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Abstract

The safety of the flights, and in particular separation assurance, is one of the
main tasks of Air Traffic Control. Conflict resolution refers to the process used by air
traffic controllers to prevent loss of separation. Conflict resolution involves issuing
instructions to aircraft to avoid loss of safe separation between them and, at the
same time, direct them to their destinations. Conflict resolution requires decision
making in the face of the considerable levels of uncertainty inherent in the motion
of aircraft. We present a framework for conflict resolution which allows one to take
into account such levels of uncertainty through the use of a stochastic simulator.
The conflict resolution task is posed as the problem of optimizing an expected value
criterion. Optimization of the expected value resolution criterion is carried out
through an iterative procedure based on Monte Carlo Markov Chain. Simulation
examples inspired by current air traffic control practice in terminal maneuvering
areas and approach sectors illustrate the proposed conflict resolution strategy.

1 Introduction

In the current organization of the Air Traffic Management (ATM) system the centralized
Air Traffic Control (ATC) is in complete control of air traffic and ultimately responsible
for safety. Before take off, aircraft file flight plans which cover the entire flight. During
the flight, ATC sends additional instructions to them, depending on the actual traffic,
to improve traffic flow and avoid dangerous encounters. The primary concern of ATC
is to maintain safe separation between the aircraft. The level of accepted minimum safe
separation may depend on the density of air traffic and the region of the airspace. For
example, a largely accepted value for horizontal minimum safe separation between two
aircraft at the same altitude is 5 nmi in general en-route airspace; this is reduced to 3 nmi
in approach sectors for aircraft landing and departing. A conflict is defined as a situation
of loss of minimum safe separation between two aircraft. If safety is not at stake, ATC
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also tries to fulfill the (possibly conflicting) requests of aircraft and airlines; for example,
desired paths to avoid turbulence, or desired time of arrivals to meet schedule. To improve
the performance of ATC, mainly in anticipation of increasing levels of air traffic, research
effort has been devoted over the last decade on creating tools to assist ATC with conflict
detection and resolution tasks. A review of research work in this area of ATC is presented
in [15].

Uncertainty is introduced in air traffic by the action of wind, incomplete knowledge
of the physical coefficients of the aircraft and unavoidable imprecision in the execution
of ATC instructions. To perform conflict detection one has to evaluate the possibility of
future conflicts given the current state of the airspace and taking into account uncertainty
in the future position of aircraft. For this task, one needs a model to predict the future.
In a probabilistic setting, the model could be either an empirical distribution of future
aircraft positions [18], or a dynamical model, such as a stochastic differential equation
(see, for example, [1, 12, 19]), that describes the aircraft motion and defines implicitly a
distribution for future aircraft positions. On the basis of the prediction model one can
evaluate metrics related to safety. An example of such a metric is conflict probability
over a certain time horizon. Several methods have been developed to estimate different
metrics related to safety for a number of prediction models, e.g [1, 12, 13, 18, 19]. Among
other methods, Monte Carlo methods have the main advantage of allowing flexibility in
the complexity of the prediction model since the model is used only as a simulator and,
in principle, it is not involved in explicit calculations. In all methods a trade off exists
between computational effort (simulation time in the case of Monte Carlo methods) and
the accuracy of the model. Techniques to accelerate Monte Carlo methods especially for
rare event computations are under development, see for example [14].

For conflict resolution, the objective is to provide suitable maneuvers to avoid a pre-
dicted conflict. A number of conflict resolution algorithms have been proposed in the
deterministic setting, for example [7, 11, 21]. In the stochastic setting, the research effort
has concentrated mainly on conflict detection, and only a few simple resolution strategies
have been proposed [18, 19]. The main reason for this is the complexity of stochastic
prediction models which makes the quantification of the effects of possible control actions
intractable.

In this paper we present a Monte Carlo Markov Chain (MCMC) framework [20] for
conflict resolution in a stochastic setting. The aim of the proposed approach is to extend
the advantages of Monte Carlo techniques, in terms of flexibility and complexity of the
problems that can be tackled, to conflict resolution. The approach is motivated from
Bayesian statistics [16, 17]. We consider an expected value resolution criterion that takes
into account separation and other factors (e.g. aircraft requests). Then, the MCMC opti-
mization procedure of [16] is employed to estimate the resolution maneuver that optimizes
the expected value criterion. The proposed approach is illustrated in simulation, on some
realistic benchmark problems, inspired by current ATC practice. The benchmarks were
implemented in an air traffic simulator developed in previous work [8, 9, 10].

