Reachability analysis of discrete-time systems witt
disturbances

Saa V. Rakowt, Eric C. KerriganMember, IEEE David Q. Mayne Fellow, IEEE,and John
Lygeros,Member, IEEE

Abstract— This paper presents new results that allow one to constraints on the states, control inputs and disturbances
compute the set of states that can be robustly steered in a\when this class of systems is treated, it is often with an fixsuf
finite number of steps, via state feedback control, to a given cient amount of detail and overly-conservative approxiame

target set. The assumptions that are made in this paper are . . . .
that the system is discrete-time, nonlinear and time-invariant and Systems with mixed state, control and disturbance comssrai

subject to mixed constraints on the state and input. A persistent May arise in practice for a number of reasons:
disturbance, dependent on the current state and input, acts on 1) When modelling systems with physical constraints. Here
the system. Existing results are not able to address state- and the model must reflect the fact that the constraints will

input-dependent disturbances and the results in this paper are - .
therefore a generalization of previously-published results. One of be satisfied by all evolutions of the system, whatever the

the key aims of this paper is to present results such that one can control inputs and disturbances.

perform the relevant set computations using polyhedral algebra ~ 2) When designing controllers to meet safety or perfor-
and computational geometry software, provided the system is mance specifications, i.e. to ensure that the state of the
piecewise affine and the constraints are polygonal. Existing system remains in a certain region of the state space.

methods are only applicable to piecewise affine systems that either e .
have no control inputs or no disturbances, whereas the results Safety and performance specifications may be violated

in this paper remove this limitation. Some simple examples are if the inputs are not chosen properly.

also given that show that, even if all the relevant sets are convex A couple of simple examples illustrate the point. Consider
and the system is linear, convexity of the set of controllable states {he following discrete-time model for the longitudinal rioot
cannot be guaranteed. of a car on a highway:

|. INTRODUCTION {xi}:{ll][a:]Jr{O}ujL[o}w
o . . v 0 1 v 1 1

The problems of reachability, invariance and control ifvar -
ance for discrete-time systems have been extensivelyestudi'here = < IR represents the position of the car,c IR
in the literature for over four decades (see [1]-[6] for somi§s Velocity, u € [u,u] represents the control acceleration
seminal papers on the subject). Recently these problemes h@@Plied by the engine or brakes, amds [w,w] a disturbance
attracted renewed attention, partly because improveriants@cceleration due to wind. It is assumed that< 0 < @
computational capabilities have made it possible to implem and w < w. For simplicity all other constants have been
the algorithms for systems of practical interest (see fsieince nNormalized tol. o _
an excellent survey paper [7] for more details and a set IOfOne would like to cgpture the S|tuat|on.wr_1ere the vehicle
relevant references). Another reason for the renewedsisttgr 'S Prevented from going backwards. This is a reasonable
these problems is the emergence of new classes of pragtic§iduirement in many cases (e.g. on a highway) and is very
important systems, such as hybrid systems. These are systAFY 0 implement in practice (assuming that the wind is
whose states, inputs and outputs can take on values fromabotfi¢apable of pushing the car backwards when the brakes are
countable set (e.g. the set of integers) as well as an uraiolent 2PPlied one could simply disallow the reverse gear). This ca
set (e.g. the set of real numbers). In recent years, inagia?® captured by the hard state constraint- 0. To enforce
and reachability problems for classes of hybrid systems haf?iS constraint, the model needs to incorporate the additio
been studied by a number of authors [8]-[15]. state-dependent constrairt-u+w > 0 on the inputs (control

One class of systems that, to the authors’ knowledge, Ky disturbance).

received relatively little attention are systems with mixe FOr another example, consider the following piecewise
affine system
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where the control is constrained to effectively approximating the original system by a finitatet
input-disturbance system. Clearly, this approach has cemp
U= {u | flulle <13 ) tational complexi i i
plexity drawbacks, since the computation grow
and the input-dependent disturbance satistiesc W(u), exponentially with the dimension of the state, input and
where disturbance spaces. Moreover, even though results exést gu
anteeing asymptotic convergence to the real set as the gpsd g
Wu) = {w €W | [lu+ Bwlloo <1} ) finer, in practice it is not always clear how fine or coarse the
Another common reason why state- and input-dependegiid needs to be in order to have sufficiently accurate result
disturbances arise in practice is when it is known that the A more elegant approach is to use symbolic algebra soft-
uncertainty of a model is greater in certain regions of theare and/or quantifier elimination methods [15], [18]-[20]
state-input space than in other regions. For example, whEhe idea here is to encode the predecessor computation in
a nonlinear model is linearized, the uncertainty gets largen appropriate system of logic using quantifiers to capture
the further one gets from the point of linearization. Thisequirements that need to hold for some control actions, all
uncertainty can be modelled as a state- and input-dependdisturbance, at some or for all times, etc. Computational
disturbance, where the size of the disturbance decreasest@ols [21], [22] can then be used to eliminate the quantifiers
closer one gets to the point of linearization. A state- apdiin in these formulas and derive quantifier free formulas that
dependent disturbance model will therefore allow one taiobt define the set of states where the requirements hold (e.g. the
less conservative results than if one were to assume that ftiedecessor set). For many classes of systems this appsoach
disturbance is independent of the state and input. exact and does not involve any approximation. Moreover, the
Another example when one can model uncertainty as a stageantifier elimination approach is very general. In additio
and input-dependent disturbance is when there is parametd linear and piecewise linear/affine systems (on which the
uncertainty present in the model. For example, if there @®@mputational methods proposed in this paper mostly apply)
uncertainty in the paifA, B) in (2), then one can think of quantifier elimination methods can also be applied to a densi
the uncertainty as an additional state- and input-dependerably more general class of discrete-time systems, famexa
disturbance. The reader is referred to [16] to see how reagie systems whose dynamics and constraints are encoded by
ability computations can be carried out for this specificsslapiecewise polynomial functions. The limits of the appliitiap
of uncertainty when the system is linear. The results in thig this approach to continuous-time systems are investiat
paper can, with some effort, be used to extend the resuhs[23], where methods for using systems amenable to the
in [16] to the class of piecewise affine systems with paraimetiquantifier elimination approach to approximate even more
uncertainty. general classes of systems are also discussed.
More generally, consider state variablgscontrol variables ~ The main drawback of methods based on quantifier elim-
u and disturbance variables, taking values in the setX’, ination is their complexity. It is known that general purpos
U andW respectively. Consider dynamic constraints on thesgiantifier elimination is worst case doubly exponentialtia t
variables of the form size of the input and output data. For the classes of problems
considered here and under some conditions (e.g. absence of
control and/or disturbance variables) one can exploitcstre
whereY C X xUxW andf : T — X. HereY is assumed to present in the formulas used to encode the predecessor eompu
capture the physical, state-dependent constraints orotiteot  tation to get better performance [24], [25]. Worst case loisun
and disturbance inputs. The goal is to develop methods fjie still exponential, even though the running times olesirv
designing controllers for this class of dynamical systems. in practice are typically much faster. [26] presents theiltes
Though fairly general results exist that can be applied toim this line of work that are most closely related to our study
large class of nonlinear discrete-time systems, to our known this reference, the special structure afforded by piézew
edge, none of these control and analysis algorithms arebteapdinear functions is exploited to derive algorithms with yer
of explicitly dealing with this class of problems. For exdmp reasonable running times, reasonable enough to allow their
most authors assume that the disturbance is not dependengpplication to realistic problems in network monitoringorF
the state and input — the only paper which addresses staiher cases of the application of symbolic methods to prob-
dependent disturbances directly (for linear systems) 7. [1 lems in control theory (equilibrium computation, stakalion,
They key tool that allows one to perform a reachabilitjracking) the reader is referred to [18], [27], [28].
analysis (often also called a controllability analysis),soft-  Itis well-known that if the systenf(-) is linear or piecewise
ware for implementing the so-callegredecessoroperator, affine and the relevant constraints sets (&yare polygons,
which allows one to compute the set of states that can #hen standard software for polytope manipulation can be use
robustly steered (using an admissible control input) tovami for reachability analysis [7], [13], [29]. There are a numbe
target set in a single step. The predecessor operator is tlérbenefits that can be obtained from using computational
called in a recursive fashion in order to compute the set ggometry software, rather than gridding the state space or
states that can be robustly steered to the given target set insing quantifier elimination and computer algebra packages
finite number of steps. « Many algorithms for performing fundamental operations
A direct way of approximating the computation of the  on polyhedra have a computational complexity that is a
predecessor set is to grid the state-input-disturbanceespa  polynomialfunction of the size of the inpuand output

Tpy1 = f(xk,uk,wk) and (xk,uk,wk) eY , (5)



data [30]. As mentioned above, many quantifier elimina- Il. GENERAL CASE

tion algorithms do not have this property and their com- . . . o
g property To keep the notation as simple as possible and maintain a

putational complexity is often doubly-exponential wiﬂ] ge degree of generality, we will adopt a nonlinear apekioa

respect to the size of the input and/or output data. F | ¢ of thi Definiti d Its 1
numerical methods based on gridding the computation.%r a large part of this paper. Detinilions and results for

typically exponential in the dimension of the state, inpdp.terest.mg spemal cases, for e>.<ample when .the system s
and disturbance spaces for fixed accuracy. piecewise affine or the constraints on the disturbance are

« Software for manipulating polyhedra exploit the structur'(g'o(lsependem of tzz state;L wil dbe mtrociuczd erre. app?djrl
of the problem, whereas gridding and general-purpo iven two setsd C R™ and B C IR", the reflectiono

e 0
quantifier elimination packages do not always do thif;hrough the origin is-A := {~a | a € A}, the complement

See [31] for some results that show how, by exploitingf AinR"is A° := {a € R" | a ¢ A}, the set difference

. I tweend andB is A\ B:={a€ A |a¢ B} = AN B°,

the structure when computing projections of polytope ehwe . = ;
a geometric approach can reduce the computational fie Minkowski set additionof A and B. IS A © B =
a+b|a€ A be B} and thePontryagin differencebe-

quirements by a number of orders of magnitude, com- .

pared to quantifier elimination methods such as Fourityeen4 andBis A© B :={a |a+be Aforallbe B}.

elimination. Given a setS C X x YV C IR" X IRm the (orthogonal)
. Itis often easier to visualize, understand and implemeffiection of the setS onto X is defined asProjy(S) :=

the results and exploit any structure, whereas it is not € -~ | 3y € Y such that(z,y) € S}. The set of non-

always so clear how to proceed with an approach that§9ative integers is denoted iy := {0, 1,...}.
not geometric.

One of the key aims of this paper is to present results suh Definitions
that one can perform the relevant reachability computati®n ~ Consider the problem of controlling a nonlinear discrete-
ing polyhedral algebra and computational geometry soffwagime system in the form:
provided the system is piecewise affine and the constraints
are polygonal. Existing methods for piecewise affine system T = f(z,u,w), (6)
are limited to systems that either have no control input or . )
no disturbance [13], whereas the results in this paper remdyherez is the current state (assumed to be measuretl)is
this limitation. The extension of these results is not iyi the state at the next time instani,is the current input, and
we will show, via some examples, that even if all the relevafit IS @n uncertain parameter, which shall be referred to as the
sets are convex and the system is linear, convexity of the s@iturbance”, and may change from one sample to the next.
of controllable states cannot be guaranteed if there arednix The disturbance takes on values in a set, which is dependent

constraints on the state, input and disturbance. on the current state and input, i.e.

. Th|s paper |s'organ|zed as foII'ows. The problem definition w e W(z,u) C W, @)

is given in Section II-A and Section II-B relates the problem

definition with some well-known results on set invarianceyhere W := IR denotes the disturbance space. We say

The main result for the computation of the predecessor $ght the disturbance is independent of the state and input if
is presented in Section II-C, topological properties of thge setW(z1,u1) = W(xa,uz) for all (z1,u1) # (22, us)
predecessor set are discussed in Section II-D and spegigdl will use the notationV(x,u) = W to denote this fact.
cