
Characterizationof the solution to a constrainedH∞ optimal

control problem 1
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Abstract

This paper obtains an explicit solution to a finite horizon min-max optimal control problem where the system is linear and
discrete-time with control and state constraints, and the cost quadratic; the disturbance is negatively costed, as in the standard
H∞ problem, and is constrained. The cost is minimized over control policies and maximized over disturbance sequences so that
the solution yields a feedback control. It is shown that, under certain conditions, the value function is piecewise quadratic and
the optimal control policy piecewise affine, being quadratic and affine, respectively, in polyhedra that partition the domain of
the value function.
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1 Introduction

1.1 Background

Explicit solutions to constrained optimal control prob-
lems appeared in the papers [1–3] that deal with the con-
strained linear-quadratic problem, in the papers [3–7]
and thesis [8] that deal with hybrid or piecewise affine
systems, and in papers that deal with min-max opti-
mal control problems [9–13]. In these papers it is shown
that the value function is piecewise affine or piecewise
quadratic (depending on the nature of the cost function
in the optimal control problem) and the control law is
piecewise affine, being quadratic or affine in polytopes
that constitute a polytopic partition of the domain of
the value function. When disturbances are present, it is
necessary to compute the solution sequentially using dy-
namic programming as in [14, 15]; papers [10, 11, 13, 16]
(that deal with state constraints) give recursions for the
domains of the value functions. In this paper, which is
motivated by recent research on H∞ model predictive
control [17–25], we characterize the solution to a con-
strained, min-max optimal control problem (in the sense
of determining its most important properties) and dis-
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cuss its use in receding horizon control. The term H∞

is used somewhat loosely since we consider the min-max
problem with fixed ρ (see (1.4) below). We consider,
therefore, the problem of controlling a linear, discrete-
time system described by

x+ = Ax+Bu+Gw, (1.1)

where x ∈ R
n is the state, u ∈ R

m the control and
w ∈ R

p an additive disturbance (the ‘adversary’); x+

is the successor state. We frequently write the system
dynamics in (1.1) in the form

x+ = f(x, u, w)

where f(x, u, w) , Ax+Bu+Gw. The system is subject
to hard control and state constraints u ∈ U, x ∈ X
where U ⊂ R

m and X ⊂ R
n are polytopes; each set

contains the origin in its interior (the assumption that
X is a polytope rather than a polyhedron 3 is made for
simplicity). The disturbance w is constrained to lie in
the polytope W ⊂ R

p that contains the origin.

Let π , {µ0(·), µ1(·), . . . , µN−1(·)} denote a control pol-
icy (sequence of control laws) over horizon N and let

3 In this paper, a polyhedron is a closed set described by
a finite set of linear inequalities; a polytope is a bounded
polyhedron and is, therefore, compact.
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w , {w0, w1, . . . , wN−1} denote a sequence of distur-
bances. Also, let φ(i;x, π,w) denote the solution of (1.1)
when the initial state is x at time 0, the control policy is
π and the disturbance sequence is w, so that φ(i;x, π,w)
is the solution, at time i of

xi+1 = Axi +Bµi(xi) +Gwi, x0 = x (1.2)

The cost VN (x, π,w), if the initial state is x, the control
policy π and the disturbance sequence w, is

VN (x, π,w) ,

N−1
∑

i=0

`(xi, ui, wi) + Vf (xN ) (1.3)

where, for all i, xi , φ(i;x, π,w) and ui , µi(xi); Vf (·)
is a terminal cost that may be chosen, together with
a terminal constraint set Xf defined below, to ensure
stability of the resultant receding horizon controller (see
§7). The stage cost `(·) is a quadratic function, positive
definite in x and u, and negative definite in w:

`(x, u, w) , (1/2)|x|2Q + (1/2)|u|2R − (ρ2/2)|w|2 (1.4)

where ρ > 0, |z|2 , z′z, |z|2Z , z′Zz, and Q and R are
positive definite. The stage cost may be expressed as

`(x, u, w) , (1/2)|y|2 − (ρ2/2)|w|2, y , Hz (1.5)

where z , (x, u) and H is a suitably chosen matrix
((x, u) should be interpreted as a column vector (x′, u′)′

in matrix expressions). The terminal cost Vf (·) is either

a quadratic function Vf (x) , (1/2)|x|2Pf
in which Pf is

positive definite, or a strictly convex piecewise quadratic
function (see Definition 2). The optimal control problem
PN(x) that we consider is

PN (x) : V 0
N (x) = inf

π∈ΠN (x)
max
w∈W

VN (x, π,w) (1.6)

where W , WN , is the set of admissible disturbance
sequences, and ΠN (x) is the set of admissible policies,

i.e. those policies that satisfy, for all w ∈ W , WN ,
the state and control constraints, and the terminal con-
straint xN ∈ Xf . Inclusion of the hard disturbance con-
straint w ∈ W is required when state constraints are
present since, otherwise, we can expect that, for any pol-
icy π chosen by the controller, there exists a disturbance
sequence w that transgresses the state constraint. The
terminal constraint set Xf is a polytope, containing the
origin in its interior, that satisfies Xf ⊆ X , ensuring
satisfaction of the state constraint at time N . Hence the
set of admissible policies is

ΠN (x) , {π | φ(i;x, π,w) ∈ X, µi(φ(i;x, π,w)) ∈ U,

∀i ∈ {0} ∪ IN−1, φ(N ;x, π,w) ∈ Xf , ∀w ∈ W} (1.7)

where, for each integer J , IJ , {1, . . . , J}. Let XN de-
note the set of initial states for which a solution to PN (x)
exists (the domain of V 0

N (·), the controllability set), i.e.

XN , {x | ΠN (x) 6= ∅}.

1.2 Outline of the paper

Because of uncertainty (in the form of the additive
disturbance w), the solution to the problem must be ob-
tained by dynamic programming. In §2, we present the
dynamic programming equations for the constrained
min-max problem. At each time-to-go j (j ranges from 0
to N), a min-max problem must be solved; this may be
decomposed into a max problem Pmax(z) followed by a
min problem Pmin(x). Also in §2 we define two operators
ΓZ and Ψ mapping value functions into value functions;
showing that the value functions of the H∞ problem all
have a certain property may be done by showing that
this property is invariant under these operators. In §3
we show that certain properties, such as continuity, are
invariant under these two operators. In §4 we present an
improved algorithm for parametric piecewise quadratic
programming and show that the piecewise quadratic
property is invariant under these two operators if cer-
tain conditions are satisfied. The main obstacle to our
program is that the operator Ψ requires the function it
operates on to be continuously differentiable for invari-
ance of the piecewise quadratic property; we show that
the continuously differentiable property is invariant
under ΓZ if state constraints are absent or a certain as-
sumption A1 is satisfied. We obtain the solution to the
H∞ problem in §5 when state constraints are absent,
and in §6 when assumption A1 is satisfied. We show
in §7 how our results may be used in receding horizon
control. Some conclusions are drawn in §8. Lengthier
proofs of results are given in the appendix.

2 Dynamic Programming for Constrained
Problems

The solution to PN(x) may be obtained as follows. For

all j ∈ N+ , {1, 2, . . .}, let the partial return function
V 0

j (·) be defined as in (1.6) with j replacingN and let Xj

(the controllability set) denote the domain of V 0
j (·); here

j is “time-to-go”. Then the sequences {V 0
j (·), κj(·),Xj},

where κj(·) denotes the optimal control law µ0
N−j(·) at

time i = N − j, may be calculated recursively as follows
[10, 16]:

V 0
j (x) = min

u∈U
max
w∈W

{`(x, u, w) + V 0
j−1(f(x, u, w)) |

f(x, u,W ) ⊆ Xj−1} (2.1)

κj(x) = argmin
u∈U

max
w∈W

{`(x, u, w) + V 0
j−1(f(x, u, w)) |

f(x, u,W ) ⊆ Xj−1} (2.2)

Xj = {x ∈ X | ∃u ∈ U such that f(x, u,W ) ⊆ {Xj−1}
(2.3)
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with boundary conditions V 0
0 (x) = Vf (x),X0 = Xf ⊆

X ; f(x, u,W ) , {f(x, u, w) | w ∈ W}; κj(·) is point
valued due to strict convexity. For each integer j let
Zj ⊆ R

n × R
m be defined by

Zj , {(x, u) ∈ X × U | f(x, u,W ) ⊆ Xj−1} (2.4)

so that, from (2.3), Xj = ProjXZj where, for all Z ⊂
X × U , ProjX denotes the projection operator defined
by ProjXZ = {x ∈ X | ∃u ∈ U such that (x, u) ∈
Z}. Similarly, if Φ is a set in the product space X ×
U × W , ProjZΦ denotes the set {z ∈ X × U | ∃w ∈
W such that (z, w) ∈ Φ}. To analyze PN(x) it is conve-
nient to introduce the functions J0

j (·), j = 1, 2, . . ., de-
fined by

J0
j (x, u) , max

w∈W
{`(x, u, w) + V 0

j−1(f(x, u, w))} (2.5)

The recursive equations (2.1)-(2.3) may therefore be
rewritten as

V 0
j (x) = min

u∈U
{J0

j (x, u) | (x, u) ∈ Zj}, (2.6)

J0
j (x, u) , max

w∈W
{`(x, u, w) + V 0

j−1(f(x, u, w))}, (2.7)

κj(x) = argmin
u∈U

{J0
j (x, u) | (x, u) ∈ Zj}, (2.8)

νj(x, u) = arg max
w∈W

{`(x, u, w) + V 0
j−1(f(x, u, w))},

(2.9)

with endpoint conditions V0(·) = Vf (·), X0 = Xf . Under
our assumptions the setsXj andZj are compact. If X0 =
Xf is robust control invariant 4 , the sets Xj are nested
(Xj ⊇ Xj−1 for all j ≥ 1) and robust control invariant.

To aid exposition of our results, we define two operators
mapping value functions into value functions together
with their associated minimizer or maximizer operators.
For each polyhedral subset Z of R

n × R
m, the first op-

erator ΓZ , and its associated minimizer operator γZ are
defined by:

ΓZ(J(·))(x) , min
u∈U

{J(x, u) | (x, u) ∈ Z}, (2.10)

γZ(J(·))(x) , arg min
u∈U

{J(x, u) | (x, u) ∈ Z}. (2.11)

Let Γ and γ denote the operators ΓZ and γZ de-
fined by (2.10) and (2.11), when Z = R

n × U , so

that Γ(J(·))(x) , minu∈U J(x, u) and γ(J(·))(x) ,

argminu∈U J(x, u). The second operator Ψ and its as-
sociated maximizer ψ are defined by

Ψ(V (·))(z) , max
w∈W

{`(z, w) + V (f(z, w))}, (2.12)

ψ(V (·))(z) , arg max
w∈W

{`(z, w) + V (f(z, w))}. (2.13)

4 See definition 5 in §7.

where z , (x, u). The operators ΓZ and γZ define the
value function V (·) and minimizer κ(·) of the prototype
minimization problem Pmin(x) defined by:

V (x) = min
u

{J(x, u) | (x, u) ∈ Z} (2.14)

κ(x) = arg min
u

{J(x, u) | (x, u) ∈ Z} (2.15)

in the sense that V (·) = ΓZ(J(·)), κ(·) = γZ(J(·)).

Similarly, the operators Ψ and ψ define the value func-
tion J(·) and maximizer ν(·) of the prototype maximiza-
tion problem Pmax(z) defined by:

J(z) = max
w

{`(z, w) + V (f(z, w)) | w ∈ W} (2.16)

ν(z) = arg max
w

{`(z, w) + V (f(z, w)) | w ∈W} (2.17)

in the sense that J(·) = Ψ(V (·)), ν(·) = ψ(V (·)). In
terms of these operators, the dynamic programming
equations (2.6)– (2.9) may be expressed as

V 0
j (·) = ΓZj

(J0
j (·)), κj(·) = γZj

(J0
j (·)), (2.18)

J0
j (·) = Ψ(V 0

j−1(·)), νj(·) = ψ(V 0
j−1(·)), (2.19)

and the dynamic programming recursion (2.1) may be
written

V 0
j (·) = (ΓZj

◦ Ψ)(V 0
j−1(·)) (2.20)

where ◦ denotes composition. Showing that property A
is possessed by all the value functions V 0

j (·) is equiva-
lent to showing that this property is invariant under the
operator ΓZ ◦Ψ. Then, if V 0

j−1(·) possesses property A,

so does V 0
j (·) = (ΓZj

◦Ψ)(V 0
j−1(·)); by induction, V 0

1 (·),

V 0
2 (·), . . . , V 0

N (·) all have property A if the terminal cost
Vf (·) does.

3 Invariance properties of ΓZ and Ψ

In the following section, we show that basic properties
(such as continuity, differentiability and convexity) are
invariant under ΓZ and Ψ and, hence under the dynamic
programming recursion ΓZ ◦ Ψ. Then, in §4, we estab-
lish the key property, the piecewise quadratic property,
is invariant (under certain conditions) using a new tech-
nique for parametric piecewise quadratic programming.
We require the following definitions in the sequel:

Definition 1 A set PZ = {PZ
i | i ∈ J Z}, for some

index set J Z , is called a polyhedral (polytopic) partition
of a polyhedral (polytopic) set Z if Z = ∪i∈JZPZ

i , and
the sets PZ

i , i ∈ J Z are polyhedra (polytopes) with non-
empty interiors relative to Z that are non-intersecting.

Definition 2 A function J : Z → R is said to be piece-
wise quadratic on a polyhedral (polytopic) partitionPZ =
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{PZ
i | i ∈ J Z} of Z if it satisfies

J(z) = Ji(z) , (1/2)|z|2Qi
+q′iz+si, ∀z ∈ PZ

i , i ∈ J Z

for someQi, qi, si, i ∈ J Z . Similarly, a function κ : Z →
U is said to be piecewise affine on a polyhedral partition
P = {PZ

i | i ∈ J Z} of Z if it satisfies

κ(z) = Kiz + ki, ∀z ∈ PZ
i , i ∈ J Z ,

for some Ki, ki, i ∈ J Z .

3.1 Basic properties of the operator ΓZ

We first show that the property of strict convexity is
invariant under ΓZ .

Proposition 1 Suppose Z is a convex and closed subset
of R

n × U , and that J : Z → R is strictly convex. Then
the value function V (·) = ΓZ(J(·)) is strictly convex with
domain X . If, in addition, J(·) is continuous, then, for
all x ∈ X = ProjXZ, the solution κ(x) to Pmin(x) exists
and is unique.

Proof: Convexity of V (·) = ΓZ(J(·)) given J(·) is con-
vex is established in [26], §3.2.5; the extension to the
result that V (·) = ΓZ(J(·)) is strictly convex if J(·) is
strictly convex is trivial.

Our next result has simpler hypotheses than previous
versions of this result (for example, Z is not required
to have an interior and non-degeneracy conditions on
multipliers are not required) and makes a stronger as-
sertion: continuity is invariant under ΓZ in X (rather
than in the interior of X ). The existence and continuity
of κ(·) follows.

Theorem 1 Suppose Z is a polyhedron in R
n × U and

that J : Z → R is continuous. Then, for all x ∈ X =
ProjXZ, the solution κ(x) to Pmin(x) exists and the value
function V (·) = ΓZ(J(·)) is continuous with domain X .
If, in addition, κ(x) is unique for each x ∈ X , then κ(·) =
γZ(J(·)) is continuous on X .

The requirement that the piecewise quadratic property
is invariant under the operator Ψ (that arises in the max
problem Pmax(z)) forces us to make the strong demand
(as we show later) that continuous differentiability is
invariant under ΓZ . We can meet this demand in two
ways.

Firstly: assume X = Xf = R
n so that Z = R

n ×U . Un-
der this assumption, Pmin(x) becomes the simpler prob-
lem V (x) = minu∈U J(x, u). The dynamic programming
recursion then yields Xj = R

n, Zj = R
n × U , ΓZj

= Γ
for all j ∈ N+. That continuous differentiability is in-
variant under Γ as shown in:

Theorem 2 Suppose that X = Xf = R
n and that

J : R
n × U → R is continuously differentiable and

strictly convex. Then the value function V (·) = Γ(J(·))
of Pmin(x) is continuously differentiable and strictly
convex.

Secondly, it is also possible to obtain invariance of
continuous differentiability under ΓZ (when state con-
straints are present) by requiring satisfaction of a certain
condition. We delay proving this result until §4.

3.2 Basic properties of the operator Ψ

Our first result is that the property strict convexity and
continuity is invariant under Ψ.

Proposition 2 Suppose V : X → R where X ⊆ X
and that, for each w ∈ W , the function z 7→ V (z, w) is
strictly convex and continuous. Then, the value function
J(·) = Ψ(V (·)) is strictly convex and continuous with
domain Z = {z ∈ X × U | f(z,W ) ⊆ X}.

Proof: Since J(·) is the maximum (over w in W ) of a

set of strictly convex functions z 7→ V ′(z, w) , `(z, w)+
V (f(z, w)), w ∈W , it is convex; strict convexity follows
from the fact that z 7→ `(z, w) is uniformly strictly con-
vex over w ∈ W . Since W is constant, the continuity of
J(·) = Ψ(V (·)) follows from the continuity of V ′(·) and
the maximum theorem (Theorem 5.4.3 in [27]).

In order to show (in §4) that the piecewise-quadratic
property is invariant under Ψ, we require that the func-
tion w 7→ V ′(z, w) , `(z, w)+V (f(z, w)) is strictly con-
cave for suitably large ρ when V : X → R is piecewise
quadratic on a polyhedral partition of the polyhedronX ,
in which case the maximizer ν(·) = ψ(V (·)) is unique and
J(·) = Ψ(V (·)) is piecewise quadratic on a polyhedral

partition of Φ , {(z, w) ∈ (Rn×U)×W | f(z, w) ∈ X}.
Generally w 7→ V ′(z, w) (being the sum of a concave
and a convex function) is not strictly concave so J(·) =
Ψ(V (·)) is not necessarily piecewise quadratic. However,
for suitably large ρ, the function V ′(·) is strictly concave,
if V : X → R is continuously differentiable and strictly
convex, as we now establish.

Proposition 3 Let X be a polyhedron in R
n containing

the origin in its relative interior and suppose V : X → R

is continuously differentiable, piecewise quadratic, and
strictly convex. Then V ′(·) (V ′(z, w) , `(z, w)+V (Fz+
Gw)) is continuously differentiable, strictly convex in z
for each w ∈ W , and there exists a ρ∗ > 0 such that, for
all ρ ≥ ρ∗, V ′(·) is strictly concave in w for each z in Z ,

ProjZΦ, Φ , {(z, w) ∈ (Rn × U) ×W | f(z, w) ∈ X}.

The proof (given in the appendix) is constructive and
yields a value for ρ∗. We can exploit Proposition 3 to
show that the property of continuous differentiability is
invariant under Ψ:
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Proposition 4 Suppose that V (·) in Pmax(z) is contin-
uously differentiable, and strictly convex. Suppose also
that ρ ≥ ρ∗ where ρ∗ is defined in Proposition 3. Then the
value function J(·) = Ψ(V (·)) of Pmax is continuously
differentiable.

The proof of this result is almost identical to the proof
of Theorem 2.

4 Parametric programming and invariance of
the piecewise quadratic property

An important objective is to show that the piecewise
(pw) quadratic property is invariant under the dynamic
programming recursion. This result permits determina-
tion of explicit control using dynamic programming cou-
pled with parametric programming, which is the tool we
need.

4.1 The operator ΓZ and problem Pmin(x)

We first look at the parametric problem Pmin(x) de-
fined in (2.14) under the assumption that J(·) is con-
tinuous piecewise quadratic on a polyhedral partition
PZ = {PZ

i | i ∈ J Z} of a polyhedronZ ; J(z) = Ji(z) =
(1/2)|z|2Qi

+q′iz+si for all z ∈ PZ
i , all i ∈ J Z (here, the

subscript i in Ji(·) is used to specify the cost in a partic-
ular polyhedron and not the cost at a particular time-
to-go as in the dynamic programming recursion (2.7)).

4.1.1 Invariance of the pw quadratic property under ΓZ

Definition 3 A polyhedron PZ
i in a polyhedral partition

PZ = {PZ
i | i ∈ J Z} of a polyhedron Z is said to be

active at z ∈ Z if z = (x, u) ∈ PZ
i . The set of polyhedra

active at z ∈ Z is

S(z) , {i ∈ J Z | z ∈ PZ
i }.

A polyhedron PZ
i in a polyhedral partition PZ = {PZ

i |
i ∈ J Z} of a polyhedron Z is said to be active for Problem
Pmin(x) if (x, κ(x)) ∈ PZ

i . The set of active polyhedra
for Pmin(x) is S0(x) defined by

S0(x) , S(x, κ(x)) = {i ∈ J Z | (x, κ(x)) ∈ PZ
i }

where κ(x), the solution of Pmin(x), is unique if J(·) is
strictly convex.

Definition 4 For each x̄ ∈ X , the polyhedron Px̄ is de-
fined by Px̄ ,

⋂

i∈S0(x̄) P
Z
i .

Because J(·) is continuous, for each x̄ ∈ X , Ji(z) = J(z)
for all i ∈ S0(x̄), all z ∈ Px̄. We now define, for each

x̄ ∈ X , the simpler problem Px̄(x), parameterized by x̄
and defined by

Vx̄(x) = min
u

{J(x, u) | (x, u) ∈ Px̄} (4.1)

κx̄(x) = arg min
u

{J(x, u) | (x, u) ∈ Px̄}. (4.2)

so that Vx̄(·) is the value function, and κx̄(·) the
minimizer, for problem Px̄(x). By construction,
S(x, κx̄(x)) = S0(x̄) at all x such that (x, κx̄(x)) ∈ Px̄.
The question arises: how is the solution κ(x) of the
original problem Pmin(x) related to the solution κx̄(x)
of the derived problem Px̄(x)? This is answered by:

Proposition 5 Suppose J : Z → R is continuous piece-
wise quadratic and strictly convex and that x̄ ∈ X is
given. For all x such that S0(x) = S0(x̄) (i.e. (x, κ(x)) ∈
Px̄) the following three statements are equivalent:
(i) u is optimal for the original problem Pmin(x) (u =
κ(x)).
(ii) u is optimal for the derived problem Px̄(x) (u =
κx̄(x)).
(iii) u is optimal for problems Pi(x) : minu{J(x, u) |
(x, u) ∈ PZ

i } for all i ∈ S0(x).

Consider an arbitrary point x̄ ∈ X . Then S0(x̄) is the set
of active polytopes at (x̄, κ(x̄)), and Px̄ = ∩{PZ

i | i ∈
S0(x̄)}. The polyhedron Px̄ admits the representation

Px̄ =

{

z
∣

∣

∣

M̃x̄u = Ñx̄x+ p̃x̄

M̄x̄u ≤ N̄x̄x+ p̄x̄

}

(4.3)

where, because of the definition of Px̄, equality con-
straints M̃x̄u = Ñx̄x+ p̃x̄ that define the boundary com-
mon to PZ

i , i ∈ S0(x̄) arise. Let M̄ j
x̄, N̄ j

x̄ and p̄j
x̄ denote,

respectively, the jth row of M̄x̄, N̄x̄ and p̄x̄ and let I0(x̄)
index those constraints in the second set of constraints
in (4.3) that are active at (x̄, κ(x̄)); the set I0(x̄) is there-
fore defined by

I0(x̄) , {j | M̄ j
x̄κ(x̄) = N̄ j

x̄x̄+ p̄j
x̄}. (4.4)

Let Mx̄, Nx̄ and px̄ denote, respectively, the matrices
with rows M̄ j

x̄, N̄ j
x̄ and p̄j

x̄, j ∈ I0(x̄) and let rx̄ denote the
row dimension of these matrices. Because J(z) = Ji(z)
for all i ∈ S0(x̄), all z ∈ Px̄, we may now define, for each
x̄ ∈ X , the equality constrained problem P

e
x̄(x) by

V e
x̄ (x) = min

u
{J(x, u) | M̃x̄u = Ñx̄x+ p̃x̄,

Mx̄u = Nx̄x+ px̄}, (4.5)

κe
x̄(x) = arg min

u
{J(x, u) | M̃x̄u = Ñx̄x+ p̃x̄,

Mx̄u = Nx̄x+ px̄}. (4.6)

where Ji(·), for any i ∈ S0(x̄), may be used in place
of J(·). Hence P

e
x̄(x) is a simple quadratic optimization

5



problem with affine equality constraints; the solution to
this problem is, as is well known [28]:

V e
x̄ (x) = (1/2)x′Qx̄x+ q′x̄x+ sx̄, (4.7)

κe
x̄(x) = Kx̄x+ kx̄ (4.8)

for some Qx̄, qx̄, sx̄, Kx̄ and kx̄. Since the control law
κe

x̄(·) ensures, by construction, thatMx̄κ
e
x̄(x) = Nx̄x+px̄

for all x such that (x, κe
x̄(x)) ∈ Px̄, the cone of feasible

directions h ∈ R
q at u = κe

x̄(x) is Fx̄ = {h | M̃x̄h =
0, Mx̄h ≤ 0}. Then

PCx̄ , {[M̃ ′
x̄, −M̃

′
x̄, M

′
x̄]λ | λ ≥ 0}, (4.9)

is the polar cone 5 at 0 of the cone Fx̄. Because the gra-
dient of the cost function J(·) is not necessarily contin-
uous in Px̄, we define the polytope Xx̄ as follows:

Xx̄ ,

{

x

∣

∣

∣

∣

∣

M̄ j
x̄κ

e
x̄(x) ≤ N̄ j

x̄x+ p̄j
x̄, ∀j ∈ Irx̄

\ I0(x̄)

−∇uJi(x, κ
e
x̄(x)) ∈ PCx̄ ∀i ∈ S0(x̄)

}

(4.10)

where Irx̄
, {1, 2, . . . , rx̄}. The convex hull of

{∇uJi(x, κ
e
x̄(x)), i ∈ S0(x̄)} is the subgradient δJ(·) of

the convex function J(·) (that is not necessarily differen-
tiable) at (x, κe

x̄(x)). The first condition in (4.10) (that
holds with equality for j ∈ I0(x̄)) ensures satisfaction
of the constraints defining Px̄ everywhere in Xx̄ and the
second (that may be expressed as−δJ(x, κe

x̄(x)) ⊂ PCx̄)
is a necessary and sufficient condition for the optimality
of κe

x̄(·) in Xx̄ (see, e.g., [29], §12.6 and [26], §4.2.3).
Hence, in Xx̄, the value function V (·) (for Pmin(x)) is
equal to the quadratic function V e

x̄ (·) and the associated
optimal control law κ(·) is equal to the affine function
κe

x̄(·). As before, the second constraint in the definition
of Xx̄ is a set of easily determined linear inequalities so
that Xx̄ is a polytope (polyhedral if Z is polyhedral).
We have proven:

Theorem 3 Suppose J : Z → R is continuous piecewise
quadratic and strictly convex on a polyhedral (polytopic)
partition PZ = {PZ

i | i ∈ J Z} of the polyhedron (poly-
tope) Z. Then the value function V (·) = ΓZ(J(·)) is con-
tinuous piecewise quadratic and strictly convex and the
optimal control law κ(·) = γZ(J(·)) is piecewise affine on
a polyhedral (polytopic) partition PX = {PX

i | i ∈ J X}
of X= ProjXZ satisfying, respectively, V (x) = Vx̄(x)
and κ(x) = κx̄(x) for all x in PX

i where each PX
i = Xx̄

for some x̄ ∈ X .

When X = Xf = R
n, Z = R

n × U is polyhedral rather
than polytopic; a piecewise quadratic (affine) character-
ization of V (·) (κ(·)) on a polytopic subset S of X = R

n

may be obtained (see §4.2).

5 The polar cone of a convex set C is the set C∗ = {y |
y′x ≤ 0, ∀x ∈ C}.

4.1.2 Invariance of continuous differentiability under
ΓZ

This has been established for the case X = Xf = R
n

in Theorem 2. When state constraints are present, con-
tinuous differentiability is invariant under ΓZ under a
rather strong condition that we now state:

A1: The pair (J(·),Z) is such that any two adjacent
polyhedra PX

i = Xx̄i
and PX

j = Xx̄j
in the polyhedral

partition PX of X (see Theorem 3) satisfy I0
i ⊂ I0

j or

I0
j ⊂ I0

i where, for each i, I0
i indexes all the constraints

in the definition of PX
x̄i

(see (4.3)) that are active at
(x̄i, κ(x̄i)).

Theorem 4 Suppose J : Z → R is continuously dif-
ferentiable, piecewise quadratic and strictly convex
on a polyhedral partition PZ of a polyhedron Z. If
(J(·),Z) satisfies assumption A1, then the value func-
tion V (·) = ΓZ(J(·)) is continuously differentiable,
piecewise quadratic and strictly convex, and the optimal
control law κ(·) = γZ(J(·)) is continuous and piecewise
affine on a polyhedral partition PX = {PX

i | i ∈ J X } of
X= ProjXZ (each PX

i = Xx̄ for some x̄ ∈ X ).

Proof: An outline of the proof to this result is given
in [16]; a full proof appears in [30]. A related result is
given in [8] where continuous differentiability is estab-
lished under a different hypothesis (a non-degeneracy
condition that includes linear independence of the active
constraints).

Assumption A1 cannot be verified a priori and is, there-
fore, of limited use. However, the assumption suggests
that continuous differentiability is possible and is sat-
isfied in an illustrative example with state constraints
provided in [30].

4.2 The operator Ψ and problem Pmax(z)

We look now at the parametric problem Pmax(z) de-
fined in (2.16) under the assumption that V : X → R

is piecewise quadratic on a polytopic partition PX =
{PX

i | i ∈ J X } of a polytope X ; V (x) = Vi(x) =
(1/2)|x|2Qi

+q′ix+si for someQi, qi and si, for all x ∈ PX
i ,

all i ∈ J X and, in addition, is continuously differen-
tiable and strictly convex. The following result, an ana-
log of Theorem 3, shows that the pw quadratic property
is invariant under Ψ if the operand is continuously dif-
ferentiable:

Theorem 5 Suppose V : X → R is continuously dif-
ferentiable, piecewise quadratic and strictly convex on a
polyhedral partition PX = {PX

i | i ∈ J X} of the polyhe-

dron X . Then V ′ : Φ → R, where V ′(z, w) , `(z, w) +

V (f(z, w)) and Φ , {(z, w) ∈ (Rn ×U)×W | f(z, w) ∈
X}, is continuously differentiable, piecewise quadratic
and strictly convex in z on a polyhedral partition PΦ of
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the polyhedron Φ. Moreover, there exists a ρ∗ > 0 such
that V ′(·) is strictly concave in w for all ρ ≥ ρ∗; for all
ρ ≥ ρ∗, the value function J(·) = Ψ(V (·)) is continu-
ous, piecewise quadratic and strictly convex, and the opti-
mal control law ν(·) = ψ(V (·)) continuous and piecewise
affine, on a polyhedral partition PZ = {PZ

i | i ∈ J Z} of
Z = ProjZΦ (each PZ

i = Zz̄ for some z̄ ∈ Z where Zz̄

is defined similarly to (4.10)).

Proof: The proof of this result is almost identical to
the proof of Theorem 2 since Pmax(x) may be expressed
as −minw∈W {−V ′(z, w)}.

Reverse Transformation Algorithm for Pmin(x)

Proposition 5 motivates the following improved reverse
transformation algorithm for the piecewise quadratic
parametric problem minu{J(x, u) | (x, u) ∈ Z}:

1. Initialize: Set R = ∅.

2. Update: Select x̄ ∈ X \ R (X = ProjXZ), solve
Pmin(x̄) and determine Px̄. Determine the affine mini-
mizer κx̄(·), the quadratic value function Vx̄(·), and the
polytope Xx̄. Set V (·) = Vx̄(·) and κ(·) = κx̄(·) on Xx̄.
Set R = Xx̄ ∪ R.

3. Iterate: While R 6= X , repeat Step 2.

Consider the example shown in Figure 1. For i = 1, 2, the
solution of problem Pi(x): minu{J(x, u) | (x, u) ∈ PZ

i },
is the piecewise affine function κi(·) defined on the
polytopic partition {Xi1, Xi2, Xi3} of X . The original
version of the algorithm [3, 8, 16] determines κ1(·) and
κ2(·) shown in Figure 1(a) where two representative val-
ues x̄1 and x̄2 for x̄ are indicated; these solutions overlap
(at each x ∈ X , both solutions exist) and further inves-
tigation is needed to choose the appropriate minimizer.
The improved algorithm, in contrast, yields the single
solution κ(·) shown in Figure 1(b). When X = R

n, the
restriction of V (·) and κ(·) to any polytopic subset of X
may be obtained by replacing X by S and Xx̄ by Xx̄ ∩S
in the above algorithm.

5 H∞ control; no state constraints

In this case, X = Xf = R
n so the only constraints are

u ∈ U and w ∈ W . Consequently Xj = R
n for all j

and the dynamic programming equations (2.1) - (2.3)
are replaced by the conventional dynamic programming
equations in which Xj−1 is replaced by R

n; equivalently,
the new dynamic programming equations are given by
(2.6)-(2.9) with the constraint (x, u) ∈ Zj omitted. The
prototype problems in the dynamic programming recur-
sion become:

Pmin(x) : V (x) = min
u∈U

J(x, u) (5.1)

Pmax(z) : J(z) = max
w∈W

`(z, w) + V (f(z, w)) (5.2)
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1, 2
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(b) Solution of P(x)

Fig. 1. Reverse transformation algorithm

in which V (·) and J(·) in (5.1) represent, respectively,
V 0

j (·) and J0
j (·), and J(·) and V (·) in (5.2) represent,

respectively, J0
j (·) and V 0

j−1(·). Since J(·) is convex in u

and V ′(·) (V ′(z, w) , `(z, w) +V (f(z, w)) is (under ap-
propriate conditions) concave in w, the respective value
functions have identical properties (maxw{V ′(z, w) |
w ∈ W} = −minw{−V ′(z, w) | w ∈W}).

To establish that continuous differentiability, strict con-
vexity and the piecewise quadratic property are all in-
variant under the dynamic programming recursion op-
erator Γ ◦ Ψ, we require:

Proposition 6 There exists a ρ∗ > 0 such that V ′
j (·) is

strictly concave inw for all ρ ≥ ρ∗, all j ∈ {1, . . . , N−1}.

We can now obtain the properties of the solution to the
H∞ problem when there are no state or terminal con-
straints (X = Xf = R

n).

Theorem 6 Suppose the H∞ problem PN (x) has no
state and terminal constraints, that ρ ≥ ρ∗, and that
Vf (·) is continuously differentiable, strictly convex, and
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piecewise quadratic on a polyhedral partition PXf of
Xf = R

n. Then, for each j ∈ {0, 1, . . . , N}, the value
functions V 0

j (·) of PN (x) is continuously differentiable,
strictly convex, and piecewise quadratic on a polyhedral
partition of Xj = R

n.

Proof: That continuous differentiability, strict convex-
ity and the piecewise quadratic property are invariant
under Γ is established in Theorem 2, Proposition 1, and
Theorem 3 respectively. That these properties are in-
variant under Ψ is established in Proposition 4, Propo-
sition 2 and Theorem 5 respectively. The invariance of
these properties under Γ ◦Ψ follows. It follows that, for
each j ∈ {0, 1, . . . , N} the value function V 0

j (·) of Pj(x)
is continuously differentiable, strictly convex, and piece-
wise quadratic on a polyhedral partition of Xj = R

n.

Restrictions of the functions V 0
j (·) and κj(·) to poly-

topic subsets Sj of R
n satisfying f(Sj , U,W ) ⊆ Sj−1,

j = 1, . . . , N may be obtained using the modification
to the reverse transformation algorithm described in §4;
the condition imposed on the sets Sj (that may be arbi-
trarily large) ensures that the value functions and con-
trol laws are all well defined.

6 H∞ control; state constraints

In this case, we require that A1 (see §4.1.2) is satisfied by
(J0

j (·),Zj) for each j ∈ {1, . . . , N}. Since the sequence

{(J0
j (·),Zj)} is affected by ρ, we must make the addi-

tional strong assumption:

A2: There exists a ρ∗ > 0 such that, for each j ∈
{1, . . . , N}, V ′

j (·) = `(·) + V 0
j−1 ◦ f(·) is strictly concave

in w and A1 is satisfied by (J0
j (·),Zj) for all ρ ≥ ρ∗.

We then have:

Theorem 7 Suppose that Vf (·) in the H∞ problem is
continuously differentiable, strictly convex, and continu-
ous piecewise quadratic on a polytopic partition PX0 of
a polytope X0 , Xf ⊂ R

n. Suppose also that assump-
tion A2 is satisfied. Then, with ρ = ρ∗ > 0, for each
j ∈ {1, . . . , N}, the value function V 0

j (·) is continuously
differentiable, strictly convex, and continuous piecewise
quadratic on a polytopic partition PXj of Xj , and the op-
timal control law κj(·) is continuous and piecewise affine
on the same polytopic partition PXj of Xj .

Proof: Invariance of continuous differentiability under
ΓZ is established in Theorem 3, invariance of strict con-
vexity in Proposition 1 and invariance of the piecewise
quadratic property in 3. The remainder of the proof is
the same as the proof of Theorem 6.

An illustrative example with state constraints is pro-
vided in [30].

7 H∞ receding horizon control

7.1 Introduction

Since we make use, in this section, of the solution for the
infinite horizon, linear unconstrained H∞ problem, we
assume, in the sequel, that (A,B) is stabilizable and that
(C,A,B) has no zeros on the unit circle whereQ = C ′C.
Since Q is assumed to be positive definite, (C,A) is de-
tectable. These conditions, and the fact that R is as-
sumed positive definite, ensure that the conditions as-
sumed in [31], Appendix B, are satisfied for the full infor-
mation case. Hence there exists a ρ̃ > 0 such that a pos-
itive definite solution Pf to the associated (generalized)
H∞ algebraic Riccati equation exists for all ρ > ρ̃; sup-
pose ρf > ρ̃ , that Pf is the solution of the H∞ algebraic
Riccati equation with ρ = ρf , and that the associated
optimal control and disturbance laws are u = Kux and
w = Kwx respectively. It is shown in [31] that, under

these assumptions, the state matrices Af , A + BKu

and Ac , A + BKu + GKw are both stable. The ter-
minal cost function Vf (·) for the constrained H∞ con-
trol problem is the infinite horizon value function de-
fined (globally in R

n) by Vf (x) = (1/2)|x|2Pf
and satis-

fies Vf (x) = maxw{`f (x,Kux,w) + Vf (f(x,Kux,w))}

so that, with ∆φ(x, u, w) , φ(f(x, u, w))−φ(x), we have

[∆Vf + `f ](x,Kux,w) ≤ 0 (7.1)

for all (x,w) where `f (·), defined by,

`f (x, u, w) , (1/2)|x|2Q + (1/2)|u|2R − (ρ2
f/2)|w|2 (7.2)

is the stage cost when ρ = ρf . The stage cost for the

constrained problem PN (x) is, as before, `(x, u, w) ,

(1/2)|x|2Q +(1/2)|u|2R− (ρ2/2)|w|2 where ρ ≥ ρ∗ ≥ ρf ≥
ρ̃. It follows that

`(x, u, w) ≤ `f (x, u, w) ∀(x, u, w). (7.3)

An important consequence that we use later is that

max
w∈W

[∆Vf + `](x,Kux,w) ≤

max
w∈W

[∆Vf + `f ](x,Kux,w)

≤ max
w∈Rn

[∆Vf + `f ](x,Kux,w)

= [∆Vf + `f ](x,Ku,Kwx) = 0.

so that
[∆Vf + `](x,Kux,w) ≤ 0 (7.4)

for all (x,w). We now require [32, 33]:

Definition 5 A set Ω is robust positively invariant for
x+ = f(x,w) if, for every x ∈ Ω, f(x,W ) ⊆ Ω. A set Ω is
robust control invariant for x+ = f(x, u, w) if, for every
x ∈ Ω, there exists a u ∈ U such that f(x, u,W ) ⊆ Ω.
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Algorithms for the construction of these sets are given
in [32, 34]. The terminal constraint set Xf is chosen to
be a robust positively invariant set containing the origin
in its interior for the system x+ = Afx + Gw, Af ,

A + BKu. Any robust positively invariant set Xf for
x+ = Afx+Gw satisfies

f(x,Kux,W ) ⊆ Xf ∀ x ∈ Xf (7.5)

We assume that the set W is sufficiently small to ensure
the existence of a robust positively invariant set Xf (for
the system x+ = f(x,Kux,w) = Afx+Gw) that satis-
fies

Xf ⊆ X, KuXf ⊆ U. (7.6)

The controller u = Kux maintains the state of x+ =
f(x, u, w) in Xf if the initial state is in Xf .

7.2 No state constraints

Here both X = R
n andXf = R

n. LetX∗
f now denote any

robust positively invariant set for x+ = f(x,Kux,w) =
Afx +Gw containing the origin in its interior and sat-
isfying f(x,Kux,W ) ⊆ X∗

f ∀ x ∈ X∗
f and KuX

∗
f ⊆ U .

Standard stability results [35, 36] (that require a termi-
nal constraint) cannot be employed. The dynamic pro-
gramming recursions for the value functions V 0

j (·) and
the associated control laws κj(·) are given by (2.6)-(2.9)
with the constraint (x, u) ∈ Zj omitted and employ-
ing the global terminal cost function Vf (x) = (1/2)|x|2Pf

defined above. The value functions V 0
j (·) have domain

R
n but the resultant receding horizon control law κN (·)

(that also has domain R
n) is not necessarily stabiliz-

ing in R
n because the terminal constraint xN ∈ X∗

f

is not enforced. Assume that the value functions V 0
j (·)

and control laws κj(·) have been determined (by solving
(2.6)-(2.9) with the constraints (x, u) ∈ Zj omitted) on
sufficiently large polytopic subsets Sj of R

n (satisfying
X ∗

j ⊆ Sj and f(Sj , U,W ) ⊆ Sj−1 for all j); it can be

shown that V 0
j (0) = 0 and κj(0) = 0 for each j. The sets

X ∗
j are computed using

X ∗
j = {x ∈ Sj | f(x, κj(x),W ) ⊆ X ∗

j−1} (7.7)

X ∗
0 = X∗

f (7.8)

Each setX ∗
j contains the origin. Let the control law κ0(·)

be defined by κ0(x) , Kux and let V 0
0 (·) , Vf (·). We

define the value function V ∗ : X ∗ → R, the control law
κ∗ : X ∗ → U and the set X ∗ by:

V ∗(x) , min
j

{V 0
j (x) | x ∈ X ∗

j , j ∈ J },

j∗(x) , argmin
j

{V 0
j (x) | x ∈ X ∗

j , j ∈ J },

κ∗(x) , κj∗(x)(x),

X ∗ , ∪{X ∗
j | j ∈ J } (7.9)

where J , {0, 1, . . . , N}. The function V ∗(·) is contin-
uous at the origin and satisfies V ∗(0) = 0.

Proposition 7 The `2 gain from the disturbance w to
the costed output y = Hz, z = (x, u) is finite. If the
disturbance sequence w is identically zero, the origin is
asymptotically stable with a domain of attraction X ∗.

Proof: Suppose that x ∈ X ∗ which implies x ∈ X ∗
j∗(x),

V ∗(x) = V 0
j∗(x)(x) and κ∗(x) = κj∗(x)(x). Then

f(x, κ∗(x), w) ∈ X ∗
j∗(x)−1 for all w ∈ W so that, from

the dynamic programming equations (2.6)-(2.9):

V ∗(x) = max
w∈W

{`(x, κj∗(x), w))+

V 0
j∗(x)−1(f(x, κj∗(x), w))}

≥ max
w∈W

{`(x, κ∗(x), w)) + V ∗(f(x, κ∗(x), w))}.

Hence

[∆V ∗ + `](x, κ∗(x), w) ≤ 0 (7.10)

for all x ∈ X ∗, all w ∈ W . It follows, by standard calcu-
lations, that, for any x ∈ X ∗, any integer M > 0

M
∑

k=0

|y(k)|2 ≤ ρ2
M
∑

k=0

|w(k)|2 + 2V ∗(x) (7.11)

where y = Hz, z , (x, u) is the costed output of the sys-
tem x+ = f(x, κN (x), w) and V ∗(·) is positive definite.
Hence the `2 gain from the disturbance w to the costed
output y is finite. Asymptotic stability may be proved
in the usual way using (7.10), the positive definiteness
of (x, u) 7→ `(x, u, 0) (this provides a lower bound for
V ∗(·)), and the continuity of V ∗(·) at the origin.

A disadvantage of this approach is that the sets X ∗
j are

subsets, possibly small subsets, of R
n, and are polygons

(unions of polyhedra) rather than polyhedra.

7.3 H∞ receding horizon control: state constraints

Standard results [17,19,36] may be employed. The condi-
tions (i) Xf ⊆ X is robust positively invariant for x+ =
f(x,Kux,w),KuXf ⊆ U and, (ii) Vf (·) is a local Control
Lyapunov function satisfying (7.4) for all x ∈ Xf and
all w ∈ W are the ‘stabilizing conditions’ for the min-
max optimal control problem and ensure [16] that XN is
robust positively invariant for x+ = f(x, κN (x), w) and
that

[∆V 0
N + `](x, κN (x), w) ≤ 0 (7.12)

for all (x,w) ∈ XN ×W . Finite `2 gain from the distur-
bance w to the costed output y follows as shown above.
Also, if the disturbance is identically zero, the origin is
exponentially stable with a domain of attraction XN .
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8 Conclusion

The most important results of this paper are Theorem
1 and Theorems 6 and 7 that establish that the value
functions are piecewise quadratic and the optimal con-
trol laws are piecewise affine for min-max optimal con-
trol problems for, respectively, the two cases: (i) control
constraints only, and (ii) control, state and terminal con-
straints. The results for case (i) require few assumptions.
Case (ii) requires a strong assumption that may not be
satisfied. Both cases require the solution to a paramet-
ric program in which the constraints are polyhedral and
the cost piecewise quadratic (rather than quadratic) is
required. A novel solution to this problem is presented
in §4 and should prove useful in the determination of
‘explicit’ control for other problems. Implementation of
the results for control is briefly discussed in §7.

Appendices

To prove Theorem 1, we make use of a special case of a
theorem of Clarke et al (Theorem 3.1, page 126 in [37]),
namely:

Theorem 8 Take a non-negative valued, convex func-
tion ψ : R

n ×R
m → R. Let U(x) , {u ∈ R

m | ψ(x, u) ≤
0} and X , {x ∈ R

n | U(x) 6= ∅}. Assume there exists a
δ > 0 such that

u ∈ R
m, x ∈ X and g ∈ ∂uψ(x, u) =⇒ |g| > δ

(here ∂uψ(x, u) denotes the convex subdifferential of ψ
with respect to the variable u). Then, for each x ∈ X , we
have d(u,U(x)) ≤ ψ(x, u)/δ for all u ∈ R

m.

This regularity theorem has a role in the proof of Theo-
rem 1 via the following Corollary:

Corollary 1 Suppose Z is a polyhedron in R
n × R

m

and let X denote its projection on R
n (X = {x | ∃u ∈

R
m such that (x, u) ∈ Z}). Let U(x) , {u | (x, u) ∈ Z}.

Then there exists a K > 0 such that, for all x, x′ ∈ X ,
for all u ∈ U(x), there exists a u′ ∈ U(x′) such that
|u′ − u| ≤ K|x′ − x|.

Proof: The polyhedron Z admits the representation
Z = {(x, u) | (mj)′u − (nj)′x − pj ≤ 0, j ∈ IJ} for

some mj , nj and pj , j ∈ IJ , {1, . . . , J}. We recall

X = {x | (x, u) ∈ Z for some u ∈ U} and U(x) , {u |
(x, u) ∈ Z}. Define D to be the collection of all index
sets I ⊆ IJ such that

∑

j∈I λ
jmj 6= 0, ∀λ ∈ ΛI in

which, for a particular index set I , ΛI is defined to be
ΛI , {λ | λj ≥ 0,

∑

j∈I λ
j = 1}. Because D is a fi-

nite set, there exists a δ > 0 such that for all I ∈ D,

all λ ∈ ΛI , |
∑

j∈I λ
jmj | > δ. Let ψ(·) be defined by

ψ(x, u) , max{(mj)′u − (nj)′x − pj , 0 | j ∈ IJ}. We
now claim that, for every (x, u) ∈ X × R

m such that
ψ(x, u) > 0 and every g ∈ ∂uψ(x, u) (the subgradient
of ψ at (x, u)) we have |g| > δ. Assuming for the mo-
ment that the claim is true, the proof of the Corollary
may be completed with the aid of Theorem 8. Assume,
as stated in the Corollary, that x, x′ ∈ X and u ∈ U(x);
the theorem asserts

d(u,U(x′)) ≤ (1/δ)ψ(x′, u), ∀x′ ∈ X .

But ψ(x, u) = 0 (since u ∈ U(x)) so that

d(u,U(x′)) ≤ (1/δ)[ψ(x′, u) − ψ(x, u)] ≤ (c/δ)|x′ − x|

where c is the Lipschitz constant for x 7→ ψ(x, u) (ψ(·) is
piecewise affine and continuous). This proves the Corol-
lary with K = c/δ.

It remains to confirm the claim. Take any (x, u) ∈ X ×
R

m such that ψ(x, u) > 0. Then maxj{(mj)′u−(nj)′x−
pj , 0 | j ∈ IJ} > 0. Let I0(x, u) denote the active con-
straints (those at which the maximum is achieved). Then

(mj)′u− (nj)′x− pj > 0, ∀j ∈ I0(x, u).

Since x ∈ X , there exists a ū ∈ U(x) so that

(mj)′ū− (nj)′x− pj ≤ 0, ∀j ∈ I0(x, u).

Subtracting these two inequalities yields

(mj)′(u− ū) > 0, ∀j ∈ I0(x, u).

But then, for all λ ∈ ΛI0(x,u), |
∑

j∈I0(x,u) λ
jmj(u −

ū)| > 0, so that
∑

j∈I0(x,u) λ
jmj 6= 0. It follows that

I0(x, u) ∈ D, so that

|
∑

j∈I0(x,u)

λjmj | > δ, ∀λ ∈ ΛI0(x,u). (∗)

Now take any g ∈ ∂uf(x, u) = co{mj | j ∈ I0(x, u)} (co
denotes ‘convex hull’). There exists a λ ∈ ΛI0(x,u) such

that g =
∑

j∈I0(x,u) λ
jmj . But then |g| > δ by equation

(∗) above. This proves the claim.

We can now proceed with the proof of Theorem 1.

