2=1

||∆s||2 < 1, ∆ may be non-causal

}

1e.g. MATLAB’s hinfsyne command
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BLTI
ν (P, β) ⊂ BLTV

ν (P, β) ⊂ BNC
ν (P, β). ♥

3.3 Optimal weighting for stability analysis

The frequency-wise ν-gap between any two systems varies according to scaling.

Given some constant k 6= 1 and two systems P1 and P2 it will usually be the case

that

δν(P1, P2) 6= δν(kP1, kP2)

Likewise, given some controller C it is often the case that

b(P1, C) 6= b

(
kP1,

1

k
C

)

The robust stability margin is different, yet the properties of the closed loop charac-

teristic equation have not changed. This begs the question of whether there is some

‘optimal’ scaling giving meaningful results. Such a strategy is proposed in [SV02].

The frequency-wise robust stability margin is defined as follows in [SV02]:

Definition 3.13 (Frequency-wise generalized stability margin ρ(P (ejΩ), C(ejΩ))

ρ(P (ejΩ), C(ejΩ)) :=
1

σ








P (ejΩ)

I



 (I − C(ejΩ)P (ejΩ))−1

[
−C(ejΩ) I

]




In [SV02] it is noted that provided [P, C] is stable,

b(P, C) = min
Ω∈[0,2π)

ρ(P (ejΩ), C(ejΩ))

An optimally-scaled variant is also given:

Definition 3.14 (Frequency-wise optimally-scaled input/output stability margin)

A frequency-wise measure of closed-loop stability to input/output gain and phase

36



offsets is given by

ρscaled

(
P (ejΩ), C(ejΩ)

)
:= max

Wi,Wo diagonal
ρ
(
WoPWi, W

−1
i CW−1

o

)
(ejΩ)

In effect, this defines ‘optimal’ dynamic weights W ◦
i (ejΩ) and W ◦

o (ejΩ), which may

prove useful for stability analysis.

Similarly, also from [SV02] we have the non frequency-wise equivalent:

Definition 3.15 (Optimally-scaled input/output stability margin) When [P, C]

is stable,

bscaled(P, C) := min
Ω∈[0,2π)

ρscaled(P (ejΩ), C(ejΩ))

otherwise bscaled(P, C) = 0.

Note that could be possible to find non-optimal weights Ŵo, Ŵi achieving the same

stability margin, providing that

ρ
(
ŴoPŴi, Ŵ

−1
i CŴ−1

o

)
(ejΩ) ≥ bscaled(P, C)

for all Ω ∈ [0, 2π).

37



Chapter 4

H∞ Model Validation

In the previous chapter, the subject of robust stabilization and performance has

been considered. The techniques represented are part of a body of control theory

that exploits the concept of robust stability margins: providing that the system does

not deviate from some nominal one by more than a definite, measurable amount,

an acceptable level of performance and stabilization can be guaranteed. Thus, for

any given control design, there is a set of models which can be guaranteed to give

satisfactory results.

The framework described is an example of model based control design. The

starting point is a nominal model, and the end point is a controller stabilizing

that model and a model set around it. The techniques presented in this chapter

compare observed data from post-design experiments to such model sets. With

certain assumptions about exogenous noise entering the system, it is possible to

make judgements about the size of the largest model set consistent with the observed

data. It is not guaranteed that a model set that is not invalidated by observed

experimental data will hold good for all data, but our confidence in it is increased.

In the modelling/control design process, model validation follows control design:

the effectiveness of the model/controller combination in practice is considered. If a

controller which was expected to work in conjunction with a given model does not

work in reality, then the model is not adequate to the design, and it must be refined
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through further experimentation and/or insight.

The methods of this chapter are computationally intensive and unlikely to be

of use in real-time applications, e.g. on-line envelope expansion. Those looking

for more computationally efficient methods may find better results with parameter-

vector model structures in the context of an ‘iterative falsification and control’ schem

[VW00], though this does not have the direct applicability to our school of robust

control design.

4.1 The H∞ model validation problem

P ∈ P?- -u(t) �

��+

−
Σ
6

wu(t) ∈ Wu

-�

��+

+
Σ - y(t)
6

wy(t) ∈ Wy

Figure 4.1: The H∞ Model Validation Problem

The block diagram for a generic time domain model validation problem is shown in

Fig. 4.1: it consists of

• a plant P (unknown);

• a model set P to which P is supposed to belong;

• a test input, u, which has been applied to the P experimentally; and

• the resulting measured output, y.

In real applications, is inevitable that there will be some noise in the system. This

is taken into account by introducing

• ‘plant input noise’, wu, belonging to some noise set Wu; and
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• ‘plant output noise’, ‘sensor noise’ or ‘measurement noise’, wy taken into ac-

count, belonging to some noise set Wy

(The noise sets will typically consist of all suitably-dimensioned sequences satisfying

some bound, e.g. an ℓ2 norm bound. More will be said about these noise sets in

section 4.5.)

The time domain model validation problem is:

Given P, u, y, Wu and Wy, do there exist P ∈ P, wu ∈ Wu and

wy ∈ Wy such that y(t) = P ∗ (u(t) − wu(t)) + wy(t)?

In practice, u, y ∈ Sk where k < ∞ so, strictly, a model can only be considered

validated for the particular data used. It cannot be said for certain that P ∈ P as

the following example shows:

Example 4.1 Suppose we have the system

Ptrue(z) = 1 − 0.8z−1 + 0.6z−2 − 0.2z−3 (4.1)

the noise sets Wu = Wy = 0, the input sequence u = {1, 0, 0}. The first three

elements of the resulting output sequence will be y = {1,−0.8, 0.6}.

Now suppose we have postulated a model set of the form

P =
{
P : P (z) = a + bz−1 + cz−2

}
(4.2)

It is clear that setting a = 1, b = −0.8, c = 0.6, giving

Pnom(z) = 1 − 0.8z−1 + 0.6z−2

will produce output data consistent with y from u. This means that the model is

valid for this data, but Ptrue 6∈ P

Note that, had our the impulse response in Example 4.1 been one sample longer, we

could not have found a P ∈ P consistent with the input-output data. Thus:
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[
P11 P12

P21 P22

]

∆

u - - y

t

-

s

�

Figure 4.2: Linear Fractional Transformation

It is not possible to demonstrate conclusively that a given sys-

tem Ptrue ∈ P. However, if no Ptrue ∈ P which is consistent

with the input-output data and noise conditions exists, then

the model set P has been invalidated.

Specific problem definitions

There are two variations of the H∞ validation problem:

• The Model Validation Decision Problem (MVDP). ‘Given a model set and

some data, are the two consistent?’

• The Model Validation Optimization Problem (MVOP). ‘Given a model set

parameterized on some uncertainty ∆ with an unknown bound in size. e.g.,

‖∆‖i2 ≤ γ with γ unknown, what is the tightest bound for which the model

is consistent?’

4.2 Validation in LFT model sets

A model set P in the form of Fig. 4.2 with ∆ linear and ‖∆‖i2 < γ can be shown to

be consistent with input-output sequences (u, y) using either Theorem 2.10 or 2.11,

depending on whether ∆ is time-invariant or not. In the time-invariant case, this
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means that

T T
t Tt ≤ γ2T T

s Ts

However this is only a simple problem if sequences (s, t) can be calculated from

(u, y): as shown in previous work [Dav96], in general there are a set of s satisfying

TP21
t = y − TP22

u

and for each t there is a corresponding s given by

t = TP11
s + TP12

u

This general model validation problem would involve a search over all (s, t)

satisfying the above equations: the computational complexity of the general model

validation problem incorporating noise has been shown to be NP hard [Dav96].

It is immediately clear that the problem will be much simpler when there is a

unique mapping from (u, y) to (s, t): as shown in equation (3.1), this can be done

whenever P−1
21 exists.

This method, the incorporation of noise, is illustrated for the specific case of the

left normalized coprime factorization, but the ideas are directly transferable to other

cases.
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4.3 Non-invalidation/validation in the gap met-

ric, δg

A left normalized coprime factorization (Fig. 4.3) can be represented as an upper

linear fractional transform P = Fu

(
R,

[
∆Ñ ∆M̃

])
where








s1

s2





y




=








0

−M̃−1








I

−M̃−1Ñ





M̃−1 M̃−1Ñ





︸ ︷︷ ︸
R




t

u



 (4.3)

M̃−1 is, by definition, invertible, yielding a unique mapping from u and y to s and

t:

s(k) =




+u(k)

−y(k)



 (4.4)

t(k) =
(
M̃ ∗ y

)
−
(
Ñ ∗ u

)
(4.5)

Theorems 2.10 and 2.11 can now be applied:

Figure 4.3: Left Normalized Coprime Factorization

∆Ñ (z) ∆M̃ (z)

Ñ(z) M̃−1(z)�

��
Σ

�

��
Σ

?+

�−

-+

-+ �-

-u(k) y(k)--

s1(k) t(k) −s2(k)
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Proposition 4.1 ([Dav96]) Given a model set P with the structure of Fig. 4.3,

with ∆ =

[
∆Ñ ∆M̃

]
∈ ∆ and ‖∆‖i2 < γ, and a set of input-output data u ∈ ΠlSm

+

and y ∈ ΠlSn
+, let1

s = vec








u

y







 (4.6)

t = TM̃vec (y) − TÑvec (u) (4.7)

then:

1. if ∆ is linear and time invariant, there exists some plant P1 ∈ P satisfying

y = ΠlTP1
u

if and only if

Tt
T Tt ≤ γ2Ts

T Ts (4.8)

or, equivalently (by the Schur complement)




γ2Ts

T Ts Tt
T

Tt I



 ≥ 0 (4.9)

2. if ∆ is linear but time varying, there exists some plant P1 ∈ P satisfying

y = ΠlTP1
u

if and only if

‖Πkt‖2 ≤ γ ‖Πks‖2 (4.10)

1The more alert reader may notice that the sign of y in the expression for s is reversed. This
does not matter, since the sense is still correct in T T

s Ts.
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for all k = 1, 2, . . . , l, or, equivalently (by the Schur complement)




γ2(Πk(p+q)s)

T (Πk(p+q)s) (Πkqt)
T

(Πkqt) I



 ≥ 0 (4.11)

for all k = 1, 2, . . . , l (where q is the output dimension of Ñ)

The following remarks are drawn from material in [Dav96].

Remark 4.2 Validation of a right-coprime factor model set does not yield the same

results (due to the difference between the gap and T-gap metrics). ♥

Remark 4.3 The induced 2-norm of a system is equal to the infinity norm:

sup
u

‖∆‖i2 =
‖∆ ∗ u‖2

‖u‖2
= ‖∆‖∞ = sup

|z|>1

σ[∆(z)] (4.12)

Finding the minimum value of γ is the same as attempting to find the smallest

H∞ perturbation to the coprime factors: it is thus a lower bound on the gap

δg(Pnom, Ptrue), where and Pnom = M̃−1Ñ and Ptrue = (M̃ + ∆M̃)−1(Ñ + ∆Ñ). ♥

Remark 4.4 The minimum value of γ often tends to δg as the length of the data

record increases, provided that exitation is persistent. ♥

Remark 4.5 The LMIs in γ given for the two cases can be solved using commands

from MATLAB’s LMI Toolbox: gevp and mincx. ♥

4.3.1 Non-invalidation/invalidation with a central noise in-

put

Existing approaches to gap validation [Dav96] model noise as entering ‘in the middle’

of the NCF as shown in Fig. 4.4. This entry point guarantees convexity, and achieves

a compromise between placing the noise at the input or the output. (See pp. 45–48

of [Dav96] for details.) Effectively, the noise is not subject to model perturbations.
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Proposition 4.6 ([Dav96]) Given a model set P with the structure of Fig. 4.4,

with ∆ =

[
∆Ñ ∆M̃

]
∈ ∆ and ‖∆‖i2 < γ, and a set of input-output data (u, y) ∈

(Sq
ℓ ,S

p
ℓ ), and a noise set Wt consisting of all wt ∈ Sp

ℓ satisfying some given con-

straint) let

s = vec








u

v







 (4.13)

t = TM̃vec (y) − TÑvec (u) (4.14)

then:

1. If ∆ is linear and time invariant, there exist (P1, ŵt) ∈ (P,Wt) satisfying the

interpolation condition

y = TP1
u + TM̃−1ŵt (4.15)

if and only if there exists wt ∈ Wt satisfying

(Tt − Twt
)T (Tt − Twt

) ≤ γ2Ts
T Ts (4.16)

or, equivalently (by the Schur complement)




γ2Ts

T Ts T T
t − T T

wt

Tt − Twt
I



 ≥ 0 (4.17)

This is an LMI in




γ2

wt



. If any such wt exist, then ŵt = wt is a solution of

(4.15).

2. if ∆ is linear but time varying, there exist (P1, ŵt) ∈ (P,Wt) satisfying (4.15)

if and only if there exists wt ∈ Wt such that

‖Πk(t − wt)‖2 ≤ γ ‖Πks‖2 ∀k = 1, 2, . . . , ℓ (4.18)
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∆Ñ (z) ∆M̃ (z)

Ñ(z) M̃−1(z)�
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Σ
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��
Σ
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-u(k) y(k)--

s1(k) t(k) −s2(k)

6
+

wt(k) ∈ Wt

Figure 4.4: Left Normalized Coprime Factorization with Noise

or, equivalently,




γ2(Πk(p+q)(s))

T (Πk(p+q)s) (Πkp (t − wt))
T

(Πkp(t − wt) I



 ≥ 0 ∀ k = 1, 2, . . . , ℓ (4.19)

Again, should such wt exist, then ŵt = wt is a solution of (4.15)

4.3.2 Non-invalidation with input-output noise

The noise injection points shown in Fig. 4.5 are more realistic, but have been avoided

in previous work because they do not necessarily result in convex problems. Subse-

quent work on ν-gap validation [SV01] has got round this difficulty by approximating

the validation problem. Similar ideas can be applied to gap validation techniques.

Consider the equation relating the input to the output:

(y − wy) =
(
M̃ + ∆M̃

)−1 (
Ñ + ∆Ñ

)
(u − wu) (4.20)

(
M̃ + ∆M̃

)
(y − wy) =

(
Ñ + ∆Ñ

)
(u − wu) (4.21)
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This can be rearranged with all the uncertain terms on the RHS

−

[
Ñ M̃

]



+ (u − wu)

− (y − wy)



 =

[
∆Ñ ∆M̃

]



+ (u − wu)

− (y − wy)



 (4.22)

−

[
Ñ M̃

]







+u

−y



−




+wu

−wy







 =

[
∆Ñ ∆M̃

]







+u

−y



−




+wu

−wy







 (4.23)

Now define ∆ =

[
∆Ñ ∆M̃

]
, s =




+u

−y



 and ws =




+wu

−wy



. The equation now

becomes

−

[
Ñ M̃

]
(s − ws) = ∆ (s − ws) (4.24)

Now define t = −

[
Ñ M̃

]
s and wt = −

[
Ñ M̃

]
ws. This gives a useful result:

(t − wt) = ∆ (s − ws) (4.25)

Note that it is easy to recover recover wu and wy from ws since




wu

wy



 =




Iq 0

0 −Ip



ws (4.26)

where q and p are the input and output dimensions of the plant.

Proposition 4.7 Given a model set P with the structure of Fig. 4.5, with ∆ =[
∆Ñ ∆M̃

]
∈ ∆ and ‖∆‖i2 < γ, and a set of input-output data u ∈ ΠlS

m
+ and
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y ∈ ΠlS
n
+, and noise sets Wu and Wy, let

s = vec




+u

−y



 (4.27)

t = T−[Ñ M̃ ]s (4.28)

then:

1. if ∆ is linear and time invariant, there exists some plant P1 ∈ P and some

noise sequences wu ∈ Wu and wy ∈ Wy satisfying

y = ΠlTP1
(u − wu) + wy

if and only if

(Tt − Twt
)T (Tt − Twt

) ≤ γ2(Ts − Tws
)T (Ts − Tws

) (4.29)

where ws, wt are the ‘vec’ forms of the corresponding signals defined earlier in

the section. From the definitions, it is clear that Twt
= −T[Ñ M̃ ]Tws

. By the

∆Ñ (z) ∆M̃ (z)

Ñ(z) M̃−1(z)�

��
Σ

�

��
Σ

?+

�−

-+

-+ �-

--u(k) �

��
Σ -+

6
−

wu(k) ∈ Wu

-+

�

��
Σ

+

wy(k) ∈ Wy

6

- y(k)

Figure 4.5: Left Normalized Coprime Factorization with Noise
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Schur complement:





(
T T

s Ts − T T
ws

Ts − T T
s Tws

+ T T
ws

Tws

)
T T

t − (T−[Ñ M̃ ]Tws
)T

Tt − T−[Ñ M̃ ]Tws
γ2



 ≥ 0 (4.30)

2. if ∆ is linear but time varying, there exists some plant P1 ∈ P and some noise

sequence wt ∈ Wt satisfying

y = ΠlTP1
(u − wu) + wy

if and only if

‖Πk(t − wt)‖2 ≤ γ ‖Πk(s − ws)‖2 (4.31)

or, equivalently,

∥∥∥Πk(t + [Ñ M̃ ] ∗ ws)
∥∥∥

2
≤ γ ‖Πk(s − ws)‖2 (4.32)

for all k = 1, 2, . . . , l, or, equivalently (by the Schur complement)





(
Πk(m+n) (s − ws)

)T (
Πk(m+n)(s − ws)

) (
Πkq

(
t + [Ñ M̃ ] ∗ ws

))T

(
Πkq(t + [Ñ M̃ ] ∗ ws

)
γ2



 ≥ 0

(4.33)

for all k = 1, 2, . . . , l (where q is the output dimension of Ñ).

Proof. This is a simple application of Theorems 2.10 and 2.11. �

Note that (4.30) and (4.33) cannot be expressed as LMIs in




γ2

ws



. It is straightfor-

ward to approximate these conditions to get LMI problems:

Proposition 4.8 (Sufficient Conditions for Validation) Given a model set P

with the structure of Fig. 4.5, with ∆ =

[
∆Ñ ∆M̃

]
∈ ∆ and ‖∆‖i2 < γ, and a set
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of input-output data u ∈ ΠlS
m
+ and y ∈ ΠlS

n
+, and noise sets Wu and Wy, let

s = vec




u

−y



 (4.34)

t = T−[Ñ M̃ ]s (4.35)

then:

1. if ∆ is linear and time invariant, there exists some plant P1 ∈ P and some

noise sequences wu ∈ Wu and wy ∈ Wy satisfying

y = ΠlTP1
(u − wu) + wy

if (but not only if)

(Tt − Twt
)T (Tt − Twt

) ≤ γ2
(
T T

s Ts − T T
ws

Ts − T T
s Tws

)
(4.36)

Now Twt
= −T−[Ñ M̃ ]Tws

. By the Schur complement:




T T

s Ts − T T
ws

Ts − T T
s Tws

T T
t −

(
T−[Ñ M̃ ]Tws

)T

Tt − T−[Ñ M̃ ]Tws
γ2



 ≥ 0 (4.37)

2. if ∆ is linear but time varying, there exists some plant P1 ∈ P and some noise

sequence wt ∈ Wt satisfying

y = ΠlTP1
(u − wu) + wy

if (but not only if)




(Πks)

T (Πks) − (Πkws)
T (Πks) − (Πks)

T (Πkws)
(
Πkq

(
t + [Ñ M̃ ] ∗ ws

))T

(
Πkq(t + [Ñ M̃ ] ∗ ws

)
γ2



 ≥ 0

(4.38)
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for all k = 1, 2, . . . , l (where q is the output dimension of Ñ).

Proof. This is exactly as before, except that the interpolation condition is approx-

imate. In the LTI case, we observe that

(Tt − Twt
)T (Tt − Twt

) ≤ γ2(Ts − Tws
)T (Ts − Tws

)

is the same as

(Tt − Twt
)T (Tt − Twt

) ≤ γ2
(
T T

s Ts − T T
ws

Ts − T T
s Tws

+ T T
ws

Tws

)

Writing this as

(Tt − Twt
)T (Tt − Twt

) − γ2
(
T T

s Ts − T T
ws

Ts − T T
s Tws

)
≤ γ2T T

ws
Tws

it is immediately clear that, since γ ≥ 0 and T T
ws

Tws
≥ 0, this will always be true if

(Tt − Twt
)T (Tt − Twt

) − γ2
(
T T

s Ts − T T
ws

Ts − T T
s Tws

)
≤ 0

Thus we have a sufficient condition for validation. Similar manipulations apply to

the LTV case. �

(4.37) and (4.38) are an LMIs in




γ2

ws



.

Remark 4.9 It has been observed by Steele and Vinnicombe [SV01] that it is rea-

sonable to assume that the effect of T T
ws

Tws
will be substantially smaller than that

of T T
ws

Ts and its transpose. ♥

Remark 4.10 There is no scope for simplifying the problem by assuming that

ws = 0 as may be done for the ν-gap problem because ws =




+wu

−wy



. ♥
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Remark 4.11 These approximate conditions are implicitly formulated as MVOPs.

♥

4.4 Non-invalidation in the ν-gap metric, δν

The basic framework for validation in the ν-gap metric was laid down in [Dav96];

it was extended in [SV01] to allow more realistic noise constraints at the cost of

approximation of the interpolation constraints.

Let P be some nominal plant and let β < bopt(P ) be a ν-gap radius. Recall from

section 3.2.3 the parameterization of a ‘ball’ of radius β in the ν-gap centred on P

is:

BLTI
ν (P, β) =

{
P1 : P1 = Fu(M

−1, ∆), ∆ ∈ RH∞, ‖∆‖∞ < 1
}

where M is the central controller acheving bP,C > β for all C ∈ {C1 : C1 =

Fℓ(M, Q), Q ∈ RH∞, ‖Q‖∞ < 1}. (See section 3.2.3 for details.)

Taking u as the system input, y as the corresponding output, t as the perturba-

tion block output and s as the perturbation block input, any model in the above set

can be described with the equations




y

s



 = M−1




u

t





t = ∆s

An important property of this set is that given any (u, y) the corresponding (s, t)

are unique; similarly, given any (s, t) the corresponding (u, y) are unique. The

relationship between the two pairs is given by the chain scattering form of M :

ch(M) :=




M12 − M11M

−1
21 M22 M11M

−1
21

−M−1
21 M22 M−1

21



 (4.39)

The existence of M−1
21 , M−1 ∈ R and ch(M)−1 ∈ RH∞ are demonstrated in
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[GGLD90]. The chain scattering form gives the following relationship:




s

t



 = ch(M)−1




u

y



 (4.40)

If noise sequences (wu, wy) are subtracted from the system input and output, lin-

earity gives the perturbation block input and output as




s − ws

t − wt



 where




ws

wt



 := ch(M)−1




wu

wy



 (4.41)

These ideas will be useful in the following sections.

4.4.1 Non-convex conditions for non-invalidation/validation

This gives rise to the following propositions [SV01]:

Proposition 4.12 (LTI Non-Invalidation) Given some nominal model P , noise

sets Wu and Wy and a ν-gap radius β, and the corresponding central controller M

as described in section 3.2.3, the following statements are equivalent.

1. there exist noise sequences wu ∈ Wu and wy ∈ Wy, and a linear, time-

invariant P̂ ∈ Bν(P, β) such that y = P̂ ∗ (u − wu) + wy;

2. there exist sequences (ws, wt) such that




wu

wy



 := ch(M) ∗




ws

wt



 ∈ Wu ×Wy

and

(Tt − Twt
)∗ (Tt − Twt

) ≤ (Ts − Tws
)∗ (Ts − Tws

) , (4.42)

3. (by the Schur complement) there exist sequences (ws, wt) such that




wu

wy



 :=
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ch(M) ∗




ws

wt



 ∈ Wu ×Wy and

0 ≤




T ∗

s Ts − T ∗
ws

Ts − T ∗
s Tws

+ T ∗
ws

Tws
T ∗

t − T ∗
wt

Tt − Twt
I



 (4.43)

Any values of (ws, wt) and their equivalent (wu, wy) satisfying one of the conditions

will satisfy the others.

There is a corresponding result for linear time-varying uncertainty:

Proposition 4.13 (LTV Non-invalidation) Given some nominal model P , noise

sets Wu and Wy and a ν-gap radius β, and the corresponding central controller M

as described in section 3.2.3, the following statements are equivalent.

1. there exist noise sequences wu ∈ Wu and wy ∈ Wy, and a linear, time-varying

P̂ ∈ Pν(P, β) such that y = P̂ ∗ (u − wu) + wy;

2. there exist sequences (ws, wt) such that




wu

wy



 := ch(M) ∗




ws

wt



 ∈ Wu ×Wy

and

‖Πk(t − wt)‖2 ≤ ‖Πk(s − ws)‖2 ∀ k ∈ [0, N − 1] (4.44)

3. (by the Schur complement) there exist sequences (ws, wt) such that




wu

wy



 :=

ch(M) ∗




ws

wt



 ∈ Wu ×Wy and

0 ≤




(Πk(s − ws))

∗ Πk(s − ws) (Πk(t − wt))
∗

Πk(t − wt) I



 (4.45)

Any values of (ws, wt) and their equivalent (wu, wy) satisfying one of the conditions

will satisfy the others.
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Unfortunately, the presence of quadratic terms in the Schur complement makes these

non-convex.

4.4.2 Convex sufficient conditions for non-invalidation

Steele and Vinnicombe [SV01] approximated these conditions to give sufficient con-

ditions for validation:

Proposition 4.14 (LTI Non-invalidation—Sufficient Condition [SV01]) Given

some nominal model P , a ν-gap radius β and the corresponding central controller

M as described in section 3.2.3, and noise sets Wu and Wy, there exist noise se-

quences wu ∈ Wu and wy ∈ Wy, and a linear, time-invariant P̂ ∈ Pν(P, β) such

that y = P̂ ∗ (u − wu) + wy if, but not only if, there exist sequences (ws, wt) such

that ch(M) ∗




ws

wt



 ∈ Wu × Wy and

(Tt − Twt
)∗ (Tt − Twt

) ≤
(
T ∗

s Ts − T ∗
ws

Ts − T ∗
ws

Ts

)
, (4.46)

or equivalently, by the Schur complement,

0 ≤




T ∗

s Ts − T ∗
ws

Ts − T ∗
s Tws

T ∗
t − T ∗

wt

Tt − Twt
I



 (4.47)

When (ws, wt) exist, values of (wu, wy) satisfying the original condition are given by


wu

wy



 = ch(M) ∗




ws

wt



.

Proposition 4.15 (LTV Validation—Sufficient Condition [SV01]) Given some

nominal model P , a ν-gap radius β and the corresponding central controller M

as described in section 3.2.3, and noise sets Wu and Wy, there exist noise se-

quences wu ∈ Wu and wy ∈ Wy, and a linear, time-varying P̂ ∈ Pν(P, β) such that

y = P̂ ∗ (u − wu) + wy if, but not only if, there exist sequences (ws, wt) such that
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ch(M) ∗




ws

wt



 ∈ Wu ×Wy and

0 ≤




(Πks)

∗Πks − (Πkws)
∗Πks − (Πks)

∗Πkws (Πk(t − wt))
∗

Πk(t − wt) I



 (4.48)

When (ws, wt) exist, values of (wu, wy) satisfying the original condition are given by


wu

wy



 = ch(M) ∗




ws

wt



.

The authors of [SV01] also provide sufficient and necessary conditions for (non)-

invalidation when ws = 0. This idea will not be developed further, but is included

for completeness in Appendix A.

4.5 Constraining exogenous noise

Having dealt with constraints relating to model perturbations, it is time to address

the nature of the ‘noise sets’ governing the exogenous noise. At the start of this

chapter, it was mentioned that these typically take the form of a bound such as a

maximum ℓ2-norm. Other possibilites might include a ℓ∞ norm or the mean of the

absolute value. Key in the usefulness of these bounds is our ability to implement

them as linear constraints.

In the case of the ℓ2-norm, if ‖wu‖2 is constrained to be less than than A,

(vec (wu))
T vec (wu) < A2 (4.49)

which is, in LMI form, 


A2 (vec (wu))

T

vec (wu) I



 > 0 (4.50)

This makes it very easy to constrain the ℓ2-norm of a sequence of decision variables.

Linear mappings are possible:
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If wu is a function of some other noise set, e.g. wu = G ∗ws, where G is a linear

system, this can be re-written as




A2 (vec (ws))

T T T
G

TGvec (ws) I



 > 0 (4.51)

where TG is the finite lower-block Toeplitz operator corresponding to G. This means

that it is possible to apply bounds to ‘filtered’ versions of the decision variable

sequences. This is of practical usefulness in some LFT model sets where the effects of

noise sequences applied at the system input/output are modelled by decision variable

sequences representing the sequences’ effects at the perturbation block input/output;

an example of this may be seen in Propositon 4.12 where the constraint on noise is

expressed as: 


wu

wy



 := ch(M) ∗




wu

wy



 ∈ Wu × Wy

Recall that ch(M) is a linear mapping; nothing else about it is presently important.

Suppose that the desired bound on the exogenous noise sequences is an ℓ2-norm

bound on the combined input-output sequences:

Wu × Wy := {(wu, wy) : ||wu||
2
2 + ||wy||

2
2 < γ2, wu ∈ Sq

k , wy ∈ Sp
k}

It is easy to see how this bound may be expressed using (4.51).

There are plenty of variations on this: it is also possible to bound noise according

to the mean of the absolute sum of the samples [SV01]:

−Nǫmean < bT wy < Nǫmean (4.52)

for N samples and a maximum mean value ǫmean, where b is a vector of ones.2 This

may be trivially implemented as a pair of inequality constraints.

2If we used

(
wu

wy

)
in the equation, b would select the right elements.
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An ℓ∞ bound is implemented by applying a similar pair of constraints to each

term.

None of the bounds outlined above prevents unrealistic cross-correlations be-

tween inputs, outputs and noise models: this could make the results overly opti-

mistic, because a model error could be ‘covered up’ if it happened to result in an

admissibl ‘noise’ sequence. Sources such as [Pag96] suggest methods of constraining

the cross correlation, though preliminary experiments did not yield promising re-

sults: owing to the difficulty in implementing nonlinear constraints, it was found to

be difficult to place appropriate restrictions on the autocorrelation of a supposedly

random noise sequence.

4.6 Issues in implementation

LMI problems may be implemented using MATLAB’s LMI Control Toolbox or other

non-comercial solvers such as SeDuMi. In practice, this has been found to be quite

slow. Earlier work [Dav96] quotes the following claim from [BVG94]:

. . . we are able to solve convex optimization problems with over 1,000

variables and 10,000 constraints in around 10 minutes on a workstation.

This level of performance was not achieved. It was found that problems with roughly

350 decision variables implemented in MATLAB, an LTI/LTV interpolation con-

straint and a noise-norm constraint took several hours to solve using a modern

Pentium processor. Improvement here would be desirable.

MATLAB’s LMI Control Toolbox has the following commands:

• feasp – determines whether a convex problem is strictly feasible, i.e. minimize

t subject to

L(x) < R(x) + t × I (4.53)

• gevp – solves a generalised minimum eigenvalue problem, i.e. finds the smallest
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value of t for which

C(x) < 0 (4.54)

0 < Bj(x) j = 1, . . . , M (4.55)

Aj(x) < t × Bj(x) j = 1, . . . , M (4.56)

• mincx – minimizes cT x subject to

L(x) < R(x) (4.57)

Remark 4.16 mincx is the obvious choice where a MVOP can be formulated suit-

ably. feasp seems at first glance to be the most appropriate for MVDPs. ♥

Remark 4.17 mincx can be used to ‘do’ feasp-type problems. Given the fact

that the LMI Lab routines assume strict inequalities, feasp can complain bitterly

about marginally-feasible problems. With mincx it is possible to avoid this: it is

also possible to set the problem to find the minimum eigenvalue of the interpolation

matrix whilst ensuring that the noise constraints are met. ♥

Remark 4.18 It was observed that sometimes the ‘full’ interpolation matrix—with

the non-linear terms included—‘passed’ the validation test using the noise sets ob-

tained from non-feasible approximate problems. (This makes sense, since the ap-

proximate problems provide sufficient conditions for validation.) In the light of this,

mincx could sometimes be preferred for MVDPs. However it is difficult to see ex-

actly how small eigenvalue perturbations relate to the interpolation conditions, so

this may be unhelpful. This problem does not arise using SeDuMi. ♥

Remark 4.19 (Weighted Plants) The above techniques can be applied to weighted

plants, but care should be taken to use appropriate noise constraints: noise sequences

are unlikely to enter at the inputs and outputs of the weighted plant. ♥
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Chapter 5

Extensions to Model Validation

Theory

This chapter describes refinements to model validation theory. In particular, the

following methods are proposed:

1. The linear approximations to the standard quadratic non-invalidation condi-

tions are refined by successive relinearization about the optimal solution to

the previous approximation. (Section 5.1)

2. Non-zero initial states are dealt with using ‘initializing sequences’ appended

to the data before the start of the time record. (Section 5.2.)

3. A constrained tangential Nevanlinna-Pick method is used to construct inter-

polant systems from noise-corrected data. (Section 5.3.)

5.1 Improving results obtained through approxi-

mation

All the gap and ν-gap non-invalidation problems considered so far share a common

difficulty: nonconvexity. (This was shown for the gap and ν-gap problems by [Dav96]

and it was shown in [CG00] that similar problems arise whenever the input to a
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perturbation block is unknown.) Two ways round this have been put forward. In

[Dav96], simplifying assumptions are made about the noise: it acts only on the

nominal plant, rather than the perturbed system. A slightly more sophisticated

approach was given in [SV01] where the problem was made convex—and sufficient

but non-necessary for non-invalidation—by dropping any unknown quadratic terms.

In [SV01] the unknown variables corresponded exactly with the noise variables,

recall from Section 4.4 that when testing for a system satisfying

y + wy = P (u + wu)

the known part of the input and output to the uncertainty block were taken as




s

t



 = ch (M)−1




u

y





and the unknown part corresponded directly to the noise signals




ws

wt



 = ch (M)−1




wu

wy





We could, however, linearize the problem about any suitably dimensioned signals.
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Algorithm Inputs: a (p×q) model set P and input-output sequences (u ∈ Sq
k , y ∈

Sp
k) and an objective function c(wu, wy) and the required tolerance for the result τγ .

Outputs: γ̂, which is an upper bound on the smallest value of c(wu, wy) achievable

under the constraint (y + wy) = P (u + wu), and sequences (ŵu, ŵy) which achieve

it. (We hope that the bound will be better than that obtainable without iteration,

and it can be proved that it will be no worse.)

BEGIN.

1. Define counter i and let i = 0.

2. Linearize the full non-invalidation problem, and use the linear approximation

to find sequences (wu0, wy0) consistent with the problem such that c(wu0, wy0)

is minimized; denote the minimum γ0

3. Increment the counter i by 1.

4. Re-linearize the full non-invalidation problem about (wu(i−1), wy(i−1)), and and

use the linear approximation to find sequences (wui ∈ Sq
k , wyi) consistent with

the problem such that c(wui, wyi) is minimized; denote the minimum γi.

5. If γi−1 − γi > τγ , go to step 3; otherwise continue.

6. Let γ̂ = γi, ŵu = wui and ŵy = wyi.

END.

There are many variations on this algorithm, and it is intended to be illustra-

tive rather than definitive; there are many ways of finding an initial solution, for

example, and in practice one normally restricts the number of iterations that may

be performed before termination.

The mathematics below provides the machinery for the application of such al-

gorithms to the ν-gap non-invalidation problem. Theorems 5.1 and 5.3 provide the

necessary problem relinearizations; the main result is given in Remark 5.2. (The

latter is stated as a remark because it adds context but no further mathematics.)
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5.1.1 Sufficient condition: non-invalidation with LTI uncer-

tainty

Theorem 5.1 Given a linear time-invariant p × q model P , a ν-gap radius β, the

corresponding central controller M , noise sets Wu and Wy, measured data sequences

u ∈ Sq
k , y ∈ Sp

k , and sequences wu0 ∈ Sq
k , wy0 ∈ Sp

k , then there exist P̂ ∈ BLTI
ν (P, β)

and sequences wu ∈ Wu, wy ∈ Wy such that

(y + wy) = P̂ (u + wu) (5.1)

if there exist sequences ws ∈ Sq
k , wt ∈ Sp

k satisfying

ch (M)




ws

wt



+




wu0

wy0



 ∈ Wu × Wy (5.2)

and either of the following (equivalent) conditions:

(i)

(Tt + Twt
)∗(Tt + Twt

) ≤ (T ∗
s Ts + T ∗

ws
Ts + T ∗

s Tws
)

(ii)

0 ≤




T ∗

s Ts + T ∗
ws

Ts + T ∗
s Tws

T ∗
t + T ∗

wt

Tt + Twt
I





where 


s

t



 = ch (M)−1




u + wu0

y + wy0



 (5.3)

The corresponding (wu, wy) are given by (5.2).

Outline of proof. The proof is more-or-less identical to that of Proposition 4.14.

The standard LTI interpolation condition of Theorem 2.10 requires that the pertur-

bation block’s input ŝ = s + ws and output t̂ = t + wt satisfy T ∗
t̂
Tt̂ ≤ T ∗

ŝ Tŝ. Clearly,

if 0 ≤ M − A∗A, then 0 ≤ M hence condition (i). By the Schur complement this is
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equivalent to condition (ii). The equivalent plant output signals are given by




û

ŷ



 = ch (M)




s + ws

t + wt



 =




u

y





︸ ︷︷ ︸
measured

+ ch (M)




ws

wt



 +




wu0

wy0





︸ ︷︷ ︸
exogenous noise

giving the constraint on the noise sequences ws, wt. �

The philosophy here is not greatly different from that in [SV01], but it enables

an iterative approach to some optimization problems. This is summed up by the

following remark.

Remark 5.2 Given P, β, M, u, y as for Theorem 5.1, and a feasible starting point

(wu0, wy0) ∈ Wu × Wy let c(wu, wy) = ‖ΠkCuwu‖2
2 + ‖ΠkCywy‖2

2, where Cu and

Cy are (possibly dynamic) weighing functions. If we attempt to minimize c(. . . )

using the approximated LTI constraint of Theorem 5.1, then we can guarantee the

resulting ‘minimum’ will be at least as small as c(wu0, wy0), and it is quite possible

that it will be smaller. (This is obvious, seen by setting wu = wu0 and wy = wy0).

This result can be applied iteratively, though there is no guarantee that the final

result will be the global minimum for the full (i.e. non-approximated) problem. ♥

5.1.2 Sufficient condition: non-invalidation with LTV un-

certainty

Theorem 5.1 deals with unstructured LTI perturbations. There is of course an

analogous result for unstructured LTV perturbations.1

Theorem 5.3 Given a linear time-invariant p × q model P , a ν-gap radius β, the

corresponding central controller M , noise sets Wu and Wy, measured data sequences

1There are of course a great many more variations on the theme: non-causal uncertainties, other
non-convex LFT structures, etc. These differ only in trivialities, and there is no need for explicit
discussion of them here.
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u ∈ Sq
k , y ∈ Sp

k , and sequences wu0 ∈ Sq
k, wy0 ∈ Sp

k , let s, t be as defined in (5.3).

Then there exist P̂ ∈ BLTV
ν (P, β) and sequences wu ∈ Wu, wy ∈ Wy satisfying

the interpolation condition (5.1) if there exist sequences ws ∈ Sq
k , wt ∈ Sp

k satisfying

(5.2) and either of the following (equivalent) conditions:

(i)

‖Πj(t + wt)‖
2
2 ≤ ‖Πjs‖

2
2 + vec (Πjws)

∗vec (Πjs) + vec (Πjs)
∗vec (Πjws)

for all j = 1, 2, . . . , k.

(ii)

0 ≤




‖Πjs‖

2
2 + vec (Πjws)

∗vec (Πjs) + vec (Πjs)
∗vec (Πjws) vec (Πj(t + wt))

∗

vec (Πj(t + wt)) I





for all j = 1, 2, . . . , k.

The corresponding (wu, wy) are given by (5.2).

Apart from the form of the perturbation-block constraint this is identical to Theo-

rem 5.1 and the proof is directly analogous. The ideas of Remark 5.2 apply equally

here.

5.1.3 Improvement by iteration: a numerical example

As a numerical example, we shall consider the problem addressed in [SV01]: invali-

dation data of length k = 60 is generated from the impulse response of

Ptrue(z) =
−0.1157z2 + 0.2671z + 0.002967

z2 − 1.893z + 0.905

and this is compared to a nominal model

P (z) =
0.0625z2 + 0.125z + 0.0625

z2 − 2z + 1
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The following optimization problem is considered: minimize

γw :=
{
||wu||

2
2 + ||wy||

2
2

}1/2

subject to the constraint

(y + wy) = P̂ (u + wu)

for some P̂ ∈ Bν(P, β), considering the LTI and LTV cases separately.

For each of the LTI and LTV cases, three quantities are calculated for a range

of β values:

(i) the upper bound on the smallest consistent ‖w‖2 from the initial relineariza-

tion; the same quantity as that investigated in [SV01]

(ii) the upper bound on the smallest consistent ‖w‖2 obtained from two further

relinearizations

(iii) a final upper bound obtained by applying MATLAB’s fmincon function to

the full non-invalidation problem using the results of (ii) as a starting point.

(This uses a ‘brute force’ optimization method, fully documented in [Mat00].)

The results are shown in Figures 5.1 (page 68) and 5.2 (page 69). In both cases we

observe that the three-iteration relinearization method provides a slight improve-

ment on the initial linearization, and that the nonlinear optimization is not able to

do noticeably better.

5.1.4 Offsets and trends

The ideas developed in this section may help circumvent one limitation in [SV01]:

the assumption that ws and wt are small compared to s and t. Whilst this is a

perfectly reasonable assumption to make when dealing with small random noise

sequences, it begins to break down when dealing with larger perturbations such as

offsets and trends. In the case of a constant-but unknown output offset y0, the noise
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Figure 5.1: Applying the method of relinearizations to the example in [SV01] with
LTI uncertainty. The zero ν-gap radius values were calculated analytically using a
least-squares method.
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Figure 5.2: Applying the method of relinearizations to the example in [SV01] with
LTV uncertainty. The zero ν-gap radius values were calculated analytically using a
least-squares method.
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set might take the following form:

Wu × Wy :=

{
(wu, wy) : ∃ y0 s.t. ‖wu‖2

2 + ‖wy − y0‖2
2 ≤ γw

}

The ws, wt required to match the data in such cases might well be quite large and the

approximation of the full perturbation block constraint may be poor. Improvement

by iteration will often be possible.

5.1.5 Choice of starting point

The most obvious application of Theorems 5.1 and 5.3 is to use as (wu0, wy0) the

‘optimal’ (wu, wy) obtained from Proposition 4.14 or 4.15. Other choices of wu0, wy0

are equally possible: one such might be the optimal solution for a zero-perturbation

problem (this is easily solved using least-squares techniques), or the solution for a

different (but close) ν-gap radius β.

5.2 Accounting for non-zero initial states

The simple Carathéodory-Fejér and energy-bound constraints demonstrate the exis-

tence or otherwise of H∞-norm bounded systems mapping a given input to a given

output. An implicit assumption is made that the systems are initially in equilibrium.

In practical situations, this is rarely the case. A conceptually simple idea proposed

(though not developed) in [Ste01] is to account for the non-zero initial state by

pre-padding the input and output data with unknown variables. Any interpolation

constraints are set up to take these sequences into account, but the constraints on

exogenous noise need not do so. This section develops these ideas.

The most intuitive method of applying the initial sequences idea is illustrated in

Fig. 5.3(a). The validation data has been pre-padded with zeros. All parts of the

extended sequences are allowed to be subject to variation, which will be included

in the perturbation-block constraints, but the noise constraints are only applied to

the parts of the signals in ‘measured time’. The aim here is that the initial part of
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(b) Modified approach

Figure 5.3: Accounting for initial state using pre-record sequences. The approach
of Fig. 5.3(a) gains no advantage when the quadratic perturbation-block constraints
are approximated. The method of Fig. 5.3(b) is not subject to this problem.
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the sequence is wholly unconstrained and will automatically yield a suitable initial

state at the start of ‘measured time’. Unfortunately, this does not work when the

quadratic constraints are approximated. Section 5.2.2 shows that the perturbation-

block constraints applied across the extended sequences gains little (LTV case) or

nothing (LTI case): the linearization about a zero-signal causes variable pre-zero

terms to ‘drop out’ of the problem.

An alternative approach, illustrated in Fig. 5.3(b), is to linearize the problem

about some nominal ‘pre-data’ sequences. A method of doing this is described in

Section 5.2.3. A numerical example is given in Section 5.2.4.

5.2.1 A non-invalidation problem with non-zero initial state

The general model validation decision problem (MVDP) for systems initially in

motion may be stated as follows:

Definition 5.4 (MVDP for systems initially in motion) Given a finite-dimensional

p × q model set P, input-output data ũ ∈ Sq
k , ỹ ∈ Sp

k , and input-output noise con-

straints Wũ × Wỹ, do there exist a system P̂ ∈ P, an initial state x0 and noise

sequences wũ, wỹ ∈ Wũ ×Wỹ such that the input-output pair (y +wy) is consistent

with the first k elements of the response of P̂ to (u + wu) when the initial state is

x0.

For LTI systems this is of course equivalent to finding the existence of P̂ =


Â B̂

Ĉ D̂



 ∈ P such that





ŷ0

ŷ1

...

ŷk−1





=





D̂ 0 · · · 0

ĈB̂ D̂ · · · 0

...
...

. . .
...

ĈÂk−2B̂ ĈÂk−3B̂ · · · D̂









û0

û1

...

ûk−1





+





Ĉ

ĈÂ

...

ĈÂk−1





x0 (5.4)
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where ŷ = ỹ + wỹ and û = ũ + wũ. In the context of closed-loop control P will

typically be either BLTI
ν (P, β) or BLTV

ν (P, β) for some nominal LTI system P and

some β ∈ (0, bopt(P )).

5.2.2 Why simple zero-padding won’t work

Given a model set BLTI
ν (P, β), measured sequences ũ ∈ Sq

k , ỹ ∈ Sp
k and noise con-

straints Wũ × Wỹ, the simplest approach to ‘padding out’ a sequence is to define

extended sequences

{y}j =






0, j = 0, . . . , n − 1

{ỹ}j−n, j = n, . . . , (n + k − 1)
(5.5)

{u}j =






0, j = 0, . . . , n − 1

{ũ}j−n, j = n, . . . , (n + k − 1)
(5.6)

and a modified noise set encompassing all sequences whose ‘tails’ are within Wũ ×

Wỹ:

Wu × Wy :=

{
(wu, wy) : {wu}n,...,(n+k−1) × {wy}n,...,(n+k−1) ∈ Wũ × Wỹ

}
(5.7)

The natural thing to do next would be to test for non-invalidation using Proposi-

tion 4.14. Similarly, we might apply Proposition 4.15 for the LTV case. Unfortu-

nately this will not work as expected.

Theorem 5.5 (LTI Equivalence Theorem) Given sequences s ∈ Sq
k , t ∈ Sp

k

with t0 6= 0, define σ ∈ Sq
ℓ such that σi = 0 and τ ∈ Sp

ℓ such that τi = 0, with

ŝ and t̂ given by

ŝ = {σ0, σ1, . . . σℓ−1, s0, s1, . . . sk−1} (5.8)

t̂ = {τ0, τ1, . . . τℓ−1, t0, t1, . . . tk−1} (5.9)
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Then there exist sequences wσ ∈ Sq
ℓ , wτ ∈ Sp

ℓ and ws, wt ∈ Ws × Wt such that




T ∗

ŝ Tŝ + T ∗
wŝ

Tŝ + T ∗
ŝ Twŝ

T ∗
t̂

+ T ∗
wt̂

Tt̂ + Twt̂
I



 ≥ 0 (5.10)

where wŝ = {wσ, ws} and wt̂ = {wτ , wt}, if and only if there exist sequences ws, wt ∈

Ws × Wt such that




T ∗

s Ts + T ∗
ws

Ts + T ∗
s Tws

T ∗
t + T ∗

wt

Tt + Twt
I



 ≥ 0 (5.11)

and the only wσ and wτ satisfying (5.10) are wσ = {0, 0, . . . , 0} and and wτ =

{0, 0, . . . , 0}.

A rather tedious proof is given in Appendix B.

Theorem 5.6 (LTV Equivalence Theorem) Given sequences s ∈ Sq
k , t ∈ Sp

k

with t0 6= 0, define σ ∈ Sq
ℓ such that σi = 0 and τ ∈ Sp

ℓ such that τi = 0, with ŝ and

t̂ from (5.8) and (5.9). Let

V n
z := vec Πnz

Then there exist sequences wσ ∈ Sq
ℓ , wτ ∈ Sp

ℓ and ws, wt ∈ Ws × Wt such that




V j

ŝ

∗
V j

ŝ + V j
ŝ

∗
V j

wŝ
+ V j

wŝ

∗
V j

ŝ V j

t̂

∗
+ V j

wt̂

∗

V j

t̂
+ V j

wt̂
I



 ≥ 0 (5.12)

for all j ∈ {1, 2, . . . , ℓ + k} where wŝ = {wσ, ws} and wt̂ = {wτ , wt}, if and only if

there exist sequences ws, wt ∈ Ws × Wt such that




V j

s
∗
V j

s + V j
s
∗
V j

ws
+ V j

ws

∗
V j

s V j
t

∗
+ V j

wt

∗

V j
t + V j

wt
I



 ≥ 0 (5.13)

for all j ∈ {1, 2, . . . , k}, and the only wτ satisfying (5.12) is the zero sequence.

Again, the proof is given in Appendix B.
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Remark 5.7 We can see from Theorems 5.5 and 5.6 that there is little to be gained

from a simple application of zero padding. In the LTI case we gain nothing at all

and in the LTV case a very heavy restriction is placed on the class of allowable noise.

♥

5.2.3 Relinearizing the problem using ‘pre-record’ sequences

It is possible to circumvent the problems of the previous section by applying relin-

earization techniques similar to those of Section 5.1.

Remark 5.8 Given measured sequences, (ỹ ∈ Sp
k , ũ ∈ Sq

k) and an integer n > 0,

and noise constraints Wũ × Wỹ, let y, u and Wu × Wy be as given in (5.5), (5.6)

and (5.7) on page 73.

Then, given a p × q LTI system P , a ν-gap radius β, the corresponding cen-

tral controller M , and sequences wu0 ∈ Sq
n+k, wy0 ∈ Sp

n+k, there exist a system

P̂ =




Â B̂

Ĉ D̂



 ∈ BLTI
ν (P, β), sequences wũ, wỹ ∈ Wũ × Wỹ and an initial state x0

satisfying (5.4) if the conditions for Theorem 5.1 holds. P̂ is the same as that satis-

fying the theorem, wũ = {wu}n,...,(n+k−1), wỹ = {wy}n,...,(n+k−1) and the initial state

easily obtained from the state equation:

xk+1 = Âxk + B̂{wu}k

When using BLTV
ν (P, β) instead of BLTI

ν (P, β), Theorem 5.3 should be used in place

of Theorem 5.1. ♥

There is nothing conceptually difficult here: all that has been done is to allow

the problem to be relinearized about any suitably-dimensioned sequences.

But what should (wu0, wy0) be? The relinearization is mathematically valid

whatever values are chosen, but it is sensible to choose a starting point with some

physical significance. When solving noise minimization problems using a constraint
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of the form

Wũ ×Wỹ :=
{
(wũ, wỹ) : ||wũ||

2
2 + ||wỹ||

2
2 ≤ γ2

}
(5.14)

a suitable choice of wu0, wy0 is that which minimizes γ for the nominal model. To

find these, we need expressions for the (stacked) actual signals at the plant input

and output for the noise-affected nominal plant.




Û

Ŷ



 :=




M

N (Πn+kTP )





︸ ︷︷ ︸
Φ








0nq×1

vec ũ



 + vec wu0





where M and N ‘select’ the parts of the input corresponding the ‘real’ sampling

instants (as opposed to the pre-padding):

M :=

[
0kq×nq Ikq

]
N :=

[
0kp×np Ikp

]

Note that Û and Ŷ denote the vectored forms of ũ+wũ and ỹ+wỹ. Though our wu0

and wy0 exist during the pre-record phase, their norm at this point is not considered

important.

The norm we wish to minimize is γ = ||ǫ||2, with ǫ given by

ǫ =




vec wũ

vec wỹ



 =




Û

Ŷ



−




vec ũ

vec ỹ



 = Φ vec wu0 − z

where z =




vec ũ

vec ỹ



 − Φ




0nq×1

vec ũ



. We now have a simple linear least-squares

problem, and can write down the solution with no further effort:

Remark 5.9 The (wu0, wy0) corresponding to the (wũ, wỹ) minimizing γ in (5.14)

with the nominal plant are given by

vec wu0 = Φ†z
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and

vec wy0 = −




0np×1

vec ỹ



 + Πn+k TP








0nq×1

vec ũ



 + vec wu0





♥

The expression for wy0 is obtained by rearranging (5.4).

5.2.4 Numerical example

Synthetic data were obtained by finding first 94 elements of the response of the

discrete time system

Ptrue(z) =
0.02247z + 0.02093

z2 − 1.764z + 0.8075

to the chirp signal utrue(k) = sin π
30

(k + 0.025k2). The first 14 samples of the data

record were discarded, giving the validation data (ũ, ỹ) shown in Figure 5.4(a).

Assuming a nominal model

P =
0.01867z + 0.01746

z2 − 1.783z + 0.8187

and taking n = 2, wu0 and wy0 were found using Remark 5.9 (Figure 5.4(b)).

Remark 5.8 then was used to find the sequences giving the smallest value of

γ = {||wũ||22 + ||wỹ||22}
1/2 consistent with a system P̂ ∈ BLTI

ν (P, 0.12). The minimum

was found to be zero, corresponding to zero noise sequences (Figure 5.4(c)). Since

there was no noise on the original data, and δν(Ptrue, P ) = 0.12, these results are as

expected.
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Figure 5.4: Numerical example. The top plots (a) show the initial data sequences.
The middle plots (b) show the data including nominal pre-record and noise se-
quences. The bottom plots (c) show the final sequences from validation, which
coincide exactly with the initial data sequences.
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ŝ

� û�ŷ

Figure 5.5: LFT model structure.

5.3 Constructing LTI interpolants

Much published literature (e.g. [Dav96, SV01, CG00]) considers the existence of

interpolant systems, but there is little about their construction. In this section we

consider the case where we have already determined feasible noise sequences and

the existence of system within some LTI model set, and we wish to construct an

interpolant system to map the relevant inputs to the relevant outputs.

Consider the LFT structure of Figure 5.5. The signals û, ŷ, ŝ, and t̂ are known.

(Perhaps strictly speaking they are ‘possible’ since they may have been formed by

correcting the measured signals with feasible noise sequences.) Our model set is of

the form

P(G, γ) := {P : P = Fu(G, ∆), ∆ ∈ RH∞, ||∆||∞ ≤ γ}

This is more general than a ν-gap problem, where G = M−1, γ = 1 and




ŝ

t̂



 =

(ch (M))−1 =




û

ŷ





We now consider the construction of an interpolant system:

Theorem 5.10 Let G be a (p + n) × (q + m) linear time invariant system. Given
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P(G, γ) and signals û ∈ Sn
k , ŷ ∈ Sm

k , ŝ ∈ Sq
k , t̂ ∈ Sp

k such that

T ∗
t̂ Tt̂ ≤ γ2T ∗

ŝ Tŝ

is satisfied and 


ŝ

ŷ



 = G




t̂

û



 (5.15)

then there exists a (n×m) system P̂ ∈ P(G, γ) such that ŷ = P̂ û, and a realization

is

P1 = Fu(G, ∆)

where ∆ is the interpolant mapping ŝ to t̂ constructed using Corollary 2.14 on

page 24.

Outline of proof. The existence of a system ∆ ∈ RH∞ satisfying ||∆||∞ ≤

γ and mapping ŝ to t̂ is clear from Theorem 2.10 and its realization is given by

Corollary 2.14. It is clear from the definition of P that P1 ∈ P(G, γ). It is clear

from (5.15) that (u, y) P1 should map û to ŷ. �

Remark 5.11 From Remark 2.13, it is clear that P1 will contain p unobservable

modes which may be easily eliminated using balanced truncation. This may be

done directly on P1, or simply eliminated from ∆ before its substitution in the

linear fractional transformation. ♥

5.3.1 All degree-constrained interpolants

Similarly, the techniques for constructing degree-constrained interpolants in Section

2.6.5 may be applied within the context of an LFT model set. The method employed

to construct the perturbation block is different, but by choice of the σ polynomial

the poles and zeros of the perturbation block may be moved around.

Figure 5.6 shows the results of a simple example in which the synthetic data
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shown in Figure 5.6(a) were compared to the model

P =
0.2091z2 + 0.4183z + 0.2091

z2 − 1.402z + 0.5888

with unit sampling period.

The validation record has length 7. It was assumed that the signals were un-

affected by noise, and thus any modelling error could be accounted for by model

perturbation. An attempt was made to construct three sixth-order interpolants

within a ν-gap radius 0.3660 of P .2 These consisted of a ‘central’ solution, where

the roots of σ(λ) are at the origin, a second interpolant with the roots of σ(λ) close

to the points 0.9e±j, i.e. very near the unit circle, and a third interpolant with the

roots of σ(λ) close to the points 0.1e±j.

The frequency responses are shown in Figure 5.6(b): the solutions with σ(λ)’s

roots close to the origin are relatively smooth; when the roots are close to the unit

circle, the interpolant is much less smooth. The impulse responses (Figure 5.6(c)) are

identical for the first 7 samples, but differ afterwards. This is entirely as expected.

Unfortunately, the algorithms used are not sufficiently robust to be able to con-

sider much greater record lengths. It would be interesting to see how the observed

behaviour transfers to longer record lengths and whether distance from the origin

of the roots of σ(λ) is the only factor at play here.

5.3.2 Other methods of interpolant construction

Among the other methods explored including the construction of FIR filters to

interpolate the data. This was straightforward to do with single-input perturbation

blocks (where the initial impulse response is uniquely determined by the data),

though the H∞ norm of the system was often increased by truncation. Methods of

extending the filters using Nehari’s Theorem were investigated. The lemma below

provides a method of extending an FIR response in such a way that the H∞-norm

2The smallest ν-gap radius consistent with this data and P is 0.1746.
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Figure 5.6: Construction of interpolants using degree-constrained interpolants. See
the explanatory text on page 80.
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is minimized. The system’s initial response is shifted and ‘flipped round’ and the

antistable system constructed via Nehari’s Method is then shifted and ’flipped back’

to give an infinite norm-reducing ‘tail’ to the impulse response.

Lemma 5.12 Let z−1 denote the unit delay operator. Given some ∆̂ whose impulse

response is zero after ℓ steps, let γ(Q) = ‖∆̂ + z−ℓQ‖∞ and let ∇̂ = z−ℓ ∆̂∼. Then

γmin := min
Q∈H∞

γ(Q) = ‖Γ∇̂‖ (5.16)

Proof. Note that
∥∥∆̂ + z−ℓQ

∥∥
∞

=
∥∥zℓ∆̂ + Q

∥∥
∞

=
∥∥z−ℓ∆̂∼ + Q∼

∥∥
∞

. Thus (5.16)

can be re-written

γmin = min
Q∼∈H−

∞

‖∇̂ + Q∼‖∞

This may be solved by Nehari’s theorem (see [ZDG95], p. 205), giving the stated

minimum. �

This method was found to work effectively for the extension of low-order systems,

but less so with high-order systems. In a ‘toy’ example, a nth order system Gfir

was constructed with a random FIR response gk, where g0, g1, . . . gn were normally

distributed and gn+1, . . . were zero. Lemma 5.12 was applied to construct a system

Ĝiir with response ĝk satisfying ĝi = gi ∀i = 0, 1, . . . , n such that the minimum

value of ‖Giir‖∞ was achieved. With one particular random seed, it was noted

that for values of n up to 75, a solution could be constructed but for higher orders

the algorithm ran into numerical problems.3 The pattern was observed to apply

generally. Real-world validation data is likely to be significantly longer than this,

limiting the method’s usefulness in this context.

When dealing with multiple-input perturbation blocks, following an identifica-

tion method in [Dat00] it was found to be possible to construct FIR interpolants us-

ing the well-known discrete-time Bounded Real Lemma, which states that

∥∥∥∥∥∥∥




A B

C D





∥∥∥∥∥∥∥
∞

≤

3The MATLAB function used called ‘hankmr’ from the µ-Analysis and Synthesis Toolbox.
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λ if and only if 



A∗XA − X A∗XB λ−1C∗

B∗XA B∗XB − I λ−1D∗

λ−1C λ−1D −I




≤ 0

for some X ≥ 0, but the computation of such an X required a huge number of deci-

sion variables of the order of the square of the data record length. Again, such sys-

tems often failed to achieve the minimum possible H∞-norm. Extending the length

of the FIR filter beyond that of the data record was possible, but very computa-

tionally expensive. Nehari Methods were also possible, but numerical instabilities

remained a significant problem.

These methods did, however, allow the use of low-order systems in conjunction

with the relaxation of noise constraints on the output of the perturbation block, and

there could be applications in the visualization of ‘simple’ interpolants.
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Chapter 6

Invalidation using the S-procedure

The conventional necessary and sufficient conditions for invalidation introduced in

Theorem 2.10 and Theorem 2.11 are non-convex and not readily soluble. The con-

ventional approximations, where small quadratic terms are neglected, give necessary

conditions for invalidation. An alternative approach advocated in [SDM00] is to ap-

ply the S-procedure (Proposition 2.5).

[SDM00] looks at a formulation of an LFT model invalidation problem based on

a parameterization of all unknown inputs to a central LFT block whether these are

from the exogenous noise or from ‘∆ blocks’ representing model perturbations; this

parameterization is used to express bounds on the ℓ2 norm of the exogenous noise

and the i2 norms of any ∆ blocks. The key result is a convex sufficient condition for

invalidation of an LFT model set with multiple LTV perturbation blocks. It is also

claimed that, when there is only a single perturbation blocks, the condition is also

necessary. (The parameterization and the condition will be described in the body

of the chapter.)

In the following pages, we shall

1. Identify a problem with the claimed necessary and sufficient condition for

single-∆ LTV invalidation in [SDM00], which we believe to be sufficient but

not necessary.

2. Adapt the parameterization of [SDM00] to produce necessary and sufficient
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conditions for ‘noncausal’ invalidation and a tighter sufficient condition for

‘LTV’ invalidation.

3. Provide a numerical example.

4. Adapt the method to allow a non-zero initial state in conjunction with an

output offset (for use in Chapter 7).
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The starting points for this work—in particular the use of the S-procedure and

the parameterization framework—are to be found in [SDM00], whose inspiration is

gratefully acknowledged.

6.1 Model structure and parameterization

The model set we shall consider (paraphrased from [SDM00]) has the form:




s

y



 =




P11 P12 P13

P21 P22 P23









t

w

u





where u and y are the usual measured signals, w is an unknown exogenous noise

signal, s is the unknown input to the uncertainty block ∆, and t is the unknown

output from ∆. For clarity, the structure is shown in Figure 6.1. The blocks Pij

represent LTI systems: the non-LTI structure (if any) is represented solely by ∆.

P11 P12 P13

P21 P22 P23

∆

�y

-

s

�

t

� u

� w

Figure 6.1: A generic LFT model structure
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6.1.1 Relation to the ν-gap invalidation model structure

The general LFT parameterization described above encompasses a broader class of

model structures than that generally used for the ν-gap type problem. If we are

using a model set such as BLTI
ν (P, β) then the parameterization of a ‘ball’ in the

ν-gap (described in Section 3.2.3) gives




s

y + wy



 =




G11 G12

G21 G22








t

u + wu





or, equivalently




s

y



 =




G11 [G12 0] G12

G21 [G22 − I] G22









t


wu

wy





u





The standard ν-gap problems may thus be formulated in the more general framework

using P11 = G11, P12 = [G12 0], P13 = G12, P21 = G21, P22 = [G22 − I], P23 = G22,

and w =




wu

wy



.
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6.1.2 Parameterization of all interpolant signals

Following [SDM00] we note that the nominal noise-free model is ynom = P23u, and

that ynom is unlikely to match y in practice, and any discrepancy must thus be

accounted for by

y − P23u =

[
P21 P22

]



t

w



 (6.1)

All (t, w) satisfying (6.1) may be parameterized




t

w



 =




t0

w0



+ Rζ

= x0 + Rζ

= x(ζ)

where (t0, w0) is a particular solution of (6.1) and Rζ spans the input null space of

[P21 P22]. (With finite data sets and the corresponding lower-block Toeplitz matrices,

these are easily calculated using standard linear algebra techniques.)
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6.1.3 Parameterization of the noise constraint

The usual bound on the exogenous noise norm ‖w‖2 ≤ γw is parameterized by

writing w as follows:1

w =

[
0nv Inw

]
x(ζ)

=

[
0nv Inw

]
(x0 + Rζ)

All noise sequences violating the bound will satisfy

x(ζ)∗




0nv 0

0 Inv



x(ζ) − γ2
w > 0

which can be re-written as

F0(γw, ζ) = ζ∗A0ζ + 2b∗0ζ + c0(γw) > 0

where,

A0 = R∗




0nv 0

0 Inw



R

b0 = R∗




0nv 0

0 Inw



x0

and

c0(γw) = x∗
0




0nv 0

0 Inw



x0 − γ2
w

(Note that we have used ‘γw’ rather than the ‘γ’ of [SDM00]. In that work, the same

bound was applied to both ‖w‖2 and ‖∆‖∞. There is no reason why these have to

1The subscript notation used here matches that of [SDM00], which wisely chose ease of read-
ing over strict notational accuracy. For ‘nw’ read ‘the number of data points in this truncation
multiplied by the dimension of w’ and so on.
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be the same, and we shall consider separate bounds applied to each. Our ||∆||∞ will

be bounded by some γ∆. This enables us to more-readily consider trade-offs between

noise and perturbation size. This makes no great difference to the problem—it is

equivalent to re-scaling Pij—but means that by fixing γ∆, optimization problems

may be readily formulated as convex LMIs in γw.)

6.1.4 Parameterization of the perturbation block constraints

Defining NN such that

t = [Inv, 0nw]x = NNx

gives expressions for the input and output of the perturbation block:

t = NN (x0 + Rζ)

s = [P11 P12](x0 + Rζ) + P13u

When dealing with LTV perturbations, the following projections are also helpful:

ΠkNN :x → Πkt

ΠkMN :s → Πks

Recall that for there to exist an LTV system ∆ satisfying ||∆||∞ ≤ γ∆ and t =

∆s, it is necessary and sufficient that ‖Πkt‖2
2 ≤ γ2

∆‖Πks‖2
2 for all k = 1, 2, . . . , N .

The energy bound at any given truncation k—referred to in [SDM00] as the ‘LTV

extension condition’—can be expressed as a quadratic inequality:

Fk(γ∆, ζ) = ζ∗Ak(γ∆)ζ + 2b∗k(γ∆)ζ + ck(γ∆) ≥ 0 (6.2)
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where

Ak(γ∆) = γ2
∆R∗




P ∗

11

P ∗
12



 (ΠkMN )∗ΠkMN [P11 P12]R − R∗(ΠkNN)∗(ΠkNN)R

bk(γ∆) = γ2
∆R∗




P ∗

11

P ∗
12



 (ΠkMN )∗(ΠkMN)P13u − R∗(ΠkNN)∗ΠkNNx0

+ γ2
∆R∗




P ∗

11

P ∗
12



 (ΠkMN)∗(ΠkMN )[P11 P12]x0

ck(γ∆) = γ2
∆u∗P ∗

13(ΠkMN)∗ΠkMNP13u − x∗
0(ΠkNN )∗(ΠkNN)x0

+ γ2
∆x∗

0




P ∗

11

P ∗
12



 (ΠkMN )∗(ΠkMN)[P11 P12]x0

+ 2γ2
∆x0




P ∗

11

P ∗
12



 (ΠkMN )∗ΠkMNP13u (6.3)

6.2 Invalidation with a noncausal ∆

One of the most significant constraints usually present in our mathematical models

is causality: a causal system maps inputs in the past to outputs in the future.

It this section, we break from this slightly and consider a mathematically simpler

problem: we will allow our perturbation ∆ to have a possibly non-causal structure.

Essentially, we are looking for an linear operator that satisfies t = ∆s and ||∆||∞ ≤

γ∆, but that is not constrained to be lower block-triangular.

The condition for the existence of such a ∆ is given by Corollary C.2 on page 168:

it is necessary and sufficient that ‖s‖2 ≤ γ∆ ‖t‖2, i.e. FN(γ∆) ≥ 0 for data of length

N .
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Theorem 6.1 (noncausal uncertainty, necessary and sufficient) Given γ∆, γw >

0, the LFT perturbation model satisfying ‖∆‖∞ ≤ γ∆ and ‖w‖2 ≤ γw, is inval-

idated by the measured data (y ∈ Sp
N , u ∈ Sq

N ) if and only if for all ζ satisfying

FN(γ∆, ζ) ≥ 0;

F0(γw, ζ) ≥ 0

Proof. For there to exist an admissible noncausal ∆, by Corollary C.2, Fk(γw, ζ) ≥

0 for some ζ . However, if for all such ζ the exogenous noise constraint is violated—

i.e. F0(γw, ζ) ≥ 0—then there is no ζ , and thus no (∆, w), consistent with the model.

�

Following the example of [SDM00], this can be converted into a convex (LMI)

problem via the S-procedure (Proposition 2.5, p. 16).
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Corollary 6.2 Given γ∆, γw > 0, the LFT perturbation model satisfying ‖∆‖∞ ≤

γ∆ and ‖w‖2 ≤ γw, is invalidated by the measured data (y ∈ Sp
N , u ∈ Sq

N) if and only

there exists τ ≥ 0 such that




A0 − τAN (γ∆) b0 − τbN (γ∆)

b∗0 − τb∗N (γ∆) c0(γw) − τcN (γ∆)



 ≥ 0

Proof. By the S-procedure (Proposition 2.5, p. 16), there exists τ ≥ 0 such that

for all ζ ,

F0(γw, ζ) − τFN(γ∆, ζ) ≥ 0 (6.4)

if and only if for all ζ satisfying the perturbation block constraint FN(γ∆, ζ) ≥ 0,

F0(γw, ζ) ≥ 0

thus violating the exogenous noise constraint. Following a method of [BEGFB94],

we can re-write (6.4) as

[
ζ∗ 1

]



A0 − τAN (γ∆) b0 − τbN (γ∆)

b∗0 − τb∗N (γ∆) c0(γw) − τcN(γ∆)








ζ

1



 ≥ 0

Clearly this quadratic inequality holds for all ζ if and only if the interior matrix is

positive semi-definite. �
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6.3 Invalidation with a linear time-varying ∆

We now consider the more general case in which ∆ is norm-bounded as before, but

constrained to be causal. There are two lower bounds here.

6.3.1 A sufficient condition following the pattern of [SDM00]

The following condition is novel compared to [SDM00] in that it does not claim

necessity.

Theorem 6.3 (LTV invalidation, first sufficient condition) Given γ∆, γw >

0 the LFT perturbation model satisfying ‖∆‖∞ ≤ γ∆ and ‖w‖2 ≤ γw is invalidated

by the measured data (ŷ ∈ Sp
L, û ∈ Sq

L) if for any N ∈ {1, 2, . . . , L}, the analogous

non-causal model of Theorem 6.1 is invalidated by y = ΠN ŷ and u = ΠN û.

Proof. Essentially what we are saying here is that if there exists any N such that

the noncausal model is invalid, then there are no (t, w) that will satisfy ‖w‖2 ≤ γw

and satisfy

‖ΠN t‖2 ≤ γ∆ ‖ΠNs‖2

from which it is quite clear that the standard LTV interpolation constraint (Theo-

rem 2.11) will not be satisfied. �

The theorem is not necessary because it might be possible to find N (t, w) pairs,

each of which satisfies the LTV extension condition at a particular N as well as the

exogenous noise constraint, but this does not show that there is a single (t, w) pair

simultaneously satisfying the LTV extension condition for all N .

Each separate test is a convex LMI; it is possible to implement them all si-

multaneously in an optimization problem, giving a lower bound on the smallest γw

consistent with the model.

Remark 6.4 Given γ∆, γw > 0, the conditions of Theorem 6.3 are failed if and

only if for each N ∈ {1, 2, . . . , L} there exist separate (wN , sN , zN) which do not

simultaneously satisfy ‖ΠNwN‖2 ≤ γw and ‖ΠN tN‖2 ≤ γ∆ ‖ΠNsN‖2. ♥
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6.3.2 A second sufficient condition

A logical alternative to Theorem 6.3 is to apply the LTV extension constraint at all

truncations simultaneously. This also results in a sufficient condition:

Theorem 6.5 (Second sufficient condition for LTV invalidation)

Given γ∆, γw > 0, the LFT perturbation model with ∆ satisfying ‖∆‖∞ ≤ γ∆ and

‖w‖2 ≤ γw is invalid with respect to the data (y, u) if there exist τℓ ≥ 0, ℓ = 1, . . . , N

such that for all ζ

F0(γw, ζ) −
N∑

ℓ=1

τℓFℓ(γ∆, ζ) ≥ 0 (6.5)

Outline of proof. This follows the same line as the proof of Theorem 6.1. We

now include the whole LTV perturbation block constraint. The model is invalidated

if whenever the perturbation block constraint is satisfied, i.e. Fℓ(γ∆, ζ) ≥ 0, ℓ =

1, . . . , N , the exogenous noise constraint is violated:

F0(γw, ζ) ≥ 0

By the S-procedure (Proposition 2.5, p. 16) this gives (6.5). �

The condition is not necessary because the S-procedure is not lossless in this case.

Corollary 6.6 Given γ∆, γw > 0, the LFT perturbation model satisfying ‖∆‖∞ ≤

γ∆ and ‖w‖2 ≤ γw is invalid with respect to the data (y, u) if there exist τℓ ≥ 0,

ℓ = 1, . . . , N such that for all ζ

Q :=




A0 −

∑N
ℓ=1 τℓAℓ(γ∆) b0 −

∑N
ℓ=1 τℓbℓ(γ∆)

b∗0 −
∑N

ℓ=1 τℓb
∗
ℓ(γ∆) c0(γw) −

∑N
ℓ=1 τℓcℓ(γ∆)



 ≥ 0 (6.6)

Outline of proof. The proof is no different to that of Theorem 6.1. �

Note that the Corollary 6.6 is an LMI in γw and τ1, τ2, . . . , τℓ, again lending itself

to ready computation of a lower bound on the smallest admissible γw.
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6.4 A disagreement with a claim in [SDM00]

The following claim is made in Section 4.4 of [SDM00]. (It has been simplified a

little here as we are considering but one perturbation block.)

Proposition 6.7 Given γ∆ = γw > 0, the LFT perturbation model

satisfying ‖∆‖∞ ≤ γ∆ and ‖w‖2 ≤ γw“ is invalidated by the mea-

sured datum (ŷ ∈ Sp
L, û ∈ Sq

L) (of length L) if and only if there ex-

ists a truncation N ∈ {1, 2, . . . , L} with corresponding truncated datum

(y, u) := (ΠN ŷ, ΠN û) such that for all ζ satisfying FN (γ∆, ζ) ≥ 0,

F0(γw, ζ) ≥ 0

There is an obvious problem here: this is exactly the same as the lower bound

proposed in Theorem 6.3. The authors of [SDM00] have neglected the fact that the

LTV extension condition is applied to separate sequences at each truncation.

Sufficiency is easy enough to show. If the exogenous noise constraint and the

LTV extension condition for any truncation cannot be simultaneously satisfied, the

model is clearly invalid:

∃N : ∀ζ ((F0(γw, ζ) ≥ 0) ∨ (FN(γ∆, ζ) < 0))

→ ∃N : ∀∆∀w ((||ΠNw||2 > γw) ∨ (||ΠN t||2 > γ∆||ΠNs||2))

→ ∀∆∀w ((||w||2 > γw) ∨ (∃N : (||ΠN t||2 > γ∆||ΠNs||2))

But the necessity? Consider the negation of the above:

∀N ∃ζ : ((F0(γw, ζ) < 0) ∧ (FN (γ∆, ζ) ≥ 0)

→ ∀N ∃∆∃w : ((||Πkw||2 ≤ γw) ∧ (||ΠN t||2 ≤ γ∆||ΠNs||2))
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which is not the same as

∃∆∃w : ((||w||2 ≤ γw) ∧ ∀N (||ΠN t||2 ≤ γ∆||ΠNs||2))

So, if for each truncation, we can find ζ satisfying the noise constraint and the per-

turbation block constraint, we can find separate (∆, w) pairs for each truncation

satisfying the exogenous noise constraint and the N -th truncation of the perturba-

tion block constraint. However, this does not imply that there is a single (∆, w) pair

simultaneously satisfying the exogenous noise constraint and the noise constraint at

all truncations of the perturbation block constraint.

The non-implication in the last line was ignored in Proposition 6.7, hence the

claim of necessity is false.

A numerical counter-example is given in Section 6.6.

A further typographical correction

The expression for ci(γ) in [SDM00] is given as

ci(γ) = γ2u∗P ∗
13M

∗
1 M1P13u − x∗

0N
∗
1 N1x0

+ γ2x∗
0




P ∗

11

P ∗
12



M∗
1 M1[P11 P12]x0 (6.7)

This appears to be a typographical error: the term 2γ2x0




P ∗

11

P ∗
12



M∗
1 M1P13u is miss-

ing.
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6.5 Relating the bounds

Given our LFT model structure and γ∆ ≥ 0,

• Let γNC
w (u, y) be the largest value of γw for which the data (u, y) invalidates

the model structure w.r.t. non-causal perturbations using Theorem 6.1.

• Let γLTV,lb1
w (u, y) be the largest value of γw for which the data (u, y) invalidates

the model structure w.r.t. LTV perturbations using Theorem 6.3.

• Let γLTV,lb2
w (u, y) be the largest value of γw for which the data (u, y) invalidates

the model structure w.r.t. LTV perturbations using Theorem 6.5

Theorem 6.8 Given u ∈ Sq
L, y ∈ Sp

L,

γNC
w (u, y) ≤ γLTV,lb1

w (u, y) ≤ γLTV,lb2
w (u, y)

Proof. First, let us show that γNC
w (u, y) ≤ γLTV,lb1

w (u, y). This is clear from Theo-

rems 6.1 and 6.3:

γLTV, lb1
w (u, y) = max

N=1,...,L
γNC

w (ΠNu, ΠNy)

≥ γNC
w (u, y)

Showing that γLTV,lb1
w (u, y) ≤ γLTV,lb2

w (u, y) is less simple: we need to show that if

(u, y) invalidate the model by Theorem 6.3, then they will also invalidate it by The-

orem 6.5. Looking at Theorem 6.3’s definition, we see that the model is invalidated

if

∃N : ∀∆∀w ((||ΠNw||2 > γw) ∨ (||ΠN t||2 > γ∆||ΠNs||2))

Now ||Πkw > γw||2 → ||w||2 > γw, so this implies

∃N : ∀∆∀w ((||w||2 > γw) ∨ (||ΠN t||2 > γ∆||ΠNs||2))
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By the S-procedure (Proposition 2.5), this, in the notation of Theorem 6.5, implies

that ∃τN such that for all ζ

F0(γw, ζ) − τNFN(γ∆, ζ) ≥ 0

Denote this value of τN by τ′.

This implies that ∃τi ∈ {1, 2, . . . , L} such that for all ζ

F0(γw, ζ) −
L∑

i=1

τiFi(γ∆, ζ) ≥ 0

Such τi are of course given by τi =






τ ′, i = N

0, otherwise
. This is the condition of

Theorem 6.5, showing sufficiency as desired. �

6.6 Numerical example

To illustrate the preceding sections, consider a system model




s

y



 =




0 0 1

P 1 P





︸ ︷︷ ︸
G





t

w

u





where (y, u) are the usual measured data, w is an unknown exogenous noise signal,

s and t are the input to and output from a single perturbation block ∆ and

P (z) =
0.008264z2 + 0.01653z + 0.008264

z2 − 1.636z + 0.6694

A block diagram for this system is shown in Figure 6.2(a). An important property

of this system is that the input to ∆ is known exactly, and thus the LTV model

non-invalidation problem is convex and easily solved.
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(b) output-input data used in invalidation

Figure 6.2: Numerical example: block diagram and invalidation data
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Remark 6.9 Given a p× q linear time-invariant system P , γ∆ > 0, u ∈ Sq
k , y ∈ Sp

k ,

the smallest value of γw := ||w||2 consistent with the model of Figure 6.2(a) with

LTV uncertainty satisfying ||∆||∞ ≤ γ∆ is given by

γLTV
w := min

t∈θ
||y − P (u + t)||2

where θ := {τ : ||Πjτ ||2 ≤ γ∆||Πju||2 ∀j = 1, . . . , k}. This is easily calculated by

minimizing γw subject to the LMI constraints




γ2

∆||Πju||2 (vec Πjt)
∗

vec Πjt I



 ≥ 0

for all j ∈ {1, . . . , k} and




γ2

w (vec w)∗

vec w I



 ≥ 0

where vec w = vec y − TP vec u− TP vec t, and t and γw are the decision variables. ♥

Outline of proof. This follows from a simple application of Theorem 2.11.

Because the input to the perturbation block is known, the result is a convex problem.

�

We can employ a similar technique to calculate γLTV,lb1
w without using the S-

procedure.

Remark 6.10 Given a p× q linear time-invariant system P , γ > 0, u ∈ Sq
k , y ∈ Sp

k

the smallest value of γw := ||w||2 consistent with Theorem 6.3 and Proposition 6.7

is given by

γ̂LTV,lb1
w := min

(t1,...,tk)∈Θ

(
max

j=1,...,k
||Πj(y − P (u + tj))||2

)

where Θ̂ := {(τ1, . . . , τk) : ||Πjτj||2 ≤ γ∆||Πju||2 ∀j = 1, . . . , k}. Again, this is easily

calculated through an LMI minimization. ♥
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Outline of proof. This follows naturally from the detail of Theorem 6.3. The

condition for the existence of an noncausal perturbation block (Theorem C.1) is

readily formulated in a similar way to the LTV condition of Remark 6.9. This is

simply applied to each possible truncation, and the ‘worst-case’ value taken. Again,

the known input is essential for convexity. �

The model structure was compared to the sampled data sequences shown in Fig-

ure 6.2(b).2 Four quantities were calculated for a range of γ∆: γLTV
w (u, y), γLTV,lb2

w (u, y),

γLTV,lb1
w (u, y) and γ̂LTV,lb1

w (u, y).

The results are shown in Figure 6.3. It can be seen that:

• γLTV,lb1
w (u, y) and γ̂LTV,lb1

w (u, y) are coincident, and smaller than γLTV,lb2
w (u, y)

and γ̂LTV
w (u, y). Both the these facts are as expected: the value obtained

using Proposition 6.7 from [SDM00] is equal to our first lower bound, and our

improved bound is greater than these. The latter point confirms our claim

that Proposition 6.7 is false.

• γLTV,lb2
w (u, y) is significantly closer to the ‘true’ value γLTV

w . In this case,

the two actually coincide. Though we always expect γLTV,lb2
w (u, y) to exceed

γLTV,lb1
w (u, y), it is unlikely that γLTV,lb2

w (u, y) and γLTV
w will always coincide.

It is possible that the coincidence in this example is a result of the convexity

of the problem.

Most problems will not have convex solutions, but we now have a method of applying

the S-procedure to find a lower bound on the level of LTV uncertainty present.

This nicely complements the methods of previous chapters, which use quadratic

approximations to produce upper bounds.

2The input sequence is uk = cos
(
2kT + 1

2
k2T 2

)
where T = 0.2 sec. The output yk is the

response of Fu(1, G) = 0.008678z2
+0.01736z+0.008678

z2
−1.636z+0.6694

to uk.
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Figure 6.3: Numerical example. γLTV,lb1
w (u, y) = γ̂LTV,lb1

w (u, y) as expected, since
both are intended to be the same quantity. In this case the lower bound γLTV,lb2

w (u, y)
is equal to the exact value γLTV

w (u, y). See the text of Section 6.6 for a more detailed
discussion.
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6.7 Adaption for an initial state and an output

offset

In real-world applications, it is unlikely that a system will be perfectly at rest at the

start of an experiment and offsets and/or trends may be present in the data. As an

example, and for application to the VAAC data in Chapter 7, this section sets out

a method of compensating for a constant output offset and a short pre-record input

sequence. A single uncertainty block is used.

The main variables we shall use are:

u ∈ Sq
k , y ∈ Sp

k input-output data from experiment (known)

kp length of the pre-record to be used (chosen)

up ∈ Sq
kp

, yp ∈ Sp
kp

pre-record input-output data (unknown)

wp ∈ Sr
kp

noise sequence during the pre-record section (unknown)

w ∈ Sr
k noise sequence during experimental record (unknown)

yo ∈ R
p output offset (unknown)

We shall also use two variables whose values are dependent on others: the uncer-

tainty signals t ∈ Sτ
k+kp

, s ∈ Sσ
k+kp

.

The complete LFT structure is shown in Figure 6.4.
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Figure 6.4: LFT structure for invalidation with offset and initializing sequences
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Remark 6.11 Given γw, γ∆ > 0 the LFT model structure of Figure 6.4, where ∆ is

an unstructured perturbation satisfying ‖∆‖∞ ≤ γ∆ and ‖w‖ ≤ γw , is invalidated

for the data (u, y) if and only if there exist no wp, up, y0, s, t satisfying

‖w‖2 ≤ γw (6.8)

‖t‖2 ≤ γ∆‖s‖2 (6.9)

and




vec s

vec y



 =




Q11 Q12 Q1p Q13 Q1o

Q21 Q22 Q2p Q23 Q2o









vec t


vec wp

vec w





vec up

vec u

vec yo





(6.10)

where

Q11:= Π(k+kp)TP11
, Q12:= Π(k+kp)TP12

,

Q1p:=
(
Π(k+kp)TP13

)



Iqkp

0qk×qkp



 , Q13:=
(
Π(k+kp)TP13

)



0qkp×qk

Iqk



 ,

Q1o:= 0σ(k+kp)×p,

and

Q21:=

[
0pk×pkp

Ipk

]
Π(k+kp)TP21

, Q22:=

[
0pk×pkp

Ipk

]
Π(k+kp)TP22

,

Q2p :=

[
0pk×pkp

Ipk

] (
Π(k+kp)TP23

)



Iqkp

0qk×qkp





Q23 :=

[
0pk×pkp

Ipk

] (
Π(k+kp)TP12

)



0qkp×qk

Iqk





107



Q2o = −





Ip

Ip

...

Ip










pk

♥

Outline of proof. Follows through a simple application of Corollary C.2 to the

uncertainty block. �

The parameterization of the problem follows the same line as that of Section 6.1.2:

Pre-parameterization of all values satisfying the interpolation condition

The overall input-output equation which must be satisfied is

vec y − Q23vec u =

[
Q21 Q22 Q2p Q2o

]

︸ ︷︷ ︸
=:Q2•





vec t


vec wp

vec w





vec up

vec yo





︸ ︷︷ ︸
x

(6.11)

Note that Q2• ∈ Rkp×(k+kp)(r+τ)+kpq+p and x ∈ R(k+kp)(r+τ)+kpq+p. There is a solution

to the equation when Q2• has full row rank. When this is the case, a particular

solution may be found from

x0 = Q†
2• [vec y − Q23vec u]

and the general solution from

x = x0 + Rζ

where R spans null(Q2•) and ζ is a compatibly-dimensioned vector of real numbers.
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Reparameterization of the exogenous noise constraint

The exogenous noise constraint ‖w‖2 < γw is identical to ‖vec w‖2 < γw. Using

(6.11), vec w may be expressed in terms of x:

vec w =

[
0rk×[τ(k+kp)+rkp] Irk 0rk×(qkp+p)

]

︸ ︷︷ ︸
=:Qw

x

= Qw(x0 + Rζ)

Thus we can write

γ2
w > (ζ∗R∗ + x∗

0) Q∗
wQw (Rζ + x0)

0 > ζ∗R∗Q∗
wQwRζ + 2x∗

0Q
∗
wQwRζ + x∗

0Q
∗
wQwx0 − γ2

w

which is true if and only if

0 >

[
ζ∗ 1

]



A0 b0

b∗0 c0(γw)








ζ

1





where

A0= R∗Q∗
wQwR, b0= R∗Q∗

wQwx0, c0(γw)= x∗
0Q

∗
wQwx0 − γ2

w
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Reparameterization of the perturbation block constraint

To reparameterize the unstructured norm-bounded perturbation block constraint

‖t‖2 ≤ γ∆‖s‖2, expressions for s and t are needed, and may be obtained from (6.10)

and (6.11)

vec s =

[
Q11 Q12 Q1p Q1o

]

︸ ︷︷ ︸
Q1•

(x0 + Rζ) + Q13vec u (6.12)

vec t =

[
Iτ(k+kp) 0τ(k+kp)×[(k+kp)r+qkp+p]

]

︸ ︷︷ ︸
=:N

(x0 + Rζ) (6.13)

The constraint thus becomes:

(x∗
0+ ζ∗R∗)N∗N(x0 + Rζ)︸ ︷︷ ︸

‖t‖2
2

≤ γ2
∆

(
[x∗

0 + ζ∗R∗] Q∗
1•+

[
vec u

]∗
Q∗

13

)(
Q1• [x0 + Rζ ] + Q13vec u

)

︸ ︷︷ ︸
‖s‖2

2

Looking at the left-hand side:

l.h.s. = ζ∗(R∗N∗NR) ζ + 2 (x∗
0N

∗NR) ζ + x∗
0N

∗Nx0

Looking at the right-hand side:

r.h.s. = γ2
∆



ζ∗R∗Q∗
1•+




x0

vec u





∗


Q∗

1•

Q∗
13











Q1•Rζ +




Q∗

1•

Q∗
13





∗ 


x0

vec u









= ζ∗
(
γ2

∆R∗Q∗
1•Q1•R

)
+ 2



γ2
∆




x0

vec u





∗ 


Q∗

1•

Q∗
13



Q1•R



 ζ

+ γ2
∆




x0

vec u





∗ 


Q∗

1•

Q∗
13








Q∗

1•

Q∗
13





∗ 


x0

vec u




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Rearranging the expression, we see that we need

γ2
∆‖s‖

2
2 − ‖t‖2

2 ≥ 0

i.e.

ζ∗A1ζ + 2b1ζ + c1 ≥ 0 ⇐⇒

[
ζ∗ 1

]



A1(γ∆) b1(γ∆)

b∗1(γ∆) c1(γ∆)








ζ

1



 ≥ 0

where

A1 = R∗
(
γ2

∆Q∗
1•Q1•− N∗N

)
R

b1 = γ2
∆(x∗

0Q
∗
1•+ [vec u]∗Q∗

13) Q1•R

c1 = γ2
∆

(
x∗

0

[
vec u

]∗)



Q∗

1•Q1• Q∗
1•Q13

Q∗
13Q1• Q∗

13Q13








x0

vec u





6.7.1 Invalidation condition

Remark 6.12 (Noncausal ∆) Given γw, γ∆ > 0, the LFT structure of Figure 6.4

with an unstructured ∆ satisfying ‖∆‖∞ ≤ γ∆ and w satisfying ‖w‖2 ≤ γw is

invalidated if and only if the following equivalent conditions are met:

(i) There exist no wp, up, y0, s, t simultaneously satisfying (6.8), (6.9) and (6.10).

(ii) For all ζ satisfying F1(γ∆, ζ) ≥ 0,

F0(γw, ζ) ≥ 0

(iii) There exists no τ1 ≥ 0 such that

F0(γw, ζ) − τ1F1(γ∆, ζ) ≥ 0
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(iv) There exists no τ1 ≥ 0 such that




A0 − τ1A1(γ∆) b0 − τ1b1(γ∆)

b∗0 − τ1b
∗
1(γ∆) c0(γw) − τ1c1(γ∆)



 ≥ 0

♥

Proof (sketch). (i) follows from remark. (ii) follows from (i) via the parameteriza-

tions discussed in the preceding sections. (iii) follows from (ii) via the S-procedure.

Finally (iv) follows from (iii) following the method of [BEGFB94]. �

Remark 6.13 Near-identical techniques can be employed to calculate (a) the first

and (b) the second lower bounds. This is omitted for the sake of brevity and to

avoid repetition. ♥

6.8 Concluding notes

At is logical to ask whether allowing non-causal ∆ blocks is useful; we know that in

the real world, no such systems exist. (Yet there are situations where an element

of non-causal behaviour can be a reasonable approximation, e.g. human-in-the-loop

control.) More importantly, the associated mathematical problem is very straight-

forward being convex and containing only one decision variable; its ease of solution

is likely to prove its most useful aspect.
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Chapter 7

An Application in Flight Control

7.1 The VAAC Harrier

The British Aerospace Harrier entered service with the RAF in 1969, earning its

‘jump jet’ nickname from its famous vertical take-off and landing capability. The

aircraft’s engines are equipped with nozzles that may be directed partially or wholly

downwards: the jargon describing this is ‘vectored thrust’. The VAAC acronym is

a contraction of ‘vectored-thrust aircraft advanced flight control’; it is used both to

describe a programme of research conducted by the vehicle’s owner QinetiQ (‘the

VAAC programme’) and to describe the specially-equipped ‘VAAC Harrier’ used as

a test bed for this programme.1

7.1.1 Aircraft description

The technical specifications of the VAAC Harrier are given in brief in [GAR01], from

which Figure 7.1 is taken. The VAAC Harrier is a two-seater version, adapted to

incorporate a full-authority flight control system for the rear pilot. The control sur-

faces are connected to the flight control system with optical fibres, an arrangement

1QinetiQ p.l.c. was formed when the H.M. Government’s research agency DERA was split into
two and partially privatized. (QinetiQ is now privately owned, with the smaller DSTL retained in
public ownership.) The group operating the VAAC programme is based at Bedford at what was
once the Royal Aircraft Establishment, though the VAAC Harrier itself operates from Boscombe
Down.
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Figure 7.1: Basic dimensions of the VAAC Harrier [GAR01]
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described by the aviation industry as ‘fly-by-light’. The front pilot is equipped with

conventional mechanically-linked controls, and the flight control system is overrid-

den automatically whenever these are used. This is used for take-off and landing,

and may also be used to end a flight test in the event of something going wrong.

7.1.2 The Harrier Wide-Envelope Model

The longitudinal dynamics of the Harrier are believed to be well-approximated by

linear models. The Harrier Wide-Envelope Model or ‘HWEM’ is a Simulink model

of the Harrier whose applications include real-time use in QinetiQ’s large motion

simulator. It is supplied with British Aerospace’s ‘CL002’ control law; both are

detailed in the literature [GAR01]. A particular characteristic of the HWEM not

present in earlier models is that it is implemented wholly as a Simulink block dia-

gram. There are no external S-functions, and no dependence on C or FORTRAN.

The model depends on workspace constants; MATLAB script files are provided to

initialize and trim such values, and to generate linear models of the plant and the

controller.

The accompanying control law, ‘CL002’, was developed by QinetiQ’s predeces-

sors in conjunction with British Aerospace and is described briefly in [Dic00]. We

will be considering longitudinal motion only. The HWEM’s Simulink block diagram

for the relevant parts of the controller is shown in Figure 7.2, and its function de-

scribed in Table 7.1.2 The longitudinal control law also compensates for the effects

of flap position, nozzle position and bank angle. It is gain-scheduled, and scripts for

trimming the controller are provided.

2Those with access to the HWEM will be able to examine this more closely by inspecting the
Simulink modelwemsim05ca.mdl.
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Figure 7.2: Longitudinal Control Law from CL002

Indicated air speed CL002 functionality
< 50 knots Controls pitch attitude.
> 60 knots Controls pitch rate. If undercarriage down, pitch hold

function also engaged.
50–60 knots Provides a blend of the functions described above.

Table 7.1: Summary of CL002 longitudinal action
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Test Signal #2
Chirp on
Tailplane Demand

Test Signal #1
Chirp on 
Pitch Demand

Tailplane Angle
Measurement

Pitch Angle
Measurement

Harrier Aircraft

Flight Control System
Control Law ’CL002’

Actuators

Figure 7.3: A simplified flight test schematic showing signal injection points and
signal measurement points. Sensor models, present in HWEM, are omitted for
clarity.

7.2 Flight Test 1858

Flight Test 1858 took place at Boscombe Down in December 2001 under the super-

vision of QinetiQ.3 The flight had two objectives: firstly, to test work by Mathworks

on an ‘in flight stability metric’, a continuation of work in [Dav96]; and, secondly,

to collect data for use in validation. We only consider the latter here.

7.2.1 Experimental procedure

In both experiments, the aircraft was set-up in straight-and-level flight with an

indicated air speed of about 210 knots, an attitude of about 3.5 degrees and an

altitude of about 3 000 feet. Weather at ground level was not extreme. Then, a

‘chirp’ signal was injected as shown in Figure 7.3: in the first test, hereafter referred

to as ‘Test Point 1’, the chirp entered the loop at the ‘pitch demand’; at the second,

‘Test Point 2’, the point of entry was the ‘tailplane demand’.

3Acknowledgements made in particular to Glenn D’Mello for his help in this.
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(b) Test Point 2

Figure 7.4: Time histories showing altitude, true air speed and incidence at each
test point

7.2.2 Data extraction and time histories

The measured data were logged by the VAAC Harrier’s on-board computer and de-

livered ‘raw’, with the Simulink model used to decode the measurements in-flight.

An adapted version of this was used to ‘decalibrate’ the logged signals. Time his-

tories for the trim variables are given in Figure 7.4, and mean values are given in

Table 7.2.

Test Point 1 Test Point 2
Altitude 3.32 × 103 ft 3.34 × 103 ft
True air speed 217 knots 218 knots
Incidence 4.3 deg 4.0 deg

Table 7.2: Mean values of trim variables from Figure 7.4

The data were down-sampled to give 180 data-point records.4 The new inter-sample

period was chosen as 0.05 sec to allow as much as possible of the ten-second chirp

to be recorded. The down-sampled signals are shown in Figure 7.5.

4This results in 360+ decision variables. More are theoretically possible, but our computers’
memory was insufficient: the ‘yalmip’ software used took up several hundred megabytes of memory,
and increasing the record length to 190, for example, consistently caused crashes.
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Figure 7.5: Down-sampled signals
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7.2.3 Modelling the plant and controller

Linear continuous-time plant models were extracted by trimming the HWEM to

the required operating point and using QinetiQ-supplied linearization scripts to

determine the plant model.5 A similar procedure (detailed in the appendices on

page 177) was used to find the corresponding controller models. Numerical values

are presented on page 178.

7.3 Model analysis using near-optimal weighting

Having computed a nominal [P, C] at each test point, the magnitude of the optimal

input-output weighting W ◦
i , W ◦

o described in Section 3.3 was calculated for the fre-

quency range 10−2 to 101 rad/sec.6 Note that because we are dealing with a single

channel, that from tailplane angle to pitch, we need only one dynamic weight, so

we shall consider only W ◦
i . Though there is no theoretical difficulty in producing

a real-rational transfer function to fit |W ◦
i (jω)| exactly, this could produce a very

high-order system. Instead, weights close in magnitude to the optimal were con-

structed. The weights Wi(jω) used for each test point are shown in Figure 7.6.7

These weights were visually fitted to the data, with integral action used to provide

the low frequency response, and a compatible phase response was generated.8

5More details on the trimming procedure are given on page 174.
6The MATLAB function used to do this is included in the appendices, starting on page 184.
7Numeric values are given on page 186.
8The MATLAB functions fitmag and genphase from the µ-synthesis and analysis toolbox were

used.
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Figure 7.6: Optimal weighting (blue) and near-optimal weights Wi(jω) used for
validation (green)
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Figure 7.7: Frequency-wise robust stability margins with and without weighting.
The left plots are for Test Point 1, the right plots for Test point 2.

7.3.1 Effects on the frequency-wise robust stability margin

The effect of the weighting on the frequency-wise robust stability margin is illus-

trated by Figure 7.7 on page 122. Note that the system is marginally stable: a closed-

loop pole at the origin is considered acceptable in many flight applications. Thus

bP,C = 0. However, with weighting this problem is circumvented: bscaled(P, C) = 0.47

for Test Point 1, and 0.46 for Test Point 2.
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Figure 7.8: Block diagram for model validation. (u, y) are the down-sampled vali-
dation data; the plant P and weight Wi are sampled at the same rate. P̂ , wu, wy,
and yoffset are unknowns to be determined. If consistent values exist, our model is
considered not invalidated.

7.3.2 Validation procedure

The models and weighting were sampled with a period Ts = 0.05 seconds to match

the down-sampled data.9 The effect on the weighted singular values of the plant is

shown in Figure 7.9 (page 124). Note that the shape of the plots and the crossover

frequencies are not greatly affected by this. The scheme initially adopted for vali-

dation is shown in Figure 7.8 on page 123.

A condition for LTI non-invalidation follows:

Proposition 7.1 (LTI suff. condition for non-invalidation) Given a nominal

plant P (z), input weight Wi(z) and validation data (u ∈ Sq
k , y ∈ Sp

k), all sampled

with the same period, γ > 0 and a ν-gap radius β, let M be the central controller

satisfying

b (PWi, C) > β ∀ C ∈
{
Ĉ : Ĉ = Fℓ(M, Q), Q ∈ RH∞, ‖Q‖∞ < 1

}

Given any sequences wu0 ∈ Sq
k , wy0 ∈ Sp

k , let




s

t



 = ch (M)−1




W−1

i 0

0 I








u + wu0

y + wy0





Then there exists a system P̂ (z) ∈ BLTI
ν (PWi, β), wu ∈ Sq

k , wy ∈ Sp
k , yoffset ∈ Rp

9MATLAB’s default ‘sample-and-hold’ method was used.
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Figure 7.9: Frequency responses of PWi after sampling with Ts = 0.05 sec
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such that

y + wy + yoffset = P̂W−1
i (u + wu)

and

||wu||
2
2 + ||wy||

2
2 ≤ γ2 (7.1)

if there exist ws ∈ Sq
k , wt ∈ Sp

k and yoffset ∈ Rp simultaneously satisfying




T ∗

s Ts + T ∗
ws

Ts + T ∗
s Tws

T ∗
t + T ∗

wt

Tt + Twt
I



 ≥ 0

and 


γ2 vec ξ∗

vec ξ I



 ≥ 0 (7.2)

where

ξ =




Wi 0

0 I



 ch (M)




ws

wt



+




wu0

wy0



−




0

yoffset



 (7.3)

When these exist, realizations of wu and wy are given by




wu

wy



 = ξ.

Proof. This follows naturally from Theorem 5.1. Since we are considering a

weighted ν-gap radius, we take as the total input to the weighted plant û =

W−1
i (u + wu) and the total output ŷ = y + wy + yoffset. This gives the following

input/output for the perturbation block.




ŝ

t̂



 = ch (M)−1




W−1

i 0

0 I








u + wu

y + wy + yoffset





= ch (M)−1




W−1

i 0

0 I








u + wu0

y + wy0





︸ ︷︷ ︸
(s,t)

+ ch (M)−1




W−1

i 0

0 I








wu − wu0

wy − wy0 + yoffset





︸ ︷︷ ︸
(ws,wt)
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From this it is clear that




wu − wu0

wy − wy0 + yoffset



 =




Wi 0

0 I



 ch (M)




ws

wt





which gives (7.3).

Writing ξ =




wu

wy



, the noise bound (7.1) may equally well be expressed as

vec ξ∗vec ξ ≤ γ2, which, by the Schur complement (2.9) gives (7.2). �

Remark 7.2 Having obtained wu, wy and yoffset, a realization of P̂ can be con-

structed by applying Theorem 5.10 to û and ŷ. ♥

Remark 7.3 The ideas of Remark 5.8 can be applied here too, in order to accom-

modate a non-zero initial state. Repeating the mathematics here would be tedious

and not contribute greatly to the discussion. ♥

The analogous result for BLTV
ν (PWi, β) (Proposition D.1) is presented in the ap-

pendices on page 186. The necessary and sufficient condition for BNC
ν (PWi, β) is sim-

ply obtained from Remark 6.12. A starting point for the LTI and LTV (in)validation

procedures was found by solving a least-squares noise-minimization problem for the

nominal model.
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Figure 7.10: Block diagram: weighted model validation with input scaling

7.3.3 Initial results and re-scaling

When processing the initial results, it was noticed that the ‘best’ models seemed to

produce signals with smaller amplitude than the sampled data. It was hypothesized

that there was a gain scaling error, perhaps in one or more of the decalibration

constants. To accommodate this, the model of Figure 7.10 was proposed. A scalar

‘sensor gain’ ksg was included on the input signal, applying only to the measured

signal itself.

The effects of varying ksg are shown in Figure 7.11.

Remark 7.4 From this point forward, it will be assumed that all the input data

has been scaled by ksg = 1.8. ♥
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Figure 7.11: The effects of varying ksg. Both plots show the results for the first
approximation of the full LTI non-invalidation problem, considering both a noise
minimization problem and an uncertainty minimization problem. In both cases, the
optimal ksg is approximately 1.8.
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7.3.4 Computation and results

The most practical way to analyse the results is to compute the smallest noise

norm γ that can be determined for any given value of β. This is, at least under

approximation, easily formulated as an LMI objective minimization problem.10

The algorithms used to compute the results for Test Point 1 and Test Point 2 were

slightly different: the method adopted for Test Point 2 was slightly more refined,

with greater scope for repeatability. In both cases, the optimization processes ran

on several machines over several weeks. During the computations for Test Point

2, computation of one iteration for sixty β points took between 24 and 48 hours,

running on 12 processors.

Algorithm for Test Point 1

• The first few upper bounds on γ(β) for the first approximation were calcu-

lated using a least-squares solution for the nominal model as a starting point

(wu0, wy0) in Propositions 7.1 and D.1.

• As the computations finished, the corresponding values of (wu, wy) were stored,

and used as starting points for subsequent computations.

• The upper bounds were refined by repeated applications of Propositions 7.1

and D.1. In each case, the (wu, wy) from the previous iteration was used to

provide the starting point (wu0, wy0) for the next. This was stopped either at

the tenth iteration, or after the value had converged such that the improvement

on the previous iteration was less than 0.1%.

Only the results of the final iteration were recorded.

10When trying to minimize the smallest compatible ν-gap radius as a function of γ, it is necessary
to use a bisection method since the ν-gap parameterization differs for every value of β considered.
A separate feasibility problem must be considered at every iteration of the bisection algorithm.
This is of course very slow.
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Algorithm for Test Point 2

The algorithm for Test Point 2 was simpler, and more easily repeatable:

• The first iteration was carried out using a least-squares solution for the nominal

model for all values of β.

• Nine subsequent iterations were carried out. After each iteration, monotonicity

was enforced since this makes logical sense.

The results for all iterations were recorded.

For both test points, the validation process was carried out in two ways:

(i) with no pre-record sequence, assuming the system was initially in equilibrium;

(ii) with pre-record sequence of length n = 2, allowing for an initial state.11

11Numerical problems were encountered with n = 3 and greater. Time did not permit exploration
of the cause.
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Final results: Test Point 1

The validation results assuming a zero initial state are shown in Figure 7.12(a). The

results with a non-zero initial state are shown in Figure 7.12(b). A number of points

are worth noting:

1. The values shown for LTI and LTV uncertainties are upper bounds on their

true minima, produced by successive relinearizations about the local minima

in the approximate non-invalidation problems.

2. It is clear that the structure of the model perturbation is very important: the

results for LTI uncertainty are far more conservative than those for LTV and

noncausal uncertainty.

3. Allowing for an initial state (using pre-data sequences) has a big effect, partic-

ularly in the LTV and noncausal cases; for a given level of uncertainty, much

less noise is required to account for the remaining discrepancy between model

and data when a non-zero initial state is allowed.

4. In the non-zero initial state case, the LTV and noncausal lines appear to be

coincident. This is not true for the zero initial state case. This will be discussed

further in Section 7.3.6.

(The graphs shown represent spline fits to the points numerically analysed. The

‘raw’ numerical results are shown in page 187 in the appendices.)
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Figure 7.12: (Test Point 1) These graphs show the trade-off between ν-gap radius β
and the smallest ||w||2 required to account for modelling discrepancy, both for zero
initial state (Figure 7.12(a)) and for a ‘free’ initial state generated using pre-input
sequences (Figure 7.12(b)).
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Final results: Test Point 2

The validation results for Test Point 2 are shown in Figure 7.13. Although there is

difference in the detail, very much the same observations can be made here as for

Test Point 1.

It can be seen that the noise-norm values obtained for Test Point 2 are slightly

greater than those obtained for Test Point 1. This suggests that the second ex-

periment was more informative than the first. If it were not for the approximation

inherent in the constraints, we could categorically state that smallest γ-values con-

sistent with each ν-gap radius for all data was at least as small as the values from

Test Point 2. (Even with the approximation, it remains likely that Test Point 2 is

giving us something closer to the truth.)
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Figure 7.13: Validation results for Test Point 2: these curves illustrate the trade-
offs between noise and weighted ν-gap radius in accounting for discrepancy between
noise and data.
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7.3.5 The effects of relinearization

The algorithm used to analyse Test Point 2 was implemented such that the result at

each iteration was recorded. This enables a clear picture of the effects of relineariza-

tion to be seen. The LTI, x0 = 0 case is illustrated by Figure 7.14. Relinearization

brings a clear improvement for large ν-gap radii, though little improvement occurs

for small radii. Most of the refinement takes place at the second stage of relineariza-

tion. The curves produced at the ninth and tenth stages are near-coincident.

Similar observations can be made for the other Test Point 2 data.
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7.3.6 Noncausality versus causality

It will be noted that for both test points, the trade-off curves for noncausal and

LTV perturbation structures appear very close together. In the calculations for

Test Point 1, particular care was taken to include a high density of β-values in the

region of interest.12 The results are shown in Figure 7.15.

This is as expected, since the value for the LTV γ, itself an upper bound, is

always greater than the corresponding noncausal value. The difference appears to

increase with β, just as the more-obvious difference between the LTI and LTV curves

does.

What we can see, however, is that in the case where the initial state is not

fixed at zero, the effect of causality is minimal. Time-invariance remains important,

however.

12The same analysis was not repeated for Test Point 2, owing to the high computational expense.
However, the lines appear coincident.
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.
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7.3.7 Lower bounds for LTV uncertainty

The S-procedure based techniques of Chapter 6 were applied to the Test Point 2

data, assuming a ν-gap radius β = 0.07 a zero initial state. (The zero initial state

was chosen so that there would be discernable difference between LTV and noncausal

values. The values are too close to see any difference when the initial state is free.)

The results are given in Table 7.3.

Description Reference Value
LTV uncertainty, upper bound Prop. D.1 1.68
LTV uncertainty, first lower bound Remark 6.13(a) 1.41
LTV uncertainty, second lower bound Remark 6.13(b) 1.62
Noncausal uncertainty Remark 6.12 1.41

Table 7.3: Comparison of lower bounds at β = 0.07 (Test Point 2, zero initial state)

The first lower bound, effectively formed by applying the noncausal invalidation

criterion to all truncations and taking the ‘worst’ result is, to the given accuracy, no

different from the value that would obtained from the final truncation. (Figure D.7

on page 189 of the appendices illustrates this in more depth.) The value obtained

using the second lower bound is considerably higher. At 1.62, it is relatively close to

the upper bound of 1.68; the ‘unknown’ space in-between is less than 4% of either

value.
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7.4 A simplified proportional-integral weighting

strategy

The near-optimal weighting strategy, though no doubt of interest, does not have

obvious real-world significance. In the aviation industry, low-frequency unstable

eigenvalues are often tolerated [Cor02] and some recent work [Hal02] has considered

the application of relaxed stability criteria to multi-loop design. It can be seen that

a major effect of the optimal and near-optimal weighting strategies of Figure 7.6 is

to introduce integral actions at low frequencies, thus allowing for the presence of

a closed loop pole at the origin. It was hypothesised that the use of proportional-

integral weight

WPI(s) = KP +
1

sTI

would provide similar benefits, yet be simpler and more intuitive than the optimal

weighting strategy.

The near-optimal weight used in the analysis of Test Point 2 is well-approximated

at low and high frequencies by

WPI(s) = 1.14 +
0.1942

s

The frequency response of both the weights and the plants are shown in Figure 7.16,

and the effect on the frequency-wise robust stability margin in Figure 7.17. The big

difference in the frequency responses close to cross-over is clearly reflected in the

frequency-wise robust stability margin, but not enough to affect the smallest value:

sup
ω

ρ
(
PWPI, W

−1
PI C

)
(jω) = sup

ω
ρ
(
PWi, W

−1
i C

)
(jω) ≈ 0.46
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Figure 7.16: Comparing the near-optimal weighting strategy to the proportional-
integral one. There is very little difference at high and low frequencies, but this is
certainly not true close to crossover
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Uncertainty type / initial state Wi(jω) WPI(jω)
LTI uncertainty, x0 = 0 1.98 1.95
LTV uncertainty, x0 = 0 1.68 1.63
Noncausal uncertainty, x0 = 0 1.41 1.33
LTI uncertainty, x0 6= 0 0.31 0.24
LTV uncertainty, x0 6= 0 0.00 0.00
Noncausal uncertainty, x0 6= 0 0.00 0.00

Table 7.4: Comparing the weighting strategies. This table shows the smallest val-
ues of ||w||2 determined at β = 0.07 using the ‘near-optimal’ weight Wi(jω) and
the proportional-integral weight WPI(jω). The PI weights give slightly smaller but
similar values.

This weighting was used to re-validate the Test Point 2 data with β = 0.07. The re-

sults are shown in Table 7.4, with the zero initial-state LTI and LTV cases illustrated

by Figure 7.18.

The values are slightly lower than those obtained with the ‘near-optimal’ weights,

but similar. Note that the first weights’ optimality was in terms of the frequency-

wise ν-gap radius, not b(P, C) itself: the proportional-integral weights are equally

optimal in that sense. It is no great surprise that the values we find should be

slightly higher or (as in this case) lower than those found before, but the fact that

two ‘sensible’ weighting strategies give similar results increases confidence in both

approaches.
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7.5 Construction of interpolants

The noise sequences found during the validation process can be used to find plausible

plant input-output pairs (û, ŷ) which can be used in Theorem 5.10 to construct

interpolants. Figure 7.19 shows an example: the interpolant matches the down-

sampled data perfectly. The nominal model, however, does not. Examples of a

weighted frequency response and the frequency-wise ν-gap between a constructed

interpolant and the (sampled) nominal plant are shown in Figure 7.20. Notice that

the frequency-responses are not at all smooth: this is a natural consequence of the

interpolation methods employed. The raggedness is more pronounced for the higher

of the two ν-gap radii considered, a fact that is not particularly surprising given

that more discrepancy must be accounted for in the model.
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Figure 7.20: Visualising interpolant plants. These diagrams show the weighted
frequency responses of LTI interpolants constructed to match the Test Point 2/non-
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Final comments

In this chapter, we have succesfully demonstrated the application of the model

(in)validation techniques introduced in Chapters 5 and 6 to a real-world example.

It is worth noting the following:

1. Some of the trade-off curves show that a model set with a ν-gap radius above

some value of β is sufficient to account for all the discrepancy between nominal

model and observed behaviour. (An example is Figure 7.12(b), where LTI

model set with β > 0.35 is consistent with the data without any noise.) This

does not mean that a controller designed for this value of β is guaranteed to

work up to specification; all the (in)validation test has done is to show that

such a mode set could account for all the discrepancy in the finite time section

concerned, increasing our confidence in the model.

2. There may well be nominal plants (and associated controllers) achieving ‘bet-

ter’ trade-off curves. In the example of Figure 7.12(b), it would be possible to

construct a system that would account for the observed data perfectly. It does

not follow that this would be a better model; it would need to perform this

well when considered over all possible data records, not just a single observed

case.

3. The full trade-off curves for PI weighting (section 7.4) have not been computed.

Further conclusions are given in the following chapter.
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Chapter 8

Conclusions

Most of the original work in this thesis is in Chapters 5, 6 and 7. Conclusions drawn

are listed separately for each chapter.

Chapter 5: Extensions to model validation theory

This chapter considered the ν-gap LTI/LTV non-invalidation problems, developing a

method of improvement by relinearization which could be applied to non-zero initial

states. Methods of constructing interpolants were also discussed. The following

conclusions were drawn:

• It is often possible to improve on the first approximation of LTI/LTV non-

invalidation conditions by successively relinearizing about the ‘best’ solution

found using the approximations. This is useful, both in providing ‘better’

solutions and—in cases where the relinearization does not result in a great

improvement—increases confidence that the approximations are useful. It is

not possible to state categorically that this method will always result in the

true global minimum for the unapproximated non-convex constraints. In the

numerical example, the fact that the ‘brute force’ optimisation routine was un-

able to improve on the value from successive relinearizations strongly suggests

that we are finding local minima for the non-convex constraints.

• It is possible to account for a non-zero initial state by ‘pre-padding’ the in-

put/output data. Perturbation block constraints should be applied across the

extended record, but noise constraints should only be applied across the ‘real

time’ part. When the problem is approximated, linearization should not take

place about ‘zero’ pre-record values; a least-squares solution based on mini-

mizing the ℓ2-norm of the noise sequences using the nominal model was found

to be effective in a numerical example.
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• The noise-corrected data from non-invalidation tests can be used to construct

interpolant systems of comparable order to the record length.

Chapter 6: Invalidation using the S-procedure

An alternative approach to LFT invalidation problems using the S-procedure was

considered. A problem was identified with a claimed necessary and sufficient con-

dition for LTV invalidation from [SDM00], which we show to be sufficient but not

necessary. The techniques were adapted to produce necessary and sufficient condi-

tions for invalidation with a noncausal perturbation structure and a tighter sufficient

condition for LTV invalidation. This was illustrated using a numerical example, also

serving as a counter-example to the claim of [SDM00]. The techniques are adapted

for application to a system with an output offset and potentially non-zero initial

state. The following conclusions were drawn:

• The claimed necessary and sufficient condition of LTV invalidation proposed in

[SDM00] is only sufficient. A tighter sufficient condition has been found. This

is useful, since we now have upper and lower bounds for LTV (in)validation

problems. In a convex numerical example, the new lower bound of the small-

est noise ℓ2 norm consistent with any given perturbation size was seen to be

very close to the true value from convex optimization. Model (in)validation

problems are not generally convex, though: LTI/LTV ν-gap type problems are

not obviously so.

• A necessary and sufficient condition for invalidation using noncausal pertur-

bations has been derived. This is potentially useful in assessing the effects of

causality on a given problem. (It also provides a lower bound for the LTV and

LTI cases.) This is very easy to compute, requiring only a simple LMI opti-

mization with few decision variables, but—when considered as a lower bound

for the LTV case—it is less tight than the bounds described above.

Chapter 7: An application in flight control

The techniques of Chapters 5 and 6 were applied to experimental flight test data

from QinetiQ’s VAAC Harrier for two sections of straight-and-level flight data. The

following conclusions were drawn:

• The LTI, LTV and noncausal (in)validation techniques of the Chapters 5 and

Chapters 6 can be successfully applied to real-world data.
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• A system model consisting of a linear model (from the HWEM) in series with a

scalar gain and dynamic frequency weighting accounted well for the data when

input/output noise and an output offset were allowed. For computational

reasons, it was not possible to consider more than 180 data points. It is

necessary to compromise between actual-time record length and resolution,

and the down-sampling no doubt has a considerable attenuating effect on the

influence of high-frequency uncertainty and noise.

• A frequency-wise ‘near-optimal stability’ weighting strategy was successfully

used. The real-world significance of this is unclear, and a much simpler

proportional-integral weighting strategy was employed with very similar re-

sults. (The second strategy was as optimal as the first in terms of the overall

robust stability margin, so this is as would be expected.)

• Of the two data records considered, the second—produced by injecting a chirp

signal on the ‘tailplane demand’ rather than the ‘pitch demand’— can be

considered the more informative since more noise is required for consistency

with any given ν-gap radius.

• When the initial state is fixed at zero, time-invariance and causality both seem

to be active constraints.

• When the initial state is allowed to vary, time-invariance remains an active

constraint but the significance of causality seems much reduced: the ‘noise-

against-perturbation’ curves for LTV and noncausal uncertainty are effectively

coincident.

• The method of successive refinement for LTI/LTV uncertainty appears to work

in practice. Most of the improvement takes place between the first and second

iterations. The potential for improvement is greater for larger ν-gap radii, and

very small when the ν-gap radius is close to zero.

• The estimates of the smallest noise-norm found using the two LTV lower

bounds—considered with a zero initial state so as to make the difference clear—

suggest that the bound derived from [SDM00] is not particularly useful, since

the numerical value given was identical to that found for noncausal uncer-

tainty. The new bound from Chapter 6 was more useful being comparable to

but lower than the upper bound computed using the ‘traditional’ methods of

Chapter 5.

• It was possible to find LTI interpolants. The frequency-responses of these were

very ragged, particularly for comparatively large ν-gap radii. These interpo-

lated the noise-corrected data perfectly.

150



• The LMI algorithms used are not yet sufficiently fast for the method to be

used to ‘real time’ flight clearance.

In summary, we have developed new techniques for (in)validation and construction

of interpolant systems, and we have applied them to real world data. Our techniques

were seen to work within certain limitations, and they could usefully be applied to

other real-world feedback-oriented model (in)validation problems.
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Appendix A

Appendices to Chapter 4

Conditions for non-invalidation/validation in the

ν-gap with ws = 0

Proposition A.1 ([SV01]) Given some nominal model P , noise sets Wu and Wy

and a ν-gap radius β, there exist noise sequences




wu

wy



 ∈ Wu×Wy ∩gr(M11), and

a linear, time-invariant P̂ ∈ Pν(P, β) such that wy = P̂ ∗ (u − wu) + wy if, but not

only if, there exist sequences (ws, wt) such that




wu

wy



 = ch(M)∗




ws

wt



 ∈ Wu×Wy

and

0 ≤




T ∗

s Ts T ∗
t − T ∗

wt

Tt − Twt
I



 (A.1)

Proposition A.2 ([SV01]) Given some nominal model P , noise sets Wu and Wy

and a ν-gap radius β, there exist noise sequences




wu

wy



 ∈ Wu×Wy ∩gr(M11), and

a linear, time-varying P̂ ∈ Pν(P, β) such that wy = P̂ ∗(u−wu)+wy if, but not only

if, there exist sequences (ws, wt) such that




wu

wy



 = ch(M) ∗




ws

wt



 ∈ Wu × Wy
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and

0 ≤




(Πks)

∗Πks − (Πkws)
∗Πks − (Πks)

∗Πkws (Πk(t − wt))
∗

Πk(t − wt) I



 (A.2)

The graph condition follows since with ws = 0, the chain scattering operation gives

wu = M11M
−1
21 wt and wy = M21wt. Hence wu = M11wy.

Theorem A.3 (Necessary and Sufficient Conditions for Invalidation[SV01])

Given P , β < bopt(P ) and data z :=




y

u



, if there exists a P̄ ∈ Pν(P, β) and a

w̄ :=




w̄y

w̄u



 such that z−w̄ ∈ gr(P̂ ) and ‖w̄‖2 ≤ α, then there exists a P̂ ∈ Pν(P, β)

and a ŵ :=




ŵy

ŵu



 ∈ igr(Ĉ) such that z − ŵ ∈ gr(P̂ ) and ‖ŵ‖2 ≤ α
b
P̂ ,Ĉ

for all con-

trollers Ĉ achieving bP,Ĉ > β.

This sufficient and necessary condition is achieved at a cost of a restriction in the

class of possible noise constraints: we must use a two-norm bound on the combined

input-output noise sets to take advantage of it.
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Appendix B

Appendices to Chapter 5

This rather tedious material leads to the proofs of Theorem 5.5 and 5.6 from Chap-

ter 5.

The ‘Ruler’ Lemmas

Intuition suggests that if a model is not corroborated by the first part of a data

sequence, it will not be corroborated by the whole sequence. The following ‘ruler’

lemmas show that this remains true under the approximations used to form the

sufficient non-validation conditions. (The ‘ruler’ nomenclature draws on the analogy

that given k points on a piece of paper, it is impossible to draw a straight line through

any subset of them, it will not be possible to draw a straight line through them all.)

Lemma B.1 (LTI ‘Ruler’ Lemma) Given sequences σ ∈ Sq
ℓ , τ ∈ Sp

ℓ , s ∈ Sq
k , t ∈

Sp
k , define

ŝ = {σ0, σ1, . . . , σℓ−1, s0, s1, . . . , sk−1} (B.1)

t̂ = {τ0, τ1, . . . , τℓ−1, t0, t1, . . . , tk−1} (B.2)

there exist sequences wσ, wτ ∈ Wσ × Wτ and ws, wt ∈ Ws × Wt satisfying the
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sufficient condition for validation




T ∗

ŝ Tŝ + T ∗
ŝ Twŝ

+ T ∗
wŝ

Tŝ

(
Tt̂ + Twt̂

)∗

Tt̂ + Twt̂
Ip(ℓ+k)



 ≥ 0 (B.3)

where wŝ = {wσ, ws} and wt̂ = {wτ , wt}, the sequences wσ and wτ will also satisfy




T ∗

σTσ + T ∗
σTwσ

+ T ∗
wσ

Tσ (Tτ + Twτ
)∗

Tτ + Twτ
Ipℓ



 ≥ 0 (B.4)

Proof. For convenience, write Tŝ =




Tσ 0

Mŝ Tσ



, Tt̂ =




Tτ 0

Mt̂ Tτ



, Tŵs
=




Twσ

0

Nŝ Twσ





and Tŵt
=




Twτ

0

Nt̂ Twτ



. Let Q11 = T ∗
ŝ Tŝ + T ∗

ŝ Twŝ
+ T ∗

wŝ
Tŝ and Q21 = Tt̂ + Twt̂

. (B.3)

can thus be re-written 


Q11 Q∗

21

Q21 Ip(ℓ+k)



 ≥ 0

Substituting for the lower block Toeplitz matrices gives

Q11 =




P11 + M∗

ŝ Mŝ + M∗
ŝ Nŝ + N∗

ŝ Mŝ

(
T ∗

σM + T ∗
σNŝ + T ∗

wσ
M
)∗

T ∗
σM + T ∗

σNŝ + T ∗
wσ

M P11





where P11 = T ∗
σTσ + T ∗

σTwσ
+ T ∗

wσ
Tσ or, for simplicity,

Q11 =




A B∗

B P11





similarly,

Q21 =




P21 0

C P21




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where P21 = Tσ + Twσ
and C = Mt̂ + Nt̂. Thus (B.3) can be re-written





A B∗ P ∗
21 C∗

B P11 0 P ∗
21

P21 0 I 0

C P21 0 I





≥ 0

Clearly, this is only true if 


P11 P ∗

21

P21 I



 ≥ 0

This is gives (B.4), as desired. �

Corollary B.2 Given sequences s ∈ Sq
k , t ∈ Sp

k , σ ∈ Sq
ℓ , τ ∈ Sp

ℓ and ŝ, t̂ as defined

by (B.1) and (B.2), there exist sequences wσ, wτ ∈ Wσ×Wτ and ws, wt ∈ Ws×Wt

satisfying (B.3) only if there exist w′
σ, w

′
τ ∈ Wσ × Wτ satisfying (B.4).

Proof. This follows trivially from Lemma B.1, since any wσ and wτ satisfying (B.3)

must also satisfy (B.4). �

Lemma B.3 (LTV ‘Ruler’ Lemma) Given sequences σ ∈ Sq
ℓ , τ ∈ Sp

ℓ , s ∈ Sq
k , t ∈

Sp
k , define ŝ and t̂ as in (B.1) and (B.2). Then there exist sequences wσ, wτ ∈ Wσ×

Wτ and ws, wt ∈ Ws ×Wt satisfying the LTV sufficient condition for validation




(Πjvec ŝ)∗(Πjvec ŝ)+(Πjvec ŝ)∗(Πjvec wŝ)+(Πjvec wŝ)

∗(Πjvec ŝ) (Πjvec t̂+Πjvec wt̂)
∗

Πjvec t̂+Πjvec wt̂ Ipj



 ≥ 0 (B.5)

for all j ∈ {1, 2, . . . , ℓ + k}, where wŝ = {wσ, ws} and wt̂ = {wτ , wt}, the sequences

wσ and wτ will also satisfy




(Πjvec σ)∗(Πjvec σ)+(Πjvec σ)∗(Πjvec wσ)+(Πjvec wσ)∗(Πjvec σ) (Πjvec τ+Πjvec wτ )∗

Πjvec τ+Πjvec wτ Ipj



 ≥ 0 (B.6)

for all j ∈ {1, 2, . . . , ℓ}.
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Proof. This is much simpler than the LTV case since (B.6) is obvious from (B.5).

�

Corollary B.4 Given sequences s ∈ Sq
k , t ∈ Sp

k , σ ∈ Sq
ℓ , τ ∈ Sp

ℓ and ŝ, t̂ as defined

by (B.1) and (B.2), there exist sequences wσ, wτ ∈ Wσ×Wτ and ws, wt ∈ Ws×Wt

satisfying (B.5) only if there exist w′
σ, w

′
τ ∈ Wσ × Wτ satisfying (B.6).

Proof. This follows trivially from Lemma B.3, since any wσ and wτ satisfying (B.5)

must also satisfy (B.6). �

The Zero Signal Lemmas

The following Lemmas show that given zero sequences, the sufficient validation

conditions are only satisfied when wt is the zero sequence.

Lemma B.5 (LTI Zero Signal Lemma) Given sequences s ∈ Sq
k , t ∈ Sp

k such

that s = {0, 0, . . . , 0} and t = {0, 0, . . . , 0}, the sufficient condition for validation




T ∗

s Ts + T ∗
s Tws

+ T ∗
ws

Ts (Tt + Twt
)∗

Tt + Twt
I



 ≥ 0 (B.7)

is satisfied if and only if wt = {0, 0, . . . , 0}.

Proof. Substituting s = t = {0, 0, . . . , 0} in (B.7) gives




0 T ∗

wt

Twt
I



 ≥ 0

By the Schur complement, this is positive semidefinite if and only if −T ∗
wt

Twt
≥ 0.

It is clear that this is only true if wt = {0, 0, . . . , 0}. �

Lemma B.6 (LTV Zero Signal Lemma) Given sequences s ∈ Sq
k , t ∈ Sp

k such
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that s = {0, 0, . . . , 0} and t = {0, 0, . . . , 0}, the sufficient condition for validation




(Πjvec s)∗+(Πjvec s)+(Πjvec ws)

∗+(Πjvec s)+(Πjvec s)∗+(Πjvec ws) (Πjvec t+Πjvec wt)
∗

(Πjvec t+Πjvec wt) I



 ≥ 0 (B.8)

for all j ∈ {0, 1, . . . , k} is satisfied if and only if wt = {0, 0, . . . , 0}.

Proof. Substituting s = t = {0, 0, . . . , 0} in (B.8) gives




0 (Πjvec wt)

∗

Πjvec wt I



 ≥ 0

for all j ∈ {0, 1, . . . , k}. By the Schur complement, this is positive semidefinite for

any j if and only if − (Πjvec wt)
∗ (Πjvec wt) ≥ 0. It is clear that this is only true if

wt is the zero sequence. �

Remark B.7 It is worth noting that ws is unconstrained by the validation condi-

tions of Lemmas B.5 and B.6. ♥

Final Preliminaries

The following simple lemmas will also be useful they show that a positive semi-

definite matrix whose bottom right-hand term is zero must have zero terms on the

minor diagonal and show that providing that x(0) 6= 0, T ∗
xTy = 0 implies that y is

a zero sequence.

Lemma B.8 Given M ∈ C
m×m and N ∈ C

n×m, if




M N∗

N 0



 ≥ 0 (B.9)

then M ≥ 0 and N = 0.
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Proof. (B.9) is equivalent to stating that for all combinations of z1 ∈ C
m and

z2 ∈ Cn

[
z∗1 z∗2

]



M N∗

N 0








z1

z2



 = z∗1Mz1 + 2 Re {z∗2Nz1} ≥ 0

Considering the case when z2 = 0, it is clear that M ≥ 0. That N = 0 may be seen

by noting that if N 6= 0 the expression can always be made negative by choosing z1

and z2 such that z∗2Nz1 < 0 and making z2 arbitrarily large and of appropriate sign.

�

Lemma B.9 Given x ∈ Sp
k and y ∈ Sq

k , if T ∗
xTy = 0, yi = 0 ∀i if x0 6= 0.

Proof.

T ∗
xTy =





∑k−1
i=0 x∗

i yi

∑k−2
i=0 x∗

i+1yi · · · x∗
k−1y0

∑k−2
i=0 x∗

i yi+1

∑k−2
i=0 x∗

i yi x∗
k−2y0

...
. . .

...

x∗
0yk−1 x∗

0yk−2 . . . x∗
0y0





It is clear from the last row of the matrix that if x0 6= 0 T ∗
xTy will only be the zero

matrix if all yi = 0. �

Proof of Theorem 5.5 (page 73). By Lemma B.1 any wσ and wτ satisfying

(5.10) will also satisfy




T ∗

σTσ + T ∗
σTwσ

+ T ∗
wσ

Tσ T ∗
τ + T ∗

wτ

Tτ + Twτ
I



 =




0 T ∗

wτ

Twτ
I



 ≥ 0
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By Lemma B.5, this is true if and only if wτ = {0, 0, . . . , 0}. Write Tŝ =




0 0

Ts 0



,

Tt̂ =




0 0

Tt 0



, Twŝ
=




Twσ

0

Twσ
+ Uwσ

Twσ



 and Twt̂
=




0 0

Twt
0



 where

Uwσ
:=





0 wσ(ℓ − 1) wσ(ℓ − 2) · · · wσ(1)

0 0 wσ(ℓ − 1) · · · wσ(2)

...
...

. . .
. . .

...

0 0 · · · 0 wσ(ℓ − 1)

0 0 · · · 0 0





Thus (5.10) is equivalent to





P11 + U∗
wσ

Ts + T ∗
s Uσ T ∗

s Twσ
0 P ∗

21

T ∗
wσ

Ts 0 0 0

0 0 I 0

P21 0 0 I





≥ 0

where P11 = T ∗
s Ts + T ∗

ws
Ts + T ∗

ws
Ts and P21 = Tt + Twt

. By the Schur complement,

this is true if and only if




P11 − P ∗

21P21 + U∗
wσ

Ts + T ∗
s Uσ T ∗

s Twσ

T ∗
wσ

Ts 0



 ≥ 0

By Lemma B.8, T ∗
s Twσ

= 0. By Lemma B.9 this is true if and only if wσ =

{0, 0, . . . , 0}. Noting that Uwσ
= 0, the constraint is equivalent to




P11 − P ∗

21P21 0

0 0



 ≥ 0
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this is true if and only if the top left partition is positive semidefinite. By the Schur

complement, this is true if and only if




P11 P ∗

21

P21 0



 ≥ 0

Thus (5.10) and (5.11) are equivalent. �

Proof of Theorem 5.6 (page 74). By Lemma B.3 any wσ and wτ satisfying

(5.12) will also satisfy




0 (Πjvec wτ )

∗

(Πjvec wt) I



 ≥ 0

By Lemma B.6, this is true if and only if wτ is the zero sequence. Write vec ŝ =


0

vec s



, vec t̂ =




0

vec t



, vec ŵs =




vec wσ

vec ws



 and vec ŵt =




0

vec wt



.

Thus when j > ℓ, (5.12) becomes





P11 0 P ∗
21

0 I 0

P21 0 I




≥ 0

for all j′ ∈ {1, 2, k}, where P11 = (Πj′vec s)∗ (Πj′vec s) + (Πj′vec s)∗ (Πj′vec ws) +

(Πj′vec ws)
∗ (Πj′vec s) and P21 = (Πj′vec t) + (Πj′vec wt). By the Schur complement

this is true if and only if

P11 −

[
0 P ∗

21

]



I 0

0 I








0

P21



 = P11 − P ∗
21P21 ≥ 0
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which again by the Schur complement is true if and only if




P11 P ∗

21

P21 I



 ≥ 0

Thus (5.12) and (5.13) are equivalent. �
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Appendix C

Appendices to Chapter 6

Validation with noncausal perturbation blocks

Theorem C.1 Given u ∈ Sq
k , y ∈ Sp

k , there exists a an infinite contractive matrix

∆U∞ such that

vec y = (Πk∆U∞) vec u

if and only if

‖y‖2 ≤ ‖u‖2

Proof. If. The solution

∆U∞ =
1

‖u‖2
2




vec y (vec u)∗ 0

0 0





gives (Πk∆U∞
) vec u = vec y. It is clear that

∆U∞
=

1

‖u‖2
2

‖vec y (vec u)∗‖ ≤
‖u‖2

‖y‖2
≤ 1

as required.
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Only if. It is clear that

∥∥∥∥∥∥∥




vec y

r





∥∥∥∥∥∥∥
2

≤ σ(∆U∞)

∥∥∥∥∥∥∥




vec u

0





∥∥∥∥∥∥∥
2

Since ∆U∞ is contractive, σ(∆U∞) ≤ 1. Thus,

‖vec y‖2
2 + ‖vec r‖2

2 ≤ ‖vec u‖2
2 + ‖0‖2

2

Which gives ‖vec y‖2
2 ≤ ‖vec u‖2

2, i.e. ‖y‖2 ≤ ‖u‖2 as desired. �

Corollary C.2 Given u ∈ Sq
k , y ∈ Sp

k , and γ ≥ 0 there exists a an infinite matrix

∆U∞ with ‖∆U∞‖ ≤ γ such that

vec y = (Πk∆U∞) vec u

if and only if

‖y‖2 ≤ γ‖u‖2

Proof. This follows trivially from Theorem C.1 by substituting u1 = γu.

�
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Appendix D

Appendices to Chapter 7

Briefing sheet from Flight 1858

The briefing sheets for Flight 1858 (supplied by QinetiQ) are reproduced on the

following pages.
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HWEM: Notes on trimming

The HWEM was trimmed on true air speed speed in knots, VTKT, and altitude in

feet, H, using the values given in Table 7.1. Modified forms of the supplied trimming

scripts were used. The nozzle angle ANOZZ was set to zero. Following advice from

QinetiQ, the weight, W, was assumed to be 18 500 lbs.

Trimming away from the conditions supplied in wemsimics170 was carried out

in small increments. It was not possible to simultaneously obtain the exact values

of α and VT desired, but it was possible to get a close match (Table D.1).

The open-loop ‘trim plots’ for Test Points 1 and 2 are shown in Figures D.1

and D.2 respectively. It can be seen that the models are well-trimmed, increasing

confidence that the trimming routines have been applied correctly.

α (Table 7.1) Achieved ALFAD

Test Point 1 4.3 deg 4.1 deg
Test Point 2 4.0 deg 4.0 deg

Table D.1: Angles of incidence achieved in trimming
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Figure D.1: Open-loop trim plots for HWEM at Test Point 1
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Figure D.2: Open-loop trim plots for HWEM at Test Point 2

176



Controller linearization

For optimal stability weighting, a linearized version of the longitudinal part of CL002

was required. A simplified block diagram was created, noting the following:

• the pitch-attitude functionality can be eliminated, since the air speed during

flight tests was close to 200 knots and the undercarriage was in.

• the flap and nozzle angles were constant. The corresponding cross-feeds have

a proportional effect on the output, so they will produce constant offsets in

the controller output. This they may also be eliminated.

• The bank angle φ was more-or-less zero since the tests took place during

straight-and-level flight. The bank angle compensation pitch rate, qcomp ([Dic00][page

16]) is given by

qcomp =

(
180

π

)
g cos γ

VT

(
1

cos φ
− cos φ

)
=

(
180

π

)
g cos γ

VT
cos φ tanφ

With γ ≈ 0 and φ ≈ 0, cos γ ≈ 1 and cos φ ≈ 1 and tan φ ≈ φ and this

approximates for small values of φ to

qcomp ≈

(
180

π

)
g

VT

φ

A small change in φ will result in a correspondingly small qcomp. However,

for the purpose of stability analysis, it will be assumed that φ = 0 and the

longitudinal and lateral dynamics are wholly decoupled.

The simplified controller is shown in Figure D.3. Like the HWEM, it is trimmed on

altitude and true air speed. This is contains the simplifications above. The original

model used indicated air speed as its input, it has been necessary to deduce this

from the true air speed and the height. (See page 180.) The look-up tables are

defined in WEMSIM’s const002.m script, and the model is easily linearized using

MATLAB’s linmod command.
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Numerical values for plant and controller models

Test Point 1

Plant:





u̇

ẇ

q̇

θ̇





=





−0.0327 0.0549 −7.8604 −9.7819

−0.1570 −0.4938 110.4550 −0.6967

−0.0106 −0.0279 −0.5988 0

0 0 1 0









u

w

q

θ





+





0.3538

−4.9712

−3.6716

0





η

where u, w, q, θ are the usual longitudinal states and η is the tailplane angle.

Transfer function from tailplane angle to pitch rate:

P (s) :=
q(s)

η(s)
=

−3.6716s(s + 0.4376)(s + 0.05219)

(s + 0.062)(s − 0.04601)(s2 + 1.109s + 3.32)

The linearized controller has state-space representation:





ẋ1

ẋ2

ηc




=





−0.43478 0 −7.5 0

0 0 2.3659 0.31546

−0.55626 1 3.2505 0.4334









x1

x2

qstk

q





where the pitch rate demand qstk, pitch rate q and tailplane angle demand ηc are in

degrees. Separating this into ‘feed-forward’ and ‘feedback’ terms:

η̄c(s) = Cqstk
(s) q̄stk(s) + Cq(s) q̄(s)
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Gives

Cqstk
(s) =

3.2505(s + 2.309)(s + 0.1371)

s(s + 0.4348)
=





−0.43478 0 −7.5

0 0 2.3659

−0.55626 1 3.2505





and

Cq(s) = 0.4334 +
0.7279

s
=




0 0.31546

1 0.4334





Test Point 2

Plant:





u̇

ẇ

q̇

θ̇





=





−0.0320 0.0542 −7.7120 −9.7830

−0.1569 −0.4955 110.9774 −0.6805

−0.0106 −0.0280 −0.6011 0

0 0 1 0









u

w

q

θ





+





0.3486

−5.0150

−3.7035

0





η

Transfer function from tailplane angle to pitch rate:

Pq(s) :=
−3.7035s(s + 0.4395)(s + 0.05106)

(s + 0.06129)(s− 0.04592)(s2 + 1.113s + 3.35)

The linearized controller is





ẋ1

ẋ2

ηc




=





−0.43478 0 −7.5 0

0 0 2.321 0.30947

−0.55973 1 3.2116 0.42821









x1

x2

qstk

q





Where the pitch rate demand qstk, pitch rate q and tailplane angle ηc are in degrees.

Separating this into ‘feed-forward’ and ‘feedback’ terms:

η̄c(s) = Cqstk
(s) q̄stk(s) + Cq(s) q̄(s)
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gives

Cqstk
(s) =

3.2116(s + 2.33)(s + 0.1349)

s(s + 0.4348)
=





−0.43478 0 −7.5

0 0 2.321

−0.55973 1 3.2116





and

Cq(s) = 0.42821 +
0.7227

s
=




0 0.30947

1 0.42821





Conversion from VT to VC

There are three ‘air speeds’ in common usage:

• True air speed, VT. This is the actual speed of the aircraft.

• Calibrated Air Speed, VC. This is the speed of the aircraft measured, e.g.

by a pitot tube installation and corrected for any errors in the instrument. At

sea level, it is the same as the true air speed. However, as altitude increases,

the atmosphere thins and an aircraft travelling at a given speed will experience

a lower impact pressure, giving rise to a reading lower than the true air speed.

• Indicated Air Speed. This is essentially the same quantity as the true air

speed but is not corrected for sensor errors. (Sources at QinetiQ say that the

error in the VAAC Harrier is not usually significant, so the indicated air speed

has been assumed equal to the calibrated air speed.)

It is rare in practice to convert directly between calibrated air speed VC and true

air speed VT air speed; on board an aircraft, the calculations are more efficiently

performed using the scheme shown in Figure D.4.

In cases where it is absolutely necessary to convert directly—such as the con-

troller trimming model— it is possible to convert between them using the impact
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pressure QC. At sub-sonic speeds (from [Col95] p. 36):

QC = PS






[
1 + 0.2

(
VT

A

)2
]3.5

− 1




 (D.1)

where PS is the static pressure and A is the speed of sound. Also (from [Col95] p.

38)

QC = PS0






[
1 + 0.2

(
VC

A0

)2
]3.5

− 1




 (D.2)

Re-arranging (D.2) to make VC the subject gives

VC = A0

{

5

[(
1 +

QC

PS0

)1/3.5

− 1

]}1/2

(D.3)

Simulink implementations of (D.1) and (D.3) are shown in Figure D.5. It is easy

to connect these together using atmospheric data from ‘Atmosphere Model’ block

supplied with Simulink to get a height-based conversion.
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Figure D.3: Simplified Longitudinal Control Law from CL002

Figure D.4: Air data computation flow diagram (from [Col95] p. 53)
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(a) Conversion from VT to QC
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(b) Conversion from QC to VC

Figure D.5: Converting between air speed and impact pressure
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MATLAB function for calculation of Wo and Wi

function [Wo,Wi] = wopt(P,C,W)

%WOPT Calculate optimal weightings for stability analysis.

% [Wo,Wi] = wopt(P,C,W) calculates optimal weightings for stability

% analysis. P and C must be SYSTEM/CONSTANT matrices.

%

% SEE ALSO: ISCONS, ISSYST, TPC, VRECIP.

% Check that we have correct number of inputs and outputs.

if (nargin ~= 3) | (nargout ~= 2)

usage

return

end

% Check that everything is a system matrix.

if ~(issyst(P) | iscons(P)) | ~(issyst(C) | iscons(C))

error(’P and C must be SYSTEM/CONSTANT matrices.’)

end

% Find plant input-output dimensions.

Ny = ynum(P); Nu = unum(P);

Nz = Nu + Ny;

% Find optimal weights using mu-analysis functions.

T = tpc(P,C);

Tjw = frsp(T,W);

blk = [ones(Nz,1) zeros(Nz,1)];

[bnds,dvec,sens,pvec,gvec] = mu(Tjw, blk,’U’);

[dl,dr] = muunwrap(dvec,blk);

% Extract the relevant bits of each matrix.

Wo = [];Wi = [];

for loop = 1:Ny

Wo = daug(Wo, sel(dr, loop, loop));

Wo = checkcons(Wo);

end

for loop = (Ny+1):(Nu+1)

Wi = daug(Wi, vrecip(sel(dr, loop, loop)));

Wi = checkcons(Wi);

end

return

function out = checkcons(mat)

[mattype,rowd,cold,num] = minfo(mat);

[data,rowpoint,indv,err] = vunpck(mat);

carryon = 1;

radjust = 0:(rowd - 1);

M1 = data(rowpoint(1) + radjust, :);
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n = 1;

vary = 0;

while carryon

n = n + 1;

Mn = data(rowpoint(n) + radjust, :);

if Mn ~= M1

vary = 1;

carryon = 0;

end

if n == num, carryon = 0; end

end

if vary

out = mat;

else

out = M1;

end

return

function usage

help wopt

return
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Numerical values of weighting functions

The near-optimal weights Wi described in Section 7.3 have the following values:

Test Point 1

Wi(s) =
1.1532(s + 1.7)(s + 0.1056)(s2 + 2.475s + 4.204)

s(s + 4.207)(s + 3.39)(s + 0.3125)

Test Point 2

Wi(s) =
1.1389(s + 1.837)(s + 0.1079)(s2 + 2.517s + 4.252)

s(s + 0.322)(s2 + 7.735s + 15.34)

Mathematics for non-invalidation

Proposition D.1 (sufficient condition for non-invalidation (LTV perturbations))

Given a nominal plant P (z), input weight Wi(z) and validation data (u ∈ Sq
k , y ∈

Sp
k), all sampled with the same period, γ > 0 and a ν-gap radius β, let M be the

central controller satisfying

b (PWi, C) ≥ β ∀ C ∈
{
Ĉ : Ĉ = Fℓ(M, Q), Q ∈ RH∞, ‖Q‖∞ ≤ 1

}
(D.4)

Given any sequences wu0 ∈ Sq
k , wy0 ∈ Sp

k , let

(
s

t

)
= ch (M)−1

[
W−1

i 0

0 I

](
u + wu0

y + wy0

)
(D.5)

Then there exists a system P̂ (z) ∈ BLTV
ν (PWi, β), wu ∈ Sq

k , wy ∈ Sp
k , yoffset ∈ Rp

such that (7.1) holds if there exist ws ∈ Sq
k , wt ∈ Sp

k and yoffset ∈ Rp simultaneously

satisfying

[
||Πjs||22 + vec (Πjws)

∗vec (Πjs) + vec (Πjs)
∗vec (Πjws) vec (Πj(t + wt))

∗

vec (Πj(t + wt)) I

]
≥ 0

for all j = 1, 2, . . . , k, and (7.2) where ξ is given by (7.3).

When these exist, realizations of wu and wy are given by

(
wu

wy

)
= ξ.

Outline of proof. The proof follows exactly the same lines as that of Proposi-

tion 7.1 except that the LTV interpolation condition if Theorem 5.3 holds in place

of the LTI one from Theorem 5.1. �
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Test Point 1: Numerical validation results

Figure D.6 shows the numerical points used to produce the plots of Figure 7.12) (p.

132).
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(a) β vs. ||w||2 trade-off with initial state fixed to zero

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν−gap radius β

sm
al

le
st

 c
on

si
st

en
t |

|w
|| 2 d

et
er

m
in

ed

LTI uncertainty
LTV uncertainty
Noncausal uncertainty

(b) β vs. ||w||2 trade-off with initial state free

Figure D.6: (Test Point 1) These graphs show the points returned by the optimiza-
tions that were used to produce the plots of Figures 7.12.Apparent outliers were at-
tributed to numerical problems, and smooth lines were produced using MATLAB’s
(cubic) spline command.
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Computing the first lower bound
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Figure D.7: Computing the first LTV lower bound for β = 0.07 (Test Point 2, no
initial state). This shows clearly that the largest γ value obtained by applying non-
causal invalidation criterion to truncated data records does not always correspond
to the final truncation. In this case, the value for the 178th truncation is the max-
imum. The absence of monotinicity is particularly evident for truncations in the
range 20–40.
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