The material is organized in 5 sections. Section 2 presents the formulation of conflict
resolution as an optimization problem. The randomized optimization procedure that we
adopt to solve the problem is presented in Section 3. Section 4 is devoted to the benchmark
problems used to illustrate our approach. Section 4.1 introduces the problems associated
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with ATC in terminal and approach sectors and Section 4.2 provides a brief overview
of the simulator used to carry out the experiments. Sections 4.3 and 4.4 present results
on benchmark problems in terminal and approach sectors respectively. Conclusions and
future objectives are discussed in Section 5. For the readers convenience the acronyms
used in the paper are summarized in an appendix.

2 Conflict resolution with an expected value criterion

We formulate conflict resolution as a constrained optimization problem. Given a set
of aircraft involved in a conflict, the conflict resolution maneuver is determined by a
parameter ω which defines the nominal paths of the aircraft. From the point of view of
the ATC, the execution of the maneuver is affected by uncertainty, due to wind, imprecise
knowledge of aircraft parameters (e.g. mass) and Flight Management System (FMS)
settings, etc. Therefore, the sequence of actual positions of the aircraft (for example, the
sequence of positions observed by ATC every 6 seconds, which is a typical time interval
between two successive radar sweeps) during the resolution maneuver is, a-priori of its
execution, a random variable, denoted by X. A conflict is defined as the event that two
aircraft get too close during the execution of the maneuver. The goal is to select ω to
maximize the expected value of some measure of performance associated to the execution
of the resolution maneuver, while ensuring a small probability of conflict. In this section
we introduce the formulation of this problem in a general framework.

Let X be a random variable whose distribution depends on some parameter ω. The
distribution of X is denoted by pω(x) with x ∈ X. The set of all possible values of ω is
denoted by Ω. We assume that a constraint on the random variable X is given in terms
of a feasible set Xf ⊆ X. We say that a realization x, of random variable X, violates the
constraint if x 6∈ Xf . The probability of satisfying the constraint for a given ω is denoted
by P(ω)

P(ω) =

∫

x∈Xf

pω(x)dx .

The probability of violating the constraint is denoted by P̄(ω) = 1 − P(ω).
For a realization x ∈ Xf we assume that we are given some definition of performance

of x. In general performance can depend also on the value of ω, therefore performance is
measured by a function perf(·, ·) : Ω×Xf → [0, 1]. The expected performance for a given
ω ∈ Ω is denoted by Perf(ω), where

Perf(ω) =

∫

x∈Xf

perf(ω, x)pω(x)dx .

Ideally one would like to select ω to maximize the performance, subject to a bound
on the probability of constraint satisfaction. Given a bound P̄ ∈ [0, 1], this corresponds
to solving the constrained optimization problem

Perfmax |P̄ = sup
ω∈Ω

Perf(ω) (1)

subject to P̄(ω) < P̄. (2)
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Clearly, for feasibility we must assume that there exists ω ∈ Ω such that P̄(ω) < P̄, or,
equivalently,

P̄min = inf
ω∈Ω

P̄(ω) < P̄.

The optimization problem (1)-(2) is generally difficult to solve, or even to approximate
by randomized methods. Here we approximate this problem by an optimization problem
with penalty terms. We show that with a proper choice of the penalty term we can en-
force the desired maximum bound on the probability of violating the constraint, provided
that such a bound is feasible, at the price of sub-optimality in the resulting expected
performance.

We introduce a function u(ω, x) defined on the entire X by

u(ω, x) =







perf(ω, x) + Λ x ∈ Xf

1 x 6∈ Xf ,

with Λ > 1. The parameter Λ represents a reward for constraint satisfaction. For a given
ω ∈ Ω, the expected value of u(ω, x) is given by

U(ω) =

∫

x∈X

u(ω, x)pω(x)dx.

Instead of the constrained optimization problem (1)–(2) we solve the unconstrained opti-
mization problem:

Umax = sup
ω∈Ω

U(ω). (3)

Assume the supremum is attained and let ω∗ denote the optimum solution, i.e. Umax =
U(ω∗). The following proposition establishes bounds on the probability of violating the
constraints and the level of sub-optimality of Perf(ω̄) over Perfmax |P̄.

Proposition 2.1 The maximizer, ω̄, of U(ω) satisfies

P̄(ω∗) ≤ P̄min +
1

Λ
(1 − P̄min) (4)

Perf(ω∗) ≥ Perfmax |P̄ − (Λ − 1)(P̄ − P̄min) . (5)

Proof: The optimization criterion U(ω) can be written in the form

U(ω) =

∫

x∈Xf

(perf(ω, x) + Λ)pω(x)dx +

∫

x6∈Xf

pω(x)dx

= Perf(ω) + Λ − (Λ − 1)P̄(ω).

By the definition of ω∗ we have that U(ω∗) ≥ U(ω) for all ω ∈ Ω. We therefore can write

Perf(ω∗) + Λ − (Λ − 1)P̄(ω∗) ≥ Perf(ω) + Λ − (Λ − 1)P̄(ω) ∀ω ∈ Ω.

Since 0 ≤ perf(ω, x) ≤ 1, Perf(ω) satisfies

0 ≤ Perf(ω) ≤ P(ω) = 1 − P̄(ω). (6)
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Therefore we obtain

P̄(ω̄) ≤
1

Λ
+

(

1 −
1

Λ

)

P̄(ω) ∀ω ∈ Ω.

We obtain (4) by taking a minimum to eliminate the quantifier on the right-hand side of
the above inequality.

To obtain (5) we proceed as follows. By definition of ω̄ we have that U(ω̄) ≥ U(ω) for
all ω ∈ Ω. In particular, we know that

Perf(ω̄) ≥ Perf(ω) − (Λ − 1)
[

P̄(ω) − P̄(ω̄)
]

∀ω : P̄(ω) ≤ P̄ .

Taking a lower bound of the right-hand side, we obtain

Perf(ω̄) ≥ Perf(ω) − (Λ − 1)
[

P̄ − P̄min

]

∀ω : P̄(ω) ≤ P̄ .

Taking the maximum and eliminating the quantifier on the right-hand side we obtain the
desired inequality.

Proposition 2.1 suggests a method for choosing Λ to ensure that the solution ω̄ of
the optimization problem will satisfy P̄(ω̄) ≤ P̄. In particular it suffices to know P̄(ω)
for some ω ∈ Ω with P̄(ω) < P̄ to obtain a bound. If there exists ω ∈ Ω for which
P̂ = P̄(ω) < P̄ is known, then any

Λ ≥
1 − P̂

P̄ − P̂

ensures that P̄(ω̄) ≤ P̄. If we know that there exists a parameter ω ∈ Ω for which the
constraints are satisfied almost surely, a tighter (and potentially more useful) bound can
be obtained. If there exists ω ∈ Ω such that P̄(ω) = 0, then any

Λ ≥
1

P̄
(7)

ensures that P̄(ω̄) ≤ P̄. Clearly to minimize the gap between the optimal performance
and the performance of ω̄ we need to select Λ as small as possible. Therefore the optimal
choices of Λ that ensure the bounds on constraint satisfaction and minimize the sub-

optimality of the solution are Λ = 1−
ˆ
P

P̄−
ˆ
P

and Λ = 1
P̄

respectively.

3 Monte Carlo Optimization

In this section we describe a simulation-based procedure, to find approximate optimizers
of U(ω). The only requirement for applicability of the procedure is to be able to obtain
realizations of the random variable X with distribution pω(x) and to evaluate u(ω, x)
point-wise. This optimization procedure is in fact a general procedure for the optimization
of expected value criteria. It has been originally proposed in the Bayesian statistics
literature [16].
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The optimization strategy relies on extractions of a random variable Ω whose dis-
tribution has modes which coincide with the optimizers of U(ω). These extractions are
obtained through Monte Carlo Markov Chain (MCMC) simulation [20]. The problem
of optimizing the expected criterion is then reformulated as the problem of estimating
the optimal points from extractions concentrated around them. In the optimization pro-
cedure, there exists a tunable parameter that governs the trade-off between estimation
accuracy of the optimizer and computational effort. In particular, the distribution of Ω is
proportional to U(ω)J where J is a positive integer which allows the user to increase the
“peakedness” of the distribution and concentrate the extractions around the modes at the
price of an increased computational load. If the tunable parameter J is increased during
the optimization procedure, this approach can be seen as the counterpart of Simulated
Annealing for a stochastic setting. Simulated Annealing is a randomized optimization
strategy developed to find tractable approximate solutions to complex deterministic com-
binatorial optimization problems, [22]. A formal parallel between these two strategies has
been derived in [17].

The MCMC optimization procedure can be described as follows. Consider a stochastic
model formed by a random variable Ω, whose distribution has not been defined yet, and
J conditionally independent replicas of random variable X with distribution pΩ(x). Let
us denote by h(ω, x1, x2, . . . , xJ) the joint distribution of (Ω, X1, X2, X3, . . . , XJ). It is
straightforward to see that if

h(ω, x1, x2, . . . , xJ) ∝
J
∏

j=1

u(ω, xj)pω(xj) (8)

then the marginal distribution of Ω, also denoted by h(ω) for simplicity, satisfies

h(ω) ∝

[
∫

u(ω, x)pω(x)dx

]J

= U(ω)J . (9)

This means that if we can extract realizations of (Ω, X1, X2, X3, . . . , XJ) then the ex-
tracted Ω’s will be concentrated around the optimal points of U(Ω) for a sufficiently high
J . These extractions can be used to find an approximate solution to the optimization
of U(ω). Realizations of the random variables (Ω, X1, X2, X3, . . . , XJ), with the desired
joint probability density given by (8), can be obtained through Monte Carlo Markov
Chain simulation. The algorithm is presented below. In the algorithm, g(ω) is known
as the instrumental (or proposal) distribution and is freely chosen by the user; the only
requirement is that g(ω) covers the support of h(ω).

Algorithm 1 (MCMC Algorithm)

initialization:
Extract Ω(0) ∼ g(ω)
Extract Xj(0) ∼ pΩ(x) j = 1, . . . , J

Compute UJ(0) =
∏J

j=1 u(Ω(0), Xj(0))

Set k = 0
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repeat

Extract Ω̃ ∼ g(ω)

Extract X̃j ∼ pΩ̃(x) j = 1, . . . , J

Compute ŨJ =
∏J

j=1 u(Ω̃, X̃j)

Set ρ = min
{

1, ŨJ

uJ (k)
g(ω(k))

g(Ω̃)

}

Set [Ω(k + 1), UJ(k + 1)] =







[Ω̃, ŨJ ] with probability ρ

[ω(k), uJ(k)] with probability 1 − ρ
Set k=k+1

until True

In the description of the algorithm, lower- and upper-case symbols denote respectively
quantities that are known at the iteration k and quantities that are extracted at the
iteration k. Notice for example that [ω(k), uJ(k)] denotes the current state and that
[Ω(k + 1), UJ(k + 1)] denotes the subsequent state of the chain. In the initialization step
the state [Ω(0), UJ(0)] is always accepted. In subsequent steps the new extraction [Ω̃, ŨJ ]
is accepted with probability ρ otherwise it is rejected and the previous state of the Markov
chain [ω(k), uJ(k)] is maintained. Practically, the algorithm is executed until a certain
number of extractions (say 1000) have been accepted. Because we are interested in the
stationary distribution of the Markov chain, the first few (say 10%) of the accepted states
are discarded to allow the chain to reach its stationary distribution (“burn in period”).

This algorithm is a formulation of the Metropolis-Hastings algorithm for a desired
distribution given by h(ω, x1, x2, . . . , xJ) and proposal distribution given by

g(ω)
∏

j

pω(xj).

In this case, the acceptance probability for the standard Metropolis-Hastings algorithm is

h(ω̃, x̃1, x̃2, . . . , x̃J)

h(ω, x1, x2, . . . , xJ)

g(ω)
∏

j pω(xj)

g(ω̃)
∏

j pω(x̃j)
.

By inserting (8) in the above expression one obtains ρ(ω, uJ , ω̃, ũJ). Under minimal
assumptions, the Markov Chain generated by the Ω(k) is uniformly ergodic with stationary
distribution h(ω) given by (9). Therefore, after a burn in period, the extractions Ω(k)
accepted by the algorithm will concentrate around the modes of h(ω), which, by (9)
coincide with the optimal points of U(ω). Results that characterize the convergence rate
to the stationary distribution can be found, for example, in [20].

A general guideline to obtain faster convergence is to concentrate the search distribu-
tion g(ω) where U(ω) assumes nearly optimal values. The algorithm represents a trade-off
between computational effort and the “peakedness” of the target distribution. This trade-
off is tuned by the parameter J which is the power of the target distribution and also
the number of extractions of X at each step of the chain. Increasing J concentrates the
distribution more around the optimizers of U(ω), but also increases the number of sim-
ulations one needs to perform at each step. Obviously if the peaks of U(ω) are already
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Figure 1: Schematic representation of approach maneuver

quite sharp, this implies some advantages in terms of computation, since there is no need
to increase further the peakedness of the criterion by running more simulations. For the
specific U(ω) proposed in the previous section, a trade-off exists between its peakedness
and the parameter Λ, which is related to probability of constraint violation. In partic-
ular, the greater Λ is the less peaked the criterion U(ω) becomes, because the relative
variation of u(ω, x) is reduced, and therefore more computational effort is required for the
optimization of U(ω).

4 ATC in terminal and approach sectors

4.1 Current practice

Terminal Maneuvering Area (TMA) and Approach Sectors are perhaps the most difficult
areas for ATC. The management of traffic, in this case, includes tasks such as determining
landing sequences, issuing of “vector” maneuvers to avoid collisions, holding the aircraft
in “stacks” in case of congested traffic, etc. Here, we give a schematic representation of
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the problem as described in [2, 6].
During most of the flight, aircraft stay at cruising altitudes, above 30000 ft. In the

current organization, the traffic at these altitudes has an en-route structure, which facil-
itates the action of ATC. Aircraft follow pre-specified corridors at different flight levels.
Flight levels are given in 3 digit numbers, representing hundreds of feet; for example, the
altitude of 30000 ft is denoted by FL300.

Towards the end of the flight, aircraft enter the TMA where ATC guides them from
cruising altitudes to the entry points of the Approach Sector, which are typically be-
tween FL50 and FL150. Ideally, aircraft should enter the Approach Sector in a sequence
properly spaced in time. The controllers of the Approach Sector are then responsible for
guiding the aircraft towards the runway for landing. The tasks of ATC in the Approach
Sectors include:

1) Maintain safe separation between aircraft. This is the most important requirement for
safety, in any sector and during all parts of the flight. Aircraft must always maintain a
minimum level of separation. A conflict between two aircraft is defined as the situation of
loss of minimum safe separation between them. Safe separation is defined by a protected
zone centered around each aircraft. The level of accepted minimum separation can vary
with the density of the traffic and the region of the airspace. A largely accepted shape of
the protected zone is defined by a vertical cylinder, centered on the aircraft with radius
5nmi and height 2000ft (i.e. aircraft which do not have 5nmi of horizontal separation must
have 1000ft of vertical separation).

2) Take aircraft from entry altitude down to intercept the localizer. Once aircraft have
entered the Approach Sector, ATC must guide them from the entry altitude (FL50 to
FL150) to FL15. This is the altitude at which they can intercept the localizer, i.e. the
radio beacons which will guide them onto the runway. The point at which the aircraft
will actually start the descent towards the runway is an important variable which has to
be carefully chosen since it can affect the rest of the maneuver and the coordination with
other aircraft. The reason is that aircraft fly following pre-specified speed profiles which
depend on the altitude; they fly faster at high altitudes and slower at low altitudes. This
implies that aircraft, flying at lower altitudes, are slower in joining the landing queue.

3) Sequence aircraft towards the runway. The air traffic controllers must direct the aircraft
towards the runway in a properly spaced queue. This is done by adjusting the way-points
(corners) of a standard approach route (STAR) — see Figure 1. Typically the route is
composed of four legs. During their descent, aircraft are first aligned, on one of the two
sides of the runway, in the direction of the runway but with opposite heading. This leg
is called the left/right downwind leg, since aircraft are expected to land against the wind.
Aircraft then perform a turn of approximately 90◦, to approach the localizer. This second
segment is called the base leg. Aircraft perform an additional turn in order to intercept
the plane of the localizer with an angle of incidence of approximately 30◦. The reason
is that 30◦ is a suitable angle for pilots to perform the final turn in the direction of the
runway as soon as possible when the localizer has been intercepted. It is required that
aircraft intercept the localizer plane at least 5 nmi from the beginning of the runway and
at an altitude of 1000−1500 ft, so that they can follow a 3◦−5◦ glide path to the runway.
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This approach geometry (which is referred to as the “trombone maneuver”) is advan-
tageous to air traffic controllers as it allows them great flexibility in spacing aircraft by
adjusting the length of the downwind leg (hence the name trombone).

4.2 Simulation procedure

A necessary step in the implementation of the MCMC algorithm is the extraction of the
X̃j for a given value of ω. In the ATC case studies this corresponds to the extraction
of aircraft trajectories for a given airspace configuration (current aircraft positions and
given flight plans). The extraction of multiple such trajectories (J to be precise) will be
necessary in the algorithm implementation. The trajectories will be in general different
from one another because of the uncertainty that enters the process (due to wind, aircraft
parameters unknown to ATC, etc.)

In earlier work we developed an air traffic simulator to simulate adequately the behav-
ior of a set of aircraft from the point of view of ATC [8, 9, 10]. The simulator implements
realistic models of current commercial aircraft described in the Base of Aircraft Data
(BADA) [5]. The simulator contains also realistic stochastic models of the wind distur-
bance [3]. The aircraft models contain continuous dynamics, arising from the physical
motion of the aircraft, discrete dynamics, arising from the logic embedded in the Flight
Management System, and stochastic dynamics, arising from the effect of the wind and in-
complete knowledge of physical parameters (for example, the aircraft mass, which depends
on fuel, cargo and number of passengers). The simulator has been coded in Java and can
be used in different operation modes, either to generate accurate data for validation of the
performance of conflict detection and resolution algorithm, or to run faster simulations
of simplified models. The nominal path for each aircraft is entered in the simulator as a
sequence of way-points, either by reading data files, or manually. The simulator can also
be used in a so called interactive mode, where the user is allowed to manipulate the flight
plans on-line (move way-points, introduce new way points, etc.)

The actual trajectories of the aircraft generated by the simulator are a perturbed
version of the flight plan that depends on the particular realizations of wind disturbances
and uncertain parameters. The trajectories of the aircraft can be displayed on the screen
(Figure 2) and/or stored in files for post-processing. The reader is referred to [9, 10] for
a more detailed description of the simulator.

The air traffic simulator has been used to produce the examples presented in this
section. The full accurate aircraft, FMS and wind models have been used both during
the Monte Carlo optimization procedure and to obtain Monte Carlo estimates of post-
resolution conflict probabilities. The simulator was invoked from Matlab on a Linux
workstation with a Pentium 4 3GHz processor. Under these conditions the simulation of
the flight of two aircraft for 30 minutes, which is approximately the horizon considered
in the examples, took 0.2 seconds on the average. Notice that this simulation speed (5
simulations/sec) is quite low for a Monte Carlo framework. This is mainly due to the
fact that no attempt has been made to optimize the code at this stage. For example,
executing the Java simulator from a Matlab environment introduces unnecessary and
substantial computational overhead. The reader is requested to evaluate the computation
times reported in the following examples keeping this fact in mind.
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Figure 2: Screen shot of a simulation of all flights using the Barcelona airport on a given
day.

4.3 Sequencing aircraft in Terminal Maneuvering Areas

We consider the problem of sequencing two aircraft. This is a typical task of ATC in TMA
where aircraft descend from cruising altitude and need to be sequenced and separated by
a certain time interval before entering in the final Approach Sector. In Figure 3 several
possible trajectory realizations of a descending aircraft corresponding to the same nominal
path are displayed. In this figure, the aircraft descends from FL350 to FL100. In addition
to stochastic wind terms, uncertainty about the mass of the aircraft is introduced as a
uniform distribution between two extreme values. The figure suggests that the resulting
uncertainty in the position of aircraft is of the order of magnitude of some kilometers.

We consider the problem of sequencing two descending aircraft as illustrated in Figure
4(a). The initial position of the first aircraft (A1) is (−100000, 100000) (where coordi-
nates are expressed in meters) and FL350. The path of this aircraft is fixed: The aircraft
proceeds to way-point (−90000, 90000) where it will start a descent to FL150. The tra-
jectory of A1, while descending, is determined by an intermediate way-point in (0, 0)
and a final way-point in (100000, 0), where the aircraft is assumed to exit the TMA and
enter the approach sector. The second aircraft (A2) is initially at (−100000,−100000)
and FL350. This aircraft proceeds to way-point (−90000,−90000) where it will start its
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Figure 3: Several trajectory realizations of aircraft descent

descent to FL150. The intermediate way-point ω = (ω1, ω2) must be selected in the range
ω1 , ω2 ∈ [−90000, 90000]. The aircraft will then proceed to way-point (90000, 0) and then
to the exit way-point (100000, 0).

We assume that the objective is to obtain a time separation of 300 seconds between
the arrivals of the two aircraft at the exit way-point, (10000, 0). Performance in this sense
is measured by perf = e−a·(|T1−T2|−300) where T1 and T2 are the arrival times of A1 and A2
at the exit way-point and a = 5 · 10−3. The constraint is that the trajectories of the two
aircraft should not be conflicting. In our simulations we define a conflict as the situation
in which two aircraft have less than 5nmi of horizontal separation and less than 1000ft
of vertical separation1. We optimize initially with an upper bound on the probability of
constraint violation of P̄ = 0.1. It is easy to see that there exists a maneuver in the set
of optimization parameters that gives negligible conflict probability. Therefore, based on
inequality (7), we select Λ = 10 in the optimization criterion.

The results of the optimization procedure are illustrated in Figures 4(b-d). Each
figure shows the scatter plot of the accepted parameters during MCMC simulation for
different choices of J and search distribution g. In all cases the first 10% of accepted
parameters was discarded as a burn in period, to allow convergence of the Markov chain
to its stationary distribution.

Figure 4(b) illustrates the case J = 10. Regions characterized by a low density of
accepted parameters can be clearly seen in the figure. These are parameters which corre-
spond to nominal paths with high probability of conflict. The figure also shows distinct
“clouds” of accepted maneuvers. They correspond to different sequences of arrivals at the

1In the TMA of large airports horizontal minimal separation is sometimes reduced to 3nmi, but this
fact is ignored here.
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(a) Nominal paths: A1 (bold) and A2 (thin) (b) 2000 accepted states, J = 10
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(c) 1000 accepted states, J = 50 (d) 1000 accepted states, J = 100

Figure 4: Accepted states during MCMC simulation

exit point: either A1 arrives before A2 (top left and bottom right clouds) or A1 arrives
after A2 (middle cloud). In this case the proposal distribution g was uniform over the
parameter space and the ratio of accepted/proposed states was 0.27. This means that
approximately 1100 · 10/0.27 = 40740 simulations were needed to obtain 1000 accepted
states. At the average simulation speed of 5 simulations/second, the required compu-
tational time to obtain 1000 accepted states was then approximately 2 hours. In this
simulation we actually extracted 5100 states. Figure 4(b) displays the last 2000 extracted
states.

Figure 4(c) illustrates the case J = 50. In this case the proposal distribution g was
a sum of 2000 Gaussian distributions N(µ, σ2I) with variance σ2 = 107 m2. The means
of Gaussian distributions were 2000 parameters randomly chosen from those accepted in
the MCMC simulation for J = 10. The choice of this proposal distribution gives clear
computational advantages since less computational time is spent searching over regions of
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non optimal parameters. In this case the ratio accepted/proposed states was 0.34. This
means that approximately 1100 · 50/0.34 = 161764 simulations were needed to obtain
1000 accepted states. At an average of 5 simulations/second, the required computational
time to obtain 1000 states was approximately 9 hours.

Figure 4(d) illustrates the case J = 100 and a proposal distribution constructed as
before from states accepted for J = 50. Here the ratio accepted/proposed states was 0.3.
This means that approximately 1100·100/0.3 = 366666 simulations were needed to obtain
1000 accepted states. At an average of 5 simulations/second, the required computational
time to obtain 1000 states was approximately 20 hours. Figure 4(d) indicates that a
nearly optimal maneuver is ω1 = −40000 and ω2 = 40000. The probability of conflict for
this maneuver, estimated by 1000 Monte Carlo runs, was zero. The estimated expected
time separation between arrivals was 283 seconds.

4.4 Coordination of approach maneuvers

In this section, we optimize an approach maneuver with coordination between two air-
craft. In Figure 5 several trajectory realizations, of an aircraft performing the approach
maneuver described in Section 4.4, are displayed. Here, the aircraft is initially at FL100
and descends to 1500ft during the approach. Uncertainty in the trajectory is due to the
action of the wind and randomness in the aircraft mass. In the final leg a function that
emulates the localizer and so eliminates cross-track error is implemented.

The problem formulation is illustrated in Figure 6(a). We consider Aircraft One (A1)
and Aircraft Two (A2) approaching the runway. The glide path towards the runway starts
at the origin of the reference frame and coordinates are expressed in meters. The aircraft
are initially in level flight. The parameters of the approach maneuver are the distance,
from initial position, of the start of the final descent (ω1) and the length of the downwind
leg (ω2).

The initial position of A1 is (0, 50000) and FL100. The approach maneuver of this
aircraft is fixed to ω̄1 = 30000 and ω̄2 = 50000. The initial position of A2 is (0, 50000)
and altitude FL100. The parameters of its approach maneuver will be selected using the
optimization algorithm. The range of the optimization parameters is ω2 ∈ [35000, 60000]
and ω1 ∈ [0, ω2]. We assume that the performance of the approach maneuver is measured
by the arrival time of A2 at the start of the glide path (T2). The measure of performance
is given by perf = e−a·T2 with a = 5 · 10−4. The constraint is that the trajectories of the
two aircraft are not in conflict. In addition, aircraft 2 must also reach the altitude of 1500
ft before the start of the glide path, to ensure that it intercepts the localizer. We optimize
initially with an upper bound on probability of constraint violation given by P̄ = 0.1.
Since there exists a maneuver in the set of optimization parameters that gives negligible
conflict probability, we select Λ = 10 in the optimization criterion according to inequality
(7).

The results of the optimization procedure are illustrated in Figures 6(b-d) for different
values of J and proposal distribution g. Each figure shows the scatter plot of the accepted
parameters during MCMC simulation. Again, the first 10% of accepted parameters were
discarded in each case as a burn in period. Figure 6(b) illustrates the case J = 10
and proposal distribution g uniform over the parameter space. In this case, the ratio
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Figure 5: Several trajectory realizations of an approach maneuver

between accepted and proposed parameters during MCMC simulation was 0.23. This
means that approximately 1100 · 10/0.23 = 47826 simulations were needed to obtain 1000
accepted states, which took approximately 2.6 hours. A region characterized by a low
density of accepted parameters can be clearly seen in the figure. These are parameters
which correspond to a conflicting maneuver where the aircraft are performing an almost
symmetrical approach. The figure also shows two distinct “clouds” of accepted maneuvers.
They correspond to a discrete choice that the air traffic controller has to make: either
land A2 before A1 (bottom right cloud) or land A1 before A2 (top left cloud).

Figure 6(c) illustrates the case J = 50. In this case the proposal distribution g was
a sum of 100 Gaussian distributions N(µ, σ2I) with means selected randomly among
the maneuvers accepted for J = 10 and variance σ2 = 105 m2. In this case the ratio
between accepted and proposed parameters was 0.25. This means that approximately
1100 · 50/0.25 = 220000 simulations were needed to obtain 1000 accepted states, which
required approximately 12 hours of computation.

Figure 6(d) illustrates the case J = 100 and proposal distribution constructed as
before from states accepted for J = 50. In this case the ratio between accepted and
proposed parameters was 0.3. This means that approximately 1100 · 100/0.3 = 366666
simulations were needed to obtain 1000 accepted states (approximately 20 hours). Figure
6(d) indicates that a nearly optimal maneuver is ω1 = 35000 and ω2 = 35000. The
probability of conflict for this maneuver, estimated by 1000 Monte Carlo runs, was zero.

15



−6 −5 −4 −3 −2 −1 0

x 10
4

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
4

[meters]

[m
et

er
s]

ω
1

ω
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

3.5

4

4.5

5

5.5

6

x 10
4

ω
1
 [meters]

ω
2 [m

et
er

s]

(a) Nominal paths: A1 (bold) and A2 (thin) (b) 2000 accepted states, J = 10
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(c) 1000 accepted states, J = 50 (d) 1000 accepted states, J = 100

Figure 6: Accepted states during MCMC simulation

5 Conclusions

In this paper we illustrated an approach to air traffic conflict resolution in a stochastic
setting based on Monte Carlo methods. The main motivation for our approach is to enable
the use of realistic stochastic hybrid models of aircraft flight; Monte Carlo methods appear
to be the only ones that allow such models. We have formulated conflict resolution as the
optimization of an expected value criterion with probabilistic constraints. Here, a penalty
formulation of the problem was developed, which guarantees constraint satisfaction but
delivers suboptimal solutions. A side effect of the optimization procedure is that structural
differences between maneuvers are highlighted as “clouds” of maneuvers accepted by the
algorithm, with the density of the clouds related to the cost of the particular maneuver.

We presented the application of this method to two realistic scenarios inspired by
terminal area and final approach maneuvering respectively. The solutions proposed by
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our algorithm were tested in Monte Carlo simulations and gave very good performance
in terms of post-resolution conflicts. Computations times were high, partly because no
attempt was made to optimize the implementation of the algorithms. Note also that the
algorithm can provide a fairly accurate separation between “good” and “bad” maneuvers
(i.e. maneuvers that meet, or violate the constraints) relatively cheaply, using a low J .
It is only when we try to find an optimal maneuver among these that the computational
load really kicks in.

Current research concentrates on overcoming the sub-optimality imposed by the penalty
formulation of the constrained optimization problem considered in Section 2. A possible
way is to use the Monte Carlo Markov Chain procedure presented in Section 3 to obtain
optimization parameters that satisfy the constraints and then to optimize over this set
in a successive step. We are also working on sequential Monte Carlo implementations of
the optimization algorithm [4]. This will allow considerable computational savings, since
it will enable the re-use of simulations from one step of the procedure to the next. It
will also introduce feedback to the process, since it will make it possible to repeat the
optimization on line in a receding horizon manner. Finally, we are continuing to work on
modeling and implementation in the simulator of typical ATC situation with a realistic
parameterization of control actions and control objectives.
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A List of acronyms

ATC Air Traffic Control/Controller
ATM Air traffic Management
BADA Base of Aircraft Data
FMS Flight Management System
ft Feet
MC Monte Carlo
MCMC Markov Chain Monte Carlo
nmi Nautical miles
STAR Standard Approach Route
TMA Terminal Maneuvering Area
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