
1

Reachability analysis of discrete-time systems with
disturbances

Sǎsa V. Rakovíc, Eric C. Kerrigan,Member, IEEE,David Q. Mayne,Fellow, IEEE,and John
Lygeros,Member, IEEE

Abstract— This paper presents new results that allow one to
compute the set of states that can be robustly steered in a
finite number of steps, via state feedback control, to a given
target set. The assumptions that are made in this paper are
that the system is discrete-time, nonlinear and time-invariant and
subject to mixed constraints on the state and input. A persistent
disturbance, dependent on the current state and input, acts on
the system. Existing results are not able to address state- and
input-dependent disturbances and the results in this paper are
therefore a generalization of previously-published results. One of
the key aims of this paper is to present results such that one can
perform the relevant set computations using polyhedral algebra
and computational geometry software, provided the system is
piecewise affine and the constraints are polygonal. Existing
methods are only applicable to piecewise affine systems that either
have no control inputs or no disturbances, whereas the results
in this paper remove this limitation. Some simple examples are
also given that show that, even if all the relevant sets are convex
and the system is linear, convexity of the set of controllable states
cannot be guaranteed.

I. I NTRODUCTION

The problems of reachability, invariance and control invari-
ance for discrete-time systems have been extensively studied
in the literature for over four decades (see [1]–[6] for some
seminal papers on the subject). Recently these problems have
attracted renewed attention, partly because improvementsin
computational capabilities have made it possible to implement
the algorithms for systems of practical interest (see for instance
an excellent survey paper [7] for more details and a set of
relevant references). Another reason for the renewed interest in
these problems is the emergence of new classes of practically
important systems, such as hybrid systems. These are systems
whose states, inputs and outputs can take on values from botha
countable set (e.g. the set of integers) as well as an uncountable
set (e.g. the set of real numbers). In recent years, invariance
and reachability problems for classes of hybrid systems have
been studied by a number of authors [8]–[15].

One class of systems that, to the authors’ knowledge, has
received relatively little attention are systems with mixed
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constraints on the states, control inputs and disturbances.
When this class of systems is treated, it is often with an insuffi-
cient amount of detail and overly-conservative approximations.
Systems with mixed state, control and disturbance constraints
may arise in practice for a number of reasons:

1) When modelling systems with physical constraints. Here
the model must reflect the fact that the constraints will
be satisfied by all evolutions of the system, whatever the
control inputs and disturbances.

2) When designing controllers to meet safety or perfor-
mance specifications, i.e. to ensure that the state of the
system remains in a certain region of the state space.
Safety and performance specifications may be violated
if the inputs are not chosen properly.

A couple of simple examples illustrate the point. Consider
the following discrete-time model for the longitudinal motion
of a car on a highway:
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where x ∈ IR represents the position of the car,v ∈ IR
its velocity, u ∈ [u, u] represents the control acceleration
applied by the engine or brakes, andw ∈ [w,w] a disturbance
acceleration due to wind. It is assumed thatu < 0 < u
and w < w. For simplicity all other constants have been
normalized to1.

One would like to capture the situation where the vehicle
is prevented from going backwards. This is a reasonable
requirement in many cases (e.g. on a highway) and is very
easy to implement in practice (assuming that the wind is
incapable of pushing the car backwards when the brakes are
applied one could simply disallow the reverse gear). This can
be captured by the hard state constraintv ≥ 0. To enforce
this constraint, the model needs to incorporate the additional
state-dependent constraintv+u+w ≥ 0 on the inputs (control
and disturbance).

For another example, consider the following piecewise
affine system

x+ = Ax + Bsatu(u + Ew) (1)

which is subject to a bounded disturbancew ∈ W. The
functionsatu(·) models physical saturation limits on the input.
Assuming that these saturation limits are symmetric and have
unit magnitude, an equivalent way of modelling (1) is to treat
it as linear system with an input-dependent disturbance, i.e.
letting

x+ = Ax + Bu + BEw, (2)
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where the control is constrained to

U := {u | ||u||∞ ≤ 1} (3)

and the input-dependent disturbance satisfiesw ∈ W(u),
where

W(u) := {w ∈ W | ‖u + Ew‖∞ ≤ 1} . (4)

Another common reason why state- and input-dependent
disturbances arise in practice is when it is known that the
uncertainty of a model is greater in certain regions of the
state-input space than in other regions. For example, when
a nonlinear model is linearized, the uncertainty gets larger
the further one gets from the point of linearization. This
uncertainty can be modelled as a state- and input-dependent
disturbance, where the size of the disturbance decreases the
closer one gets to the point of linearization. A state- and input-
dependent disturbance model will therefore allow one to obtain
less conservative results than if one were to assume that the
disturbance is independent of the state and input.

Another example when one can model uncertainty as a state-
and input-dependent disturbance is when there is parametric
uncertainty present in the model. For example, if there is
uncertainty in the pair(A,B) in (2), then one can think of
the uncertainty as an additional state- and input-dependent
disturbance. The reader is referred to [16] to see how reach-
ability computations can be carried out for this specific class
of uncertainty when the system is linear. The results in this
paper can, with some effort, be used to extend the results
in [16] to the class of piecewise affine systems with parametric
uncertainty.

More generally, consider state variablesx, control variables
u and disturbance variablesw, taking values in the setsX,
U andW respectively. Consider dynamic constraints on these
variables of the form

xk+1 = f(xk, uk, wk) and (xk, uk, wk) ∈ Υ , (5)

whereΥ ⊆ X×U×W andf : Υ → X. HereΥ is assumed to
capture the physical, state-dependent constraints on the control
and disturbance inputs. The goal is to develop methods for
designing controllers for this class of dynamical systems.

Though fairly general results exist that can be applied to a
large class of nonlinear discrete-time systems, to our knowl-
edge, none of these control and analysis algorithms are capable
of explicitly dealing with this class of problems. For example,
most authors assume that the disturbance is not dependent on
the state and input — the only paper which addresses state-
dependent disturbances directly (for linear systems) is [17].

They key tool that allows one to perform a reachability
analysis (often also called a controllability analysis), is soft-
ware for implementing the so-calledpredecessoroperator,
which allows one to compute the set of states that can be
robustly steered (using an admissible control input) to a given
target set in a single step. The predecessor operator is then
called in a recursive fashion in order to compute the set of
states that can be robustly steered to the given target set ina
finite number of steps.

A direct way of approximating the computation of the
predecessor set is to grid the state-input-disturbance space,

effectively approximating the original system by a finite state-
input-disturbance system. Clearly, this approach has compu-
tational complexity drawbacks, since the computation grows
exponentially with the dimension of the state, input and
disturbance spaces. Moreover, even though results exist guar-
anteeing asymptotic convergence to the real set as the grid gets
finer, in practice it is not always clear how fine or coarse the
grid needs to be in order to have sufficiently accurate results.

A more elegant approach is to use symbolic algebra soft-
ware and/or quantifier elimination methods [15], [18]–[20].
The idea here is to encode the predecessor computation in
an appropriate system of logic using quantifiers to capture
requirements that need to hold for some control actions, all
disturbance, at some or for all times, etc. Computational
tools [21], [22] can then be used to eliminate the quantifiers
in these formulas and derive quantifier free formulas that
define the set of states where the requirements hold (e.g. the
predecessor set). For many classes of systems this approachis
exact and does not involve any approximation. Moreover, the
quantifier elimination approach is very general. In addition
to linear and piecewise linear/affine systems (on which the
computational methods proposed in this paper mostly apply),
quantifier elimination methods can also be applied to a consid-
erably more general class of discrete-time systems, for exam-
ple systems whose dynamics and constraints are encoded by
piecewise polynomial functions. The limits of the applicability
of this approach to continuous-time systems are investigated
in [23], where methods for using systems amenable to the
quantifier elimination approach to approximate even more
general classes of systems are also discussed.

The main drawback of methods based on quantifier elim-
ination is their complexity. It is known that general purpose
quantifier elimination is worst case doubly exponential in the
size of the input and output data. For the classes of problems
considered here and under some conditions (e.g. absence of
control and/or disturbance variables) one can exploit structure
present in the formulas used to encode the predecessor compu-
tation to get better performance [24], [25]. Worst case bounds
are still exponential, even though the running times observed
in practice are typically much faster. [26] presents the results
in this line of work that are most closely related to our study.
In this reference, the special structure afforded by piecewise
linear functions is exploited to derive algorithms with very
reasonable running times, reasonable enough to allow their
application to realistic problems in network monitoring. For
other cases of the application of symbolic methods to prob-
lems in control theory (equilibrium computation, stabilization,
tracking) the reader is referred to [18], [27], [28].

It is well-known that if the systemf(·) is linear or piecewise
affine and the relevant constraints sets (e.g.Υ) are polygons,
then standard software for polytope manipulation can be used
for reachability analysis [7], [13], [29]. There are a number
of benefits that can be obtained from using computational
geometry software, rather than gridding the state space or
using quantifier elimination and computer algebra packages:

• Many algorithms for performing fundamental operations
on polyhedra have a computational complexity that is a
polynomial function of the size of the inputand output
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data [30]. As mentioned above, many quantifier elimina-
tion algorithms do not have this property and their com-
putational complexity is often doubly-exponential with
respect to the size of the input and/or output data. For
numerical methods based on gridding the computation is
typically exponential in the dimension of the state, input
and disturbance spaces for fixed accuracy.

• Software for manipulating polyhedra exploit the structure
of the problem, whereas gridding and general-purpose
quantifier elimination packages do not always do this.
See [31] for some results that show how, by exploiting
the structure when computing projections of polytopes,
a geometric approach can reduce the computational re-
quirements by a number of orders of magnitude, com-
pared to quantifier elimination methods such as Fourier
elimination.

• It is often easier to visualize, understand and implement
the results and exploit any structure, whereas it is not
always so clear how to proceed with an approach that is
not geometric.

One of the key aims of this paper is to present results such
that one can perform the relevant reachability computations us-
ing polyhedral algebra and computational geometry software,
provided the system is piecewise affine and the constraints
are polygonal. Existing methods for piecewise affine systems
are limited to systems that either have no control input or
no disturbance [13], whereas the results in this paper remove
this limitation. The extension of these results is not trivial;
we will show, via some examples, that even if all the relevant
sets are convex and the system is linear, convexity of the set
of controllable states cannot be guaranteed if there are mixed
constraints on the state, input and disturbance.

This paper is organized as follows. The problem definition
is given in Section II-A and Section II-B relates the problem
definition with some well-known results on set invariance.
The main result for the computation of the predecessor set
is presented in Section II-C, topological properties of the
predecessor set are discussed in Section II-D and special
cases are discussed in Section II-E. Section III highlights
the fact that the reachability analysis can be carried out
using polyhedral algebra if the system is piecewise affine
and the relevant sets are polygons. To validate the results,
Section IV presents a few simple numerical examples. The
main contributions of this paper are summarized in Section V.
Appendix I contains some results regarding continuity of set-
valued maps and Appendix II gives some new results that
allow one to compute the set difference of (possibly non-
convex) polygons.

Note that some of the results given in this paper, namely
for the case where the disturbance is independent of the state
and input, were originally reported in the thesis [32, Chap.4]
and the conference papers [33] and [34]. The conference
paper [35] and the thesis [36] significantly extended these
results to cover the more general case of state- and input-
dependent disturbances; the present paper follows a similar
line of development. The results in [32]–[34] are summarized
in Section II-E.3.

II. GENERAL CASE

To keep the notation as simple as possible and maintain a
large degree of generality, we will adopt a nonlinear approach
for a large part of this paper. Definitions and results for
interesting special cases, for example when the system is
piecewise affine or the constraints on the disturbance are
independent of the state, will be introduced where appropriate.

Given two setsA ⊂ IRn andB ⊂ IRn, the reflectionof A
through the origin is−A := {−a | a ∈ A}, the complement
of A in IRn is Ac := {a ∈ IRn | a /∈ A}, the set difference
betweenA andB is A \ B := {a ∈ A | a /∈ B } = A ∩ Bc,
the Minkowski set additionof A and B is A ⊕ B :=
{a + b | a ∈ A, b ∈ B } and the Pontryagin differencebe-
tweenA andB is A ⊖ B := {a | a + b ∈ A for all b ∈ B }.
Given a setS ⊆ X × Y ⊆ IRn × IRm, the (orthogonal)
projection of the setS onto X is defined asProjX(S) :=
{x ∈ X | ∃y ∈ Y such that(x, y) ∈ S }. The set of non-
negative integers is denoted byIN := {0, 1, . . .}.

A. Definitions

Consider the problem of controlling a nonlinear discrete-
time system in the form:

x+ = f(x, u, w), (6)

wherex is the current state (assumed to be measured),x+ is
the state at the next time instant,u is the current input, and
w is an uncertain parameter, which shall be referred to as the
“disturbance”, and may change from one sample to the next.

The disturbance takes on values in a set, which is dependent
on the current state and input, i.e.

w ∈ W(x, u) ⊂ W, (7)

where W := IRp denotes the disturbance space. We say
that the disturbance is independent of the state and input if
the setW(x1, u1) = W(x2, u2) for all (x1, u1) 6= (x2, u2)
and will use the notationW(x, u) = W to denote this fact.
A disturbance that is dependent only on the state or input
is defined in a similar fashion and the notationW(x, u) =
W(x) and W(x, u) = W(u), respectively, will be used to
denote this. We define the “nominal/no disturbance” case when
W(x, u) = {0} for all (x, u). Note that the setW(x, u) does
not directly depend on previous values of the disturbance.
However, constraints of this type (used, for example, to
encode rate constraints on the disturbance or the disturbance
dynamics) can be included, in cases when it is possible to
measure them, by appropriately extending the state to include
past disturbance values. A similar comment extends to the
input constraints.

The state and input are required to satisfy a set of mixed
constraints:

(x, u) ∈ Y ⊂ X × U, (8)

whereX := IRn is the state space andU := IRm is the input
space. These constraints typically arise due to physical limita-
tions, desired levels of performance or safety considerations.
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Combining this constraint with the above constraint on the
disturbance, let

Υ := {(x, u, w) | (x, u) ∈ Y andw ∈ W(x, u)} (9)

be the subset of the graph ofW(·) where the constraints
on the state and input are also satisfied. In order to have a
well-defined problem, we have the standing assumption that
W(x, u) 6= ∅ for all (x, u) ∈ Y, hence

Y = ProjX×U (Υ). (10)

The state-dependent set of admissible inputs can now be
defined as

U(x) := {u | (x, u) ∈ Y } . (11)

The set of admissible states is then

X := {x | ∃u such that(x, u) ∈ Y } = ProjX(Y)

= {x | U(x) 6= ∅} . (12)

If the state and input constraints are not coupled, then we
will use the notationU(x) = U or Y = X ×U to denote this.

Remark 1:Note that for the case when a feedback control
law κ : X → U is applied to the system (6), by considering
x+ = g(x,w) := f(x, κ(x), w) with w ∈ W(x) and x ∈
X , whereW(x) := W(x, κ(x)) andX := {x | (x, κ(x)) ∈
Y}, the required reachability analysis follows the procedure
outlined in Section II-E.

Often part of the control objective is to guarantee robust
convergence to a given set, either in minimum time, some finite
time or asymptotically. LetXf denote this so-calledtarget set
(also often calledterminal constraint set) and, without loss of
generality, assume that

Xf ⊆ X . (13)

One of the key aims of this paper is to present results that
allow for the computation of the set of initial states for which
a time-varying state feedback control law exists such that the
constraints on the state and input (8) are robustly satisfied(for
all allowable disturbances) over a finite horizon and that the
state is guaranteed to be inXf at the end of the horizon.

Let π := {µ0(·), µ1(·), . . . , µN−1(·)} denote a control
policy (sequence of controllaws, i.e. µi : X → U , i =
0, . . . , N − 1) over a horizon of lengthN and let w :=
{w0, w1, . . . , wN−1} denote a sequence of disturbances. Also,
let φ(·;x, π,w) denote the solution of (6) when the state isx
at time 0 (since the system is time-invariant, we can always
take the current time to be zero), the control policy isπ and
the disturbance sequence isw.

For a given current statex and policyπ, let W(x, π) be
the set of admissible disturbance sequences of lengthN , i.e.

W(x, π) := {w | wi ∈ W(φ(i;x,π,w), µi(φ(i;x, π,w))),

i = 0, 1, . . . , N − 1}. (14)

Clearly, if the disturbance is independent of the state and input,
thenW(x, π) = WN = W × · · · ×W for all (x, π).

Next, letΠN (x) be the set of admissible policies of length
N , i.e. those policies that satisfy, for allw ∈ W(x, π),

the state and control constraints (8) over the horizonk =
0, . . . , N − 1, and the terminal constraint

φ(N ;x, π,w) ∈ Xf . (15)

In other words, the set of admissible policies is defined as

ΠN (x) := {π | (φ(i;x, π,w), µi(φ(i;x, π,w))) ∈ Y,

i = 0, 1, . . . , N − 1, φ(N ;x, π,w) ∈ Xf , ∀w ∈ W(x, π)}.
(16)

The set XN is the set of initial states for which an
admissible policy of lengthN exists (often also called the
N -step controllable set) and is defined as

XN := {x | ΠN (x) 6= ∅}. (17)

B. Reachability Analysis and Invariant Sets

Before proceeding to give our main result, we first recall a
few well-known results that link reachability analysis to the
computation of invariant sets. Central to this discussion is the
so-calledpredecessor set(or one-step set) of a given set:

Definition 1 (Predecessor set):Given a setΩ ⊆ X, the
predecessor setPre(Ω) is the set of states for which there
exists an admissible input such that, for all allowable distur-
bances, the successor state is inΩ, i.e.

Pre(Ω) := {x |∃u ∈ U(x) such that

f(x, u, w) ∈ Ω for all w ∈ W(x, u)}. (18)
An equivalent formulation of (18) is

Pre(Ω) := {x |∃u ∈ U(x) such that

f(x, u,W(x, u)) ⊆ Ω}. (19)

wheref(x, u,W(x, u)) := {f(x, u, w) | w ∈ W(x, u)}.
For any integeri, let Xi denote thei-step predecessor setto

Xf , i.e. Xi is the set of states that can be steered, by a time-
varying state feedback control law, to the target setXf in i
steps, for all allowable disturbance sequences while satisfying,
at all times, the constraint(x, u) ∈ Y. In other words,Xi is
given by (17) withN = i. Following a standard procedure [4],
the sequence of sets{Xi}i∈IN may be calculated recursively
as follows:

X0 = Xf (20a)

Xi+1 = Pre(Xi). (20b)

Recall that a given setS ⊆ X is defined to berobust control
invariant [7] if for any x ∈ S, there exists au ∈ U(x) such
that f(x, u, w) ∈ S for all w ∈ W(x, u). A robust control
invariant setC∞ ⊆ X is called maximal in X if all other
robust control invariant sets inX are contained inC∞.

We are now in a position to state some important, well-
known results that link the recursion in (20) to its use in the
computation of invariant sets. Since it is beyond the scope of
this paper to give a detailed literature review of this subject,
we refer the reader to the surveys [7] and [29] for a detailed
discussion. In this paper, we would like to highlight the
following results:

Proposition 1 (Results on set invariance):
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(i) There exists a unique robust control invariant setC∞ ⊆ X
that is maximal inX , provided thatC∞ is non-empty.

(ii) A given setXi is robust control invariant if and only if
Xi ⊆ Xi+1 = Pre(Xi).

(iii) Xi is robust control invariant for alli ∈ IN if and only
if Xf is robust control invariant.

(iv) If Xf = X , then Xi+1 ⊆ Xi for all i ∈ IN and the
maximal robust control invariant setC∞ satisfiesC∞ ⊆
⋂

i∈IN Xi. Furthermore,C∞ = Xi for a given i ∈ IN if
and only if Xi+1 = Xi.

Remark 2: If the system has no inputu, i.e. if f(·) is a
function only of(x,w), then Proposition 1 still holds with the
appropriate modifications to definitions, but with ‘robust con-
trol invariant’ replaced with ‘robust positively invariant’ [7].

Remark 3:Without any additional assumptions on the sys-
tem or sets, it is possible to find examples for whichC∞ 6=
⋂

i∈IN Xi if Xf = X [6].
It is clear that results that enable one to compute the

predecessor set also allow one to compute each of the sets
in the sequence{Xi}i∈IN. Furthermore, as will be shown
below in Corollary 2, one can also employ the predecessor
operator via the recursion (20) to compute an arbitrarily close
approximation to the maximal robust control invariant set
C∞, provided some additional compactness and continuity
assumptions are satisfied. Finally, the computation of the
predecessor set plays a crucial role in allowing one to compute
optimal control laws for piecewise affine discrete-time systems
with disturbances [34], [37], [38].

C. Main Result

As discussed in the introduction, the main aim of this paper
is to provide results that allow one to use computational
geometry packages for computing the predecessor set. Due
to the fact that existing computational geometry software do
not provide general tools for the direct elimination of the
universal quantifier in an expression, one first has to obtainan
equivalent expression for the predecessor set that only contains
the existential quantifier. The elimination of the existential
quantifier can then be achieved by computing the projection of
an appropriately-defined set. Of course, any suitable quantifier
elimination software may also be used to compute the projec-
tion. However, as mentioned in the Introduction, we are not
aware of quantifier elimination methods with a computational
complexity bound that is a polynomial function of the input
and output data, whereas computational geometry methods
exist with polynomial complexity bounds.

Before proceeding to state our main result, we define

Σ := {(x, u) ∈ Y | f(x, u, w) ∈ Ω for all w ∈ W(x, u)} ,
(21)

the set of admissible state-input pairs for which the state of
the system at the next sample instant is in a given setΩ for
all admissible disturbances, and

Φ := f−1(Ω) := {(x, u, w) | f(x, u, w) ∈ Ω} , (22)

the set of state-input-disturbance triplets for which the state of
the system evolves to a given setΩ at the next time instant.

(x, u) − space

w − space

Φ ∩ Υ

∆1

∆2

∆3

∆4

Ψ1

Ψ2 Ψ3

Ψ4

(x, u, w) − space

Υ

Σ

Y

∆ := Υ \ Φ = ∪i∆i, i = 1, . . . , 4
Ψ = ∪iΨi, Ψi = Proj

X×U
∆i, i = 1, . . . , 4

Y = Proj
X×U

Υ
Σ = Y \ Ψ

Fig. 1. Graphical illustration of Theorem 1

Note that the setsΣ andΦ are also functions of the setΩ
as evident from their definitions; however, in order to simplify
notation in the sequel of this paper we simply writeΣ andΦ
but we bear in mind thatΣ = Σ(Ω) andΦ = Φ(Ω).

We are now in a position to state our main result, originally
presented in the conference paper [35] and thesis [36]:

Theorem 1 (Predecessor set):Pre(Ω), the set of states that
are robustly controllable toΩ in one step, is given by

Pre(Ω) = ProjX (Σ) , (23)

whereΣ is given by

Σ = Y \ ProjX×U (Υ \ Φ) . (24)
Proof: A graphical interpretation of the proof is given

in Figure 1.
From the definition of the set difference,

Υ \ Φ = {(x, u, w) ∈ Υ | f(x, u, w) /∈ Ω} (25)

so that

ProjX×U (Υ \ Φ) = {(x, u) ∈ProjX×U (Υ) | ∃w ∈ W(x, u)

such thatf(x, u, w) /∈ Ω}. (26)

It follows that

ProjX×U (Υ) \ ProjX×U (Υ \ Φ) =

{(x, u) ∈ ProjX×U (Υ) | f(x, u, w) ∈ Ω

for all w ∈ W(x, u)}. (27)

The proof is completed by noting that

ProjX(Σ) = {x | ∃u such that(x, u) ∈ Y and

f(x, u, w) ∈ Ω for all w ∈ W(x, u)} (28a)

= {x | ∃u ∈ U(x) such thatf(x, u, w) ∈ Ω

for all w ∈ W(x, u)} (28b)

= Pre(Ω). (28c)

A conceptual algorithm for computing the setsPre(Ω) andΣ
is easily constructed from the above result. The required steps
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are outlined by the following prototype algorithm, given the
setsΩ andΥ:

1) Compute the projectionY = ProjX×U (Υ).
2) Compute the inverse mapΦ := f−1(Ω).
3) Compute the set difference∆ := Υ \ Φ.
4) Compute the projectionΨ := ProjX×U (∆).
5) Compute the set differenceΣ = Y \ Ψ.
6) Compute the projectionPre(Ω) = ProjX (Σ).

Note also that if the recursion (20) is to be implemented, a
minor modification of the above prototype algorithm is needed;
in this case there is no need to recomputeY = ProjX×U (Υ)
after initialization. We also remark that the set recursion(20)
allows one to compute the sets of states that can be robustly
steered inN (N ∈ IN) steps to a given target set.

In order to implement the result, we clearly need software
for computing inverse images, set differences and projections.
Section III will show that, provided the systemf(·) is linear
or piecewise affine and the relevant sets are polygons, then
the computation of the predecessor setPre(Ω) is easily done
using standard software for polytope manipulation.

D. Topological Properties of the Predecessor Set

The following assumption will be invoked where appropri-
ate:
A1. The function(x, u, w) 7→ f(x, u, w) is continuous and the
set-valued map(x, u) 7→ W(x, u) is continuous and bounded
on bounded sets.

We refer the reader to Appendix I for a review of some
basic definitions and results on set-valued functions.

Theorem 2 (Topological properties):SupposeA1 holds. If
Ω and Y are closed, thenΣ is closed. If, in addition,Y is
compact, thenPre(Ω) andΣ are also compact.

Proof: Let the set-valued mapF : IRr → 2IRn

be defined
as follows:

F (z) := {f(z, w) | w ∈ W(z)}, z := (x, u). (29)

By Proposition 2 in Appendix I, the set-valued functionF is
continuous. The setΣ, defined in (21), is given by

Σ = {z ∈ Y | F (z) ⊆ Ω}. (30)

Since F is continuous andΩ is closed, it follows from
Proposition 3 in Appendix I thatΣ is closed (compact if, in
addition,Y is compact). SincePre(Ω) = ProjX(Σ), it follows
that Pre(Ω) is compact ifΣ is compact.

Corollary 1: SupposeA1 holds. IfY and the target setXf

are compact, then each setXi, i ∈ IN, computed as in (20),
is compact.

It is very useful to note that ifY is compact, then the above
result can be used to establish conditions under which the
maximal robust control invariant setC∞ is the limit of the
sequence of sets{Xi}i∈IN if Xf = X . The next result, which
follows from Corollary 1 and [6, Prop. 4], makes this claim
more precise:

Corollary 2: SupposeA1 holds. IfY is compact, the maxi-
mal robust control invariant setC∞ is non-empty andXf = X ,
thenC∞ is compact andC∞ =

⋂

i∈IN Xi. Furthermore, given

any open setS ⊂ X such thatC∞ ⊂ S, there exists ani∗ ∈ IN
such thatC∞ ⊆ Xi ⊂ S for all i ≥ i∗.

Remark 4:Note that if Xf 6= X , then the requirement
that A1 hold andΥ be compact is not sufficient forX∞ :=
limi→∞ Xi (where the limit is appropriately defined and
assumed to exist) to be closed or compact. It is not difficult to
find examples whereA1 holds,Υ is compact andXf 6= X , but
X∞ is open. Clearly, it is also not difficult to find examples for
which X∞ is not equal to the maximal robust control invariant
setC∞.

We also remark that ifΥ is not compact then the above
observations (Corollaries 1 and 2) apply directly to any (arbi-
trarily large) compact subset ofΥ with obvious modifications.

E. Special Cases

1) Disturbance is dependent only on the state or input:
Consider first the simpler case when the disturbance constraint
set is a function ofx only, i.e. the disturbancew satisfiesw ∈
W(x). The definitions ofΥ andΣ in (9) and (21), respectively,
andPre(Ω) become

Υ := {(x, u, w) | (x, u) ∈ Y andw ∈ W(x)} , (31)

Σ := {(x, u) ∈ Y | f(x, u, w) ∈ Ω for all w ∈ W(x)} ,
(32)

and

Pre(Ω) := {x | ∃u ∈ U(x) such thatf(x, u, w) ∈ Ω

for all w ∈ W(x)}. (33)

Theorems 1 and 2 and Corollaries 1 and 2 remain true
with these changes. A similar modification is needed if the
disturbance constraint set is a function ofu only, i.e. the
disturbancew satisfiesw ∈ W(u).

2) System does not have an input:Next, consider the case
when f(·) is a function of (x,w) only, i.e. the system has
no input u and x+ = f(x,w). In this case, the constraint
(x, u) ∈ Y is replaced byx ∈ X ⊂ X and the definitions of
Σ, Υ andΦ in Theorem 1, andPre(Ω) are replaced by

Υ := {(x,w) | x ∈ X andw ∈ W(x)} , (34)

Σ := {x ∈ X | f(x,w) ∈ Ω for all w ∈ W(x)} , (35)

Φ := f−1(Ω) := {(x,w) | f(x,w) ∈ Ω} , (36)

and

Pre(Ω) := {x ∈ X | f(x,w) ∈ Ω for all w ∈ W(x)} .
(37)

In other words,Pre(Ω) is now the set of admissible states
such that the successor state lies inΩ for all w ∈ W(x). In
this case, the conclusion of Theorem 1 becomes

Pre(Ω) = Σ = X \ ProjX (Υ \ Φ) . (38)

As can be seen, this special case results in less com-
putational effort, since operations are performed in lower-
dimensional spaces and only one projection operation is
needed.

Also, in this case where there is no control input,A1 is
replaced by:
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A1’: The function(x,w) 7→ f(x,w) is continuous and the
set-valued mapx 7→ W(x) is continuous and bounded on
bounded sets.

Theorem 2 and Corollaries 1 and 2 remain true subject
to the above modifications, but with ‘maximal robust control
invariant set’ in Corollary 2 replaced with ‘maximal robust
positively invariant set’.

3) Additive, independent disturbances:The case when the
disturbance is additive and independent of the state and
input deserves a detailed discussion. In this case, Theorem1
still provides a method for computing the predecessor set.
However, an alternative to Theorem 1 was originally presented
in the thesis [32] and the conference papers [33], [34]. We
recall the result and its proof:

Theorem 3 (Additive, independent disturbance):Let the
disturbance be additive and independent of the state and
input, i.e.W(x, u) = W and

x+ = f(x, u) + w. (39)

The predecessor set is then given by

Pre(Ω) = ProjX {(x, u) ∈ Y | f(x, u) ∈ Ω ⊖W} (40a)

= ProjX
[

Y ∩ f−1 (Ω ⊖W)
]

, (40b)

where the Pontryagin differenceΩ ⊖W is given by

Ω ⊖W = [Ωc ⊕ (−W)]c (41a)

= X \ [(X \ Ω) ⊕ (−W)]. (41b)
Proof: It follows easily from the definitions that

Pre(Ω) = {x | ∃u such that(x, u) ∈ Y

andf(x, u) + w ∈ Ω for all w ∈ W} (42a)

= ProjX{(x, u) ∈ Y | f(x, u) + w ∈ Ω

for all w ∈ W}, (42b)

hence (40) is verified directly from the definition of the
Pontryagin difference. Recall that the Pontryagin difference is
defined asΩ ⊖ W := {x ∈ Ω | x + w ∈ Ω for all w ∈ W },
hence the truth of (41) follows from

Ω ⊖W = {x | ∄w ∈ W, x + w ∈ Ωc } (43a)

⇔ (Ω ⊖W)c = {x | ∃w ∈ W, x + w ∈ Ωc } (43b)

= {x | ∃c ∈ Ωc, w ∈ W, x + w = c} (43c)

= {c | ∃x ∈ Ωc, w ∈ W, c + w = x} (43d)

= {c | ∃x ∈ Ωc, w ∈ (−W), x + w = c}
(43e)

=Ωc ⊕ (−W). (43f)

Remark 5: It is important to note that the majority of
well-known results in the control literature on computing the
Pontryagin differenceΩ ⊖W, such as those in [4], [5], [39],
only consider the case whenΩ is a convex polyhedron. The
above result allows for the computation of the Pontryagin
difference of non-convex polygons.

Remark 6: It is interesting to note that though (41) does
not appear to have been reported in the control literature,
it is a well-known identity in the field of mathematical

morphology [40], [41], where the Pontryagin differenceΩ⊖W
is often called theerosionof Ω by W.

A prototype algorithm for computing the predecessor set is
easily derived from Theorem 3:

1) Compute the reflection−W.
2) Compute the complementΩc = X\Ω as a set difference.
3) Compute the Minkowski sumΓ := Ωc ⊕ (−W).
4) Compute the Pontryagin differenceΩ ⊖W = X \ Γ as

a set difference.
5) ComputeΣ = {(x, u) ∈ Y | f(x, u) ∈ Ω ⊖W}.
6) Compute the projectionPre(Ω) = ProjX(Σ).

Clearly, appropriate software is needed for computing the
reflection, Minkowski sum, set difference, inverse image,
intersection and projection of sets. This can be done for a
large class of nonlinear systems by gridding the state space
or by using computer algebra packages. However, as will be
pointed out in Section III, one of the aims of this paper is to
highlight the fact that all these operations can be done using
standard polytope software, provided the system is linear or
piecewise affine and the constraint sets are polygons.

At this point, it is worth pointing out that it can be shown
(see for example [36], [38]) that

Ω⊖W = [convh(Ω)⊖W]\ [(convh(Ω)\Ω)⊕ (−W)], (44)

where convh(Ω) is the convex hull ofΩ; the Pontryagin
differenceconvh(Ω) ⊖ W is efficiently computed using the
algorithm in [39] if W is a polytope. It is also worth pointing
it out that the formula (44) is still valid ifconvh(Ω) is replaced
by any convex setC that containsΩ [36].

Obviously, any algorithm for computing the Pontryagin
difference that is derived from (41) or (44) will result in
exactly the same set. However, in practice the computational
requirements depend very much on the specifics of the prob-
lem and the computational tools that are available. It may be
that an algorithm derived directly from one equation is faster
than an algorithm directly based on another equation. It is also
not always easy to tell whether an algorithm for computing
the predecessor set is more efficient if it were based on
Theorem 1 or whether it were based on Theorem 3. A possible
direction for further research is to find results that allow one to
determinea priori the most efficient algorithms for computing
the predecessor set, based on sensible assumptions on the data.

Finally, we conclude this section by pointing out that all of
the results in this section are true iff(·) is a function ofx only,
i.e. x+ = f(x)+w, provided the appropriate modifications to
definitions are made. In this case, no final projection operation
is necessary, since

Pre(Ω) = {x ∈ X | f(x) ∈ Ω ⊖W} (45a)

= X ∩ f−1(Ω ⊖W). (45b)

III. L INEAR AND PIECEWISEAFFINE SYSTEMS WITH

POLYGONAL CONSTRAINT SETS

Up to now, we have deliberately not made any special
assumptions on the structure off(·). The main aim of this
section is to point out that the computation of the predecessor
set is possible using existing computational geometry software,
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providedf(·) is linear or piecewise affine and the constraint
sets are polygons.

The main reason for presenting the results in Sections II-C
and II-E in their current form, is because it is not possible
to derive an algorithm for computing the predecessor set,
which uses computational geometry software, directly from
the definition in (18). However, Theorems 1 and 3 allow
for the straightforward derivation of algorithms that can be
implemented using readily-available software libraries for the
manipulation of polyhedra.

All the operations encountered in Sections II-C and II-E,
such as projection, set difference, piecewise affine maps and
their inverse, Minkowski sums, intersections, etc., are easily
implemented using existing computational geometry software
packages. The reader is referred to [31], [42]–[44] and the
large literature on computational geometry for details.

Another reason for presenting the results as above, is to
maintain a high degree of generality and to emphasize the
structure of the results. When dealing with piecewise affine
systems or non-convex constraints, it is easy to exhaust the
reader with notational details. As a consequence of the chosen
style of presentation, we are now in a better position to state
some basic definitions and present the main results, without
having to introduce too much additional notation.

A. Definitions and Notation

A polyhedronis the intersection of a finite number of closed
and/or open halfspaces, apolytope is a closed and bounded
(equivalently, compact) polyhedron and apolygonis the union
of a finite number of polyhedra (and is thus not necessarily
convex). A family of setsP := {Pi | i ∈ I } is a (closed)
polyhedral coverof a (closed) polygonX ⊆ IRn if the index
set I is finite, eachPi is a non-empty (closed) polyhedron
andX = ∪i∈IPi. Where it is useful,PX , IX andPX

i will
denote, respectively, a polyhedral cover of a polygonX , its
associated index set and theith polyhedron in the cover.

Remark 7: It is important to discuss a few points regarding
the above definitions:

• A polyhedron is often defined in the literature to be the
intersection of a finite number ofclosedhalfspaces. The
main reason for modifying the definition is because it
allows us to considerably simplify the presentation of the
results in this paper, without sacrificing rigor.

• A polyhedral cover of a polygon should not be confused
with the polygon itself. The former object is a family of
sets that can be used to conveniently describe the latter
object, which is a single set. A given polygon may have
any number of suitable polyhedral covers associated with
it. This distinction between a polygon and its polyhedral
cover is important when interpreting the results in this
paper and implementing them with existing algorithms
for polytope manipulation. For example, aclosedpolygon
need not be described by aclosedpolyhedral cover; any
number of members of the polyhedral cover are allowed
to be neither closed nor open, provided the union of all
the members is closed and equal to the polygon.

• The definition of a polyhedral cover given here is weaker
than that of a so-calledpolyhedral partition, as defined

in [45]. The latter object is a polyhedral cover, where the
members are closed polyhedra with non-empty interiors
and the interiors of the members are mutually disjoint.

• The definition of a polyhedral cover is weaker than that
of a so-calledcomplex, as defined in [46]. A complex
is a polyhedral cover, where the members are closed
polyhedra, the faces of each of the members of the cover
are also members of the cover and the intersection of any
two members of the cover is a face of each of them.

• Our use of the termcover is stronger than the one
commonly used in topology, where acover of a setX
is a (possibly infinite) collection of non-empty setsP :=
{Pi | i ∈ I } such thatX ⊆ ∪i∈IPi. In this paper, we
require equality (not the weaker condition of inclusion)
and that the collection of sets is finite.

Finally, a functionf : X → IRn is said to bepiecewise
affineon a polyhedral coverP := {Pi | i ∈ I } of a polygon
X ⊆ IRm if the restrictionf |Pi

: Pi → IRn is affine for all
i ∈ I.

B. Main Results

In this section, we make the following assumption:
A2. Υ is a polygon (henceX is also a polygon) and the system
f : Υ → X in (6) is piecewise affine on a polyhedral cover
PΥ :=

{

PΥ
i

∣

∣ i ∈ IΥ
}

of the polygonΥ, i.e.

f(x, u, w) := Aix+Biu+Giw+gi, ∀(x, u, w) ∈ PΥ
i , i ∈ IΥ,

(46)
where for alli ∈ IΥ, the matricesAi ∈ IRn×n, Bi ∈ IRn×m,
Gi ∈ IRn×p and vectorgi ∈ IRn.

Remark 8:Note that existing results on reachability analy-
sis of discrete-time piecewise affine systems assume that either
there is no control input or there is no disturbance, i.e. allthe
Bi = 0 or all theGi = 0 [13]. The results in this paper allow
one to remove this restriction.

For convenience, we define the functionsfi : PΥ
i → X,

i ∈ IΥ, as

fi(x, u, w) := Aix + Biu + Giw + gi. (47)

Remark 9:Clearly, if IΥ has cardinality1, then f(·) is
affine (linear if, additionally,gi = 0). Note also that, since
f(·) is assumed to be single-valued, it follows that ifi 6= j
and PΥ

i ∩ PΥ
j 6= ∅, then fi(x, u, w) = fj(x, u, w) for all

(x, u, w) ∈ PΥ
i ∩ PΥ

j .
We now give the main result of this section, where we

make the assumption that the system is piecewise affine and
all relevant sets are polygons. In this case, it is easy to
specialize the prototype algorithms in Sections II-C and II-E.3
and implement them using standard computational geometry
software.

Theorem 4 (Piecewise affine systems):SupposeA2 holds.
If Ω is a polygon, then the predecessor setPre(Ω), as given
in (18) and (23), is a polygon. Furthermore the setΣ as given
in (21) is also a polygon.

Proof: Recall the statement of Theorem 1. LetPΩ :=
{

PΩ
i

∣

∣ i ∈ IΩ
}

be a polyhedral cover of the polygonΩ. First,
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note that

f−1(Ω) =
⋃

i∈IΩ

{

(x, u, w) ∈ Υ
∣

∣ f(x, u, w) ∈ PΩ
i

}

(48a)

=
⋃

(i,j)∈IΩ×IΥ

{(x, u, w) ∈ PΥ
j |

Ajx + Bju + Gjw + gj ∈ PΩ
i }. (48b)

Since each non-empty set
{

(x, u, w) ∈ PΥ
j

∣

∣ Ajx + Bju + Gjw + gj ∈ PΩ
i

}

is a polyhedron, it follows thatΦ := f−1(Ω) is a polygon
with a easily-derived polyhedral cover.

Next, recall that the projection of the union of a finite
number of sets is the union of the projections of the individual
sets, hence the projection of a polygon is also a polygon,
i.e. if Σ is a polygon with a polyhedral coverPΣ :=
{

PΣ
i

∣

∣ i ∈ IΣ
}

, then
{

ProjX PΣ
i

∣

∣ i ∈ IΣ
}

is a polyhedral
cover of the polygonPre(Ω). Note also thatΥ is a polygon,
hence its projection ontoX × U is a polygon. Similarly, if
Υ \Φ is a polygon, then so too is its projection ontoX ×U .

What remains to be shown is thatΥ\Φ andΣ are polygons.
This follows immediately from referring to Appendix II, where
it is shown that the set difference between two polygons is also
a polygon.

The proof of the following result follows similar arguments
as in Theorem 2 and Corollary 1 by noting that the projection
of a closed polygon is a closed polygon:

Corollary 3: SupposeA1 andA2 hold. If the target setXf

is a (closed/compact) polygon (andΥ is a closed/compact
polygon), then each setXi, i ∈ IN, computed as in (20), is a
(closed/compact) polygon.

The results above can be combined with the results pre-
sented in Section II to develop and implement a number of
‘first-attempt’ algorithms for reachability analysis of piece-
wise affine systems, based on the prototype algorithms in
Sections II-C and II-E.3. The set differences can be computed
using the results in Appendix II and the inverse maps are
obtained directly from (48); all other operations, such as pro-
jection and Minkowski summation, are standard and relevant
software is readily available [31], [42]–[44]. These algorithms
can then be analyzed and used as a basis for proposing and
comparing more efficient algorithms.

It is important to note that, in practice, different computa-
tional geometry problems benefit greatly from modifying an
algorithm in subtle, but important ways. A practical algorithm
with a meaningful complexity bound can only be obtained by
looking at the exact problem structure and choosing the right
subset of methods from one or more computational geometry
software libraries.

By considering a few special cases, we have provided a
number of results that allow for the derivation of different
algorithms that exploit the system structure. Since there is such
a large class of special cases and the various algorithms for
polyhedra can be combined in any number of suitable ways, it
is beyond the scope of this paper to propose a specific, detailed
algorithm and to derive rigorous computational complexity
results. An important research topic would be to assume a

certain problem structure, use one of the results in this paper,
develop the algorithmic details and analyze its complexity
when implemented with different computational geometry
software libraries.

Remark 10:Clearly, all the results in this section still hold
if the system is linear. Once again, there may be many com-
putational and theoretical benefits in exploiting the linearity
of the system, convexity of the sets or if the constraints are
decoupled. However, it is important to note that, even if allthe
sets are convex and the system is linear, there is no guarantee
that Pre(Ω) is convex if the disturbance is dependent on the
state and input. This claim is justified in Section IV-A via
a numerical example. Note that this is in strong contrast to
the well-known fact thatPre(Ω) is convex if all the sets are
convex and the disturbance is not dependent on the state and
input.

IV. EXAMPLES

In order to illustrate our results we consider two simple
examples. In the first, the system is scalar and the disturbance
state-dependent (w ∈ W(x)); in the second, the system is
second-order and the disturbance control-dependent (w ∈
W(u)).

A. Scalar System with State-dependent Disturbances

We consider the following scalar system:

x+ = x + u + w (49)

which is subject to the constraints(x, u) ∈ X × U where

X := {x | −5 ≤ x ≤ 20} and

U := {u | −2 ≤ u ≤ 2} . (50)

The state-dependent disturbance satisfies:

w ∈ W(x) ⇔ (x,w) ∈ ∆ := ∆1 ∪ ∆2, (51)

where

∆1 = convh{(0, 0.25), (0,−0.25), (2, 1.25),

(2,−1.25), (20, 2.25), (20,−2.25)}

and

∆2 = convh{(0, 0.25), (0,−0.25), (−2, 1.25),

(−2,−1.25), (−20, 2.25), (−20,−2.25)}.

The set∆ is shown in Figure 2. The target set isX0 = Ω =
{x| − 0.6 ≤ x ≤ 0.6}, which was chosen to be robust control
invariant.

The sequence ofi-step controllable is computed by using
the results of Theorem 1 and some of the sets are:X1 = {x |
−0.7 ≤ x ≤ 0.7}, X2 = {x | −0.9 ≤ x ≤ 0.9}, X3 =
{x | −1.3 ≤ x ≤ 1.3}, X4 = {x | −2.0468 ≤ x ≤ 2.0468},
. . . , X8 = {x | −4.5793 ≤ x ≤ 4.5793}, X9 = {x | −5 ≤
x ≤ 5.1131}, X10 = {x | −5 ≤ x ≤ 5.6123}, . . . , X49 =
{x | −5 ≤ x ≤ 12.2759}, X50 = {x | −5 ≤ x ≤ 12.3099}.
The setX∞ of all states that can be steered to the target set,
while satisfying state and control constraints, for all allowable
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disturbance sequences, is:X∞ = {x | −5 ≤ x ≤ 12.7999}.
The setsΣi for i = 1, 2, 3, 4 are also shown in Figure 3.

In order to illustrate the fact that thei-step controllable
can be non-convex even ifX , U , Ω and the graph ofW(x)
are convex, consider the same example. This time the state-
dependent disturbance satisfiesw ∈ W(x) ⇔ (x,w) ∈ ∆
where:

∆ := convh{(−5, 0), (0,−3), (5, 0), (0, 3)}. (52)

If the target set isX0 = Ω = {x | −2.5 ≤ x ≤ 2.5}, the one-
step set isX1 = {x | −3.75 ≤ x ≤ −0.8333}∪{x | 0.8333 ≤
x ≤ 3.75}. The sets∆ andΣ are shown in Figure 4.

Even if Ω is a robust control invariant set, the convexity
of each i-step set still cannot be guaranteed. This is easily
illustrated by considering the same example withX = {x |
−5 ≤ x ≤ 4} and w ∈ W(x) ⇔ (x,w) ∈ ∆ where
∆ := convh{(−5, 0.5), (−5,−0.5), (3,−2.1), (4, 0), (3, 2.1)}
and the robust control invariant target setX0 = Ω = {x |
−2.5 ≤ x ≤ 2.5}. In this case, the one-step robust control
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Fig. 4. Graph ofW (top) and the setΣ (bottom)
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Fig. 5. Graph ofW (top) and the setΣ (bottom)

invariant set isX1 = {x | −3.75 ≤ x ≤ 2.5} ∪ {x | 3.5455 ≤
x ≤ 4}. The sets∆ andΣ are shown in Figure 5.

B. Second-order LTI Example with Control-dependent Distur-
bances

The discrete-time linear time-invariant system

x+ =

[

0.7969 −0.2247
0.1798 0.9767

]

x +

[

0.1271
0.0132

]

u + w (53)

is subject to the state and control constraints(x, u) ∈ X × U
with

X := {x | ‖x‖∞ ≤ 10, [−1 1]x ≤ 12} and

U := {u | −3 ≤ u ≤ 3} . (54)

The control-dependent disturbance satisfies:

w ∈ W(u) ⇔ (u,w) ∈ ∆ := ∆1 ∪ ∆2, (55)
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0

0.01
0.01
0.01



































,

(56)
and

∆2 =























(u,w)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣













0.008 0 1
1 0 0

0.008 −1 0
0.008 1 0
0.008 0 −1













[

u
w

]

≤













0.01
0

0.01
0.01
0.01



































.

(57)
The target set is

X0 = convh{(−0.2035, 0.0482), (0.2035,−0.0482),

(−0.2035,−0.0148), (−0.1405, 0.0482),

(0.2035, 0.0148), (0.1405,−0.0482)},

which was chosen to be robust control invariant. The projec-
tions of the set∆ onto two-dimensional subspaces are shown
in Figure 6. Some of thei-step controllable sets, computed
using Theorem 1, are shown in Figure 7.

V. CONCLUSIONS

The main result of this paper (Theorem 1) showed how one
can obtainPre(Ω), the set of states that can be robustly steered
to Ω, via the computation of a sequence of set differences and
projections. It was then shown in Theorem 4 that ifΩ and the
relevant constraint sets are polygons (i.e. they are given by
the unions of finite sets of convex polyhedra) and the system
is linear or piecewise affine, thenPre(Ω) is also a polygon
and can be computed using standard computational geometry
software. In particular, new results were given in AppendixII
which allow one to compute the set difference for (possibly
non-convex) polygons by solving a finite number of LPs.
Finally, some simple examples were given which show that,
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Fig. 7. SetsXi for i = 0, 1, . . . , 7

even if the system is linear, the respective constraint setsare
convex and the target set is robust control invariant, convexity
of the i-step controllable sets cannot be guaranteed.

Future work could focus on using the results in this paper to
develop efficient algorithms that exploit system structure. For
piecewise affine systems, the complexity of the descriptionof
the output of a reachability computation might, in general,be
worst-case exponential in terms of the size of the input data.
Clearly, there is nothing that one could do about the inher-
ent complexity of a solution, except maybe through making
suitable approximations during computation time. However,
as is common practice in computational geometry [30], [31],
it may be more appropriate to analyze the complexity of a
reachability algorithm not only in terms of the size of the
input data, but also in terms of the size of the output data. In
computational geometry, an algorithm is said to be tractable if
it has a computational complexity that is a polynomial function
of the size of the inputand output data. This notion could
also be applied to the rigorous analysis of the complexity of
reachability algorithms for piecewise affine systems.

APPENDIX I
RESULTS ONSET-VALUED FUNCTIONS

The definitions of inner and outer semi-continuity employed
below are due to Rockafellar and Wets [47]; for Definitions
1–4 and Theorem 5, see [48]; Polak also provided the proof
of Proposition 2 (private communication). In what follows,
B(z, ρ) := {z | ‖z‖ ≤ ρ} andd(a,A) := infb∈A ‖a − b‖.

Definition 2: A set-valued mapF : IRr → 2IRn

is outer
semi-continuous (o.s.c.) at̂z if F (ẑ) is closed and, for every
compact setS such thatF (ẑ) ∩ S = ∅, there exists aρ > 0
such thatF (z)∩S = ∅ for all z ∈ B(ẑ, ρ). A set-valued map
F : IRr → 2IRn

is o.s.c. if it is o.s.c. at everyz ∈ IRr.
Definition 3: A set-valued mapF : IRr → 2IRn

is inner
semi-continuous (i.s.c.) at̂z if F (ẑ) is closed and, for every
open setS such thatF (ẑ) ∩ S 6= ∅, there exists aρ > 0
such thatF (z)∩S 6= ∅ for all z ∈ B(ẑ, ρ). A set-valued map
F : IRr → 2IRn

is i.s.c. if it is i.s.c. at everyz ∈ IRr.
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Definition 4: A set-valued mapF : IRr → 2IRn

is continu-
ous if it is both o.s.c. and i.s.c.

Definition 5: A point â is a limit point of the infinite
sequence of sets{Ai} if d(â, Ai) → 0. A point â is a
cluster point if there exists a subsequenceI ⊂ N such that
d(â, Ai) → 0 as i → ∞, i ∈ I. The setlim sup Ai is the
set of cluster points of{Ai} and lim inf Ai is the set of limit
points of {Ai}, i.e. lim sup Ai is the set of cluster points of
sequences{ai} such thatai ∈ Ai for all i ∈ IN andlim inf Ai

is the set of limits of sequences{ai} such thatai ∈ Ai for
all i ∈ IN. The setsAi converge to the setA (Ai → A or
lim Ai = A) if lim sup Ai = lim inf Ai = A.

The following result appears as Theorem 5.3.7 in [48]:
Theorem 5:(i) A function F : IRr → 2IRn

is o.s.c. at
ẑ if and only if for any sequence{zi} such thatzi → ẑ,
lim sup F (zi) ⊆ F (ẑ). Also, F is o.s.c. if and only if it graph
G := {(z, y) | y ∈ F (z)} is closed.
(ii) A function F : IRr → 2IRn

is i.s.c. atẑ if and only if for
any sequence{zi} such thatzi → ẑ, lim inf F (zi) ⊇ F (ẑ).
(iii) SupposeF : IRr → 2IRn

is such thatF (z) is compact for
all z ∈ IRr and bounded on bounded sets. ThenF is o.s.c. at
ẑ if and only if, for every open setS such thatF (ẑ) ⊆ S,
there exists aρ > 0 such thatF (z) ⊆ S for all z ∈ B(ẑ, ρ).

Proposition 2: Suppose thatf : IRr × IRp → IRn is
continuous and thatW : IRp → 2IRp

is continuous and
bounded on bounded sets. Then the set-valued functionF :
IRr → 2IRn

defined byF (z) := {f(z, w) | w ∈ W(z)} is
continuous.

Proof: (i) (F is o.s.c.). Let{zi} be any infinite sequence
such thatzi → ẑ and let{fi} be any infinite sequence such
that fi ∈ F (zi) for all i ∈ IN and fi → f̂ . Then, for all i,
fi = f(zi, wi) with wi ∈ W(zi). Since{zi} lies in a compact
set andW : IRp → 2IRp

is bounded on bounded sets, there
exists a subsequence of{wi} such thatwi → ŵ as i → ∞,
i ∈ I ⊂ IN. SinceW is continuous,ŵ ∈ W(ẑ). Hence

f̂ = lim
i∈I

f(zi, wi) = f(ẑ, ŵ) ∈ F (ẑ).

This implies thatF is o.s.c.
(ii) (F is i.s.c.) Let{zi} be any infinite sequence such that

zi → ẑ and let f̂ be an arbitrary point inF (ẑ). Then f̂ =
f(ẑ, ŵ) for someŵ ∈ W(ẑ). SinceW is continuous, there
exists an infinite sequence{wi} such thatwi ∈ W(zi) and
wi → ŵ. Thenfi := f(zi, wi) ∈ F (zi) for all i ∈ IN and

lim
i→∞

fi = lim
i→∞

f(zi, wi) = f(ẑ, ŵ) = f̂ ∈ F (ẑ)

This implies thatF is i.s.c.
Proposition 3: SupposeF : IRr → 2IRn

is continuous and
thatΩ ⊆ IRn is closed. Then the (outer) inverse setF †(Ω) :=
{z | F (z) ⊆ Ω} is closed.

Proof: Suppose{zi} is an arbitrary infinite sequence in
F †(Ω) (F (zi) ⊆ Ω for all i ∈ IN) such thatzi → ẑ. Since
F is continuous,limi→∞ F (zi) = F (ẑ). BecauseΩ is closed,
F (zi) ⊆ Ω for all i ∈ IN impliesF (ẑ) ⊆ Ω. Henceẑ ∈ F †(Ω)
so thatF †(Ω) is closed.

APPENDIX II
SET DIFFERENCEBETWEEN POLYGONS

Since we were unable to find any specific details in the
literature on computing the set difference and/or complement
of polygons, we include some basic results in this section
that are easily implemented using standard computational
geometry software libraries. Further research could be focused
on deriving more efficient algorithms that exploit any structure
in the problem.

Before proceeding, letINn := {1, 2, . . . , n} and recall that
the complement ofA in IRn is Ac := IRn\A and thatB\A =
B∩Ac. In other words, the set difference operation also allows
us to compute the complement of a set in a given space. For
the definitions of a polyhedron, polygon and polyhedral cover,
see Section III.

The first result, which is due to [45], allows one to compute
the set difference between two polyhedra:

Proposition 4: Let A ⊂ IRn be a polyhedron and let
B := {x ∈ IRn | c′ix ≤ di, i = 1, . . . , r} be a non-empty
polyhedron, where all theci ∈ IRn anddi ∈ IR. If

S1 := {x ∈ A | c′1x > d1 } , (58a)

Si :=
{

x ∈ A
∣

∣ c′ix > di, c′jx ≤ dj , ∀j ∈ INi−1

}

,

i = 2, . . . , r, (58b)

then the set differenceA \ B =
⋃r

i=1 Si is a polygon.
Furthermore, the polyhedral cover{Si 6= ∅ | i ∈ INr } is a
partition of A \ B.

Remark 11:Note that in order to simplify notationB was
assumed to be closed, whereas no similar assumption onA has
been made. Clearly Proposition 4 is without loss of generality,
since the result is trivially extended (at the expense of an
increase in notational complexity) for the case whenB is not
closed.

In practice, computation time can be reduced by checking
whetherA ∩ B is empty or whetherA ⊆ B before actually
computing A \ B; if A ∩ B = ∅, then A \ B = A and
if A ⊆ B, then A \ B = ∅. Using an extended version
of Farkas’ Lemma [7, Lem. 4.1], checking whether one
polyhedron is contained in another amounts to solving a single
LP. Alternatively, one can solve a finite number of smaller LPs
to test for set inclusion [32, Prop. 3.4].

OnceA \ B has been computed, the memory requirements
can be reduced by removing all emptySi and removing any
redundant inequalities describing the non-emptySi. Checking
whether a polyhedron is non-empty can be done by solving a
single linear program (LP). Removing redundant inequalities
can be done by solving a finite number of LPs [30]. As a
general rule, it is usually a good idea to determine first whether
a polyhedron is non-empty or not before removing redundant
inequalities.

The second result allows one to compute the set difference
between a polygon and a polyhedron:

Proposition 5: Let
{

PC
j | j ∈ INp

}

be a polyhedral cover
of the polygonC. If A is a non-empty polyhedron, then each
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non-emptyPC
j \A, j ∈ INp, is a polygon and the set difference

C \ A =

p
⋃

j=1

(PC
j \ A) (59)

is also a polygon.
Proof: This follows trivially fromC\A =

(

⋃p
j=1 P

C
j

)

∩

Ac =
⋃p

j=1

(

PC
j ∩ Ac

)

.
Note that if the polyhedral cover

{

PC
j | j ∈ INp

}

is a
partition of C and C \ A is non-empty, then it is easy to
compute a polyhedral cover ofC \ A that is also a partition
of C \ A, provided Proposition 4 were used to compute the
polyhedral cover of eachPC

j \ A, j ∈ INp.
The last result allows one to compute the set difference

between two polygons:
Proposition 6: Let

{

PC
j | j ∈ INp

}

and
{

PD
k | k ∈ INq

}

be polyhedral covers of the polygonsC andD, respectively.
If

E0 := C, (60a)

Ek := Ek−1 \ P
D
k , ∀k ∈ INq, (60b)

then the set differenceC \ D = Eq is a polygon.
Proof: The result follows from noting that

C \ D = C ∩ Dc (61a)

= C ∩
(

∪q
k=1P

D
k

)c
= C ∩

(

∩q
k=1(P

D
k )c

)

(61b)

= C ∩ (PD
1 )c ∩ (PD

2 )c ∩ · · · ∩ (PD
q )c (61c)

= (C ∩ (PD
1 )c) ∩ (PD

2 )c ∩ · · · ∩ (PD
q )c (61d)

= (C \ PD
1 ) ∩ (PD

2 )c ∩ · · · ∩ (PD
q )c (61e)

= ((C \ PD
1 ) \ PD

2 ) ∩ · · · ∩ (PD
q )c (61f)

= (· · · ((C \ PD
1 ) \ PD

2 ) \ · · · ) \ PD
q (61g)

Letting E0 := C andEk := Ek−1 \ P
D
k , ∀k ∈ INq, yields the

claim.
Clearly, polyhedral covers for all the polygonsEk−1 \ P

D
k ,

k ∈ INq, can be computed using Proposition 5. Note also
that if the polyhedral cover

{

PC
j | j ∈ INp

}

is a partition
of C and C \ D is non-empty, then it is easy to compute a
polyhedral cover ofEq that is also a partition ofC \ D by
using Propositions 4 and 5 to compute polyhedral covers for
all the Ek, k ∈ INq.
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