Proof of Theorem 1: Continuity of V (·) = ΓZJ(·)

The constraint (x, u) ∈ Z imposes an implicit state-
dependent constraintu ∈ U(x) on uwhere the set-valued
function U(·) is defined by

U(x) , {u | (x, u) ∈ Z}.
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We claim that U(·) is continuous (being both outer and
inner semi-continuous) on X = ProjXZ , the domain of
U(·). By definition [27], the set-valued map U(·) is outer
semi-continuous at x ∈ X if U(x) is closed and if, for any
compact set G such that U(x) ∩ G = ∅ there exists an
ε > 0 such that U(x) ∩ G = ∅ for all x′ ∈ B(x, ε) ∩ X ,

B(x, ε) , {z | |z − x| ≤ ε}. The set-valued map U(·)
is inner semi-continuous at x ∈ X if, for any open set
G ⊆ R

m such that G ∩ U(x) 6= ∅, there exists an ε > 0
such that G ∩ U(x′) 6= ∅ for all x′ ∈ B(x, ε) ∩ X . The
set-valued map U(·) is outer semi-continuous because its
graph, Z , is closed so that, given any sequence {(xi, ui)}
in Z (ui ∈ U(xi) for all i) such that (xi, ui) → (x̄, ū), we
have (x̄, ū) ∈ Z so that ū ∈ U(x̄). Hence U(·) is outer
semi-continuous [27].

We now establish inner semi-continuity using Corollary
1 above. Let x, x′ be arbitrary points in X and U(x) and
U(x′) the associated control constraint sets. Let G be an
open set such that U(x)∩G 6= ∅ and let u be an arbitrary
point in U(x)∩G. BecauseG is open, there exist an ε > 0

such that B(u, ε) , {v | |v−u| ≤ ε} ⊂ G. Let ε′ , ε/K
where K is defined in Corollary 1. From Corollary 1,
there exists a u′ ∈ U(x′)∩G for all x′ ∈ B(x, ε′)∩X . This
implies U(x′) ∩ G 6= ∅ for all x′ ∈ B(x, ε′) ∩ X , so that
U(·) is inner semi-continuous. Since J(·) is continuous
and U(·) takes values in the compact set U , condition
(2b) in Theorem 5.4.1 of [27] holds so V (·) is continuous
by Corollary 5.4.2 of [27].

Proof of Theorem 2: Continuous differentiability of
V (·) = Γ(J(·))

Since U , being constant, is continuous in z, the continu-
ity of the value function V (·) = Γ(J(·)) follows from the
maximum theorem (e.g. Theorem 5.4.3 in [27]). Since
the function u 7→ J(x, u) is strictly convex for all x, the
optimizer κ(·) = γ(J(·)) is unique (a singleton) for each
x; by the same maximum theorem, κ(·) is continuous.
Since J(·) is continuously differentiable and U is com-
pact, and the optimizer κ(x) is unique and continuous,
it follows from the proof of Theorem 5.4.7 in [27] that
the directional derivative of V (·) satisfies

dV (x;h) = (∂/∂x)J(x, κ(x))h

at any x, any direction h. Hence V (·) is Gateau dif-
ferentiable at any x with Gateau derivative G(x) =
(∂/∂x)J(x, κ(x)). Since G(·) is continuous, V (·) is con-
tinuously (Frechet) differentiable in Z with derivative
(∂/∂x)V (x) = (∂/∂x)J(x, κ(x)) [38].

Proof of Proposition 3: Strict concavity of w 7→ V ′(z, w)

Continuous differentiability of V ′(·) (V ′(z, w) ,

`(z, w) + V (f(z, w))) follows from continuous differen-
tiability of `(·) and V (·). Take any two points w1, w2

in W . For all λ ∈ [0, 1], let wλ , w1 + λ(w2 − w1),
and, for each z ∈ Z , let the real valued function φ(·)
be defined on [0, 1] by φ(λ) , V (z, wλ). Suppose that
V (x) = (1/2)x′Qix+ q′ix+ si in PX

i (for each i ∈ J X ).
Then

V ′(z, w) = (1/2)(Fz+Gw)′Qi(Fz+Gw)+q′i(Fz+Gw)

+ si + `(z, w) = −(1/2)w′(ρ2I −G′QiG)w+ b′iw+ ci

on the polyhedron PΦ
i = {(z, w) ∈ R

n × U ×W | Fz +
Gw ∈ PX

i }, where bi and ci depend on z. For any ε > 0,

there exists a ρ∗ > 0 such that Ci , ρ2I −G′QiG ≥ εI
for all ρ ≥ ρ∗, all i ∈ J X . The function φ(·) is continu-
ously differentiable and satisfies:

φ(λ) = −(1/2)(h′Cih)λ
2 + biλ+ ci

φ′(λ) = −(h′Cih)λ+ bi

for all λ ∈ [0, 1] such that Fz + Gwλ ∈ PΦ
i . Since φ′(·)

is continuous, φ′(·) is strictly decreasing if ρ ≥ ρ∗. It
follows, by a trivial modification to the proof of Theo-
rem 4.4 in [39], that φ(λ) > φ(0) + λ(φ(1) − φ(0)) for
all λ ∈ (0, 1) which establishes the strict concavity of
φ(·) and, hence, of w 7→ V ′(z, w) if ρ ≥ ρ∗.

Proof of Proposition 5: equivalence of solutions to
Pmin(x) and Px̄(x)

Suppose that u = κ(x) is optimal for the original
problem Pmin(x); this implies that V 0(x) = V (x, u) ≤
V (x, u′) for any u′ satisfying (x, u′) ∈ Px̄. But (x, u) ∈
Px̄ since, by assumption, S0(x) = S0(x̄); hence u is also
optimal for Px̄(x). On the other hand, suppose u is op-
timal for Px̄(x) so that (x, u) ∈ Px̄ and S(x, u) = S0(x̄).
By assumption, S0(x) = S0(x̄) so that (x, κ(x)) ∈ Px̄;
consequently V (x, u) ≤ V (x, κ(x)) = V 0(x). But
V 0(x) ≤ V (x, u) (by optimality of κ(x) for problem
Pmin(x)) so that V (x, u) = V 0(x) and u is also opti-
mal for Pmin(x). This proves equivalence of (i) and (ii);
equivalance of (iii) to (i) and (ii) follows easily.

Proof of Proposition 6: Existence of ρ∗

The proof is by induction. Suppose, for any j in
{1, . . . , N − 1}, there exists a ρ∗j such that V ′

i (z, w) =

`(z, w) + V 0
i−1(f(z, w)) is strictly concave in w for all

ρ ≥ ρ∗j , all z ∈ Zi, all i ∈ {1, . . . , j}. It follows from The-

orem 6 (withN replaced by j), that V 0
i (·) is continuously

differentiable, strictly convex, and piecewise quadratic
for all i ∈ {1, . . . , j}. By Proposition 3, there exists a
ρ∗j+1 ≥ ρ∗j such that V ′

j+1(z, w) = `(z, w) + V 0
j (f(z, w))

is strictly concave in w for all ρ ≥ ρ∗j+1, and all

z ∈ Zj+1. Hence V ′
i (z, w) = `(z, w) + V 0

j (f(z, w)) is

11



strictly concave in w for all ρ ≥ ρ∗j+1, all z ∈ Zi, all

i ∈ {1, . . . , j + 1}. But, by Proposition 3 and our as-

sumptions on V 0
0 (·) , Vf (·), there exists a ρ∗1 such that

V ′
1(z, w) = `(z, w) + V 0

0 (f(z, w)) is strictly concave in
w for all ρ ≥ ρ∗1, all z ∈ Z1. By induction, there exists
a ρ∗ = ρ∗N such that V ′

i (z, w) = `(z, w) + V 0
j−1(f(z, w))

is strictly concave in w for all ρ ≥ ρ∗, all z ∈ Zi, all
i ∈ {1, . . . , N}.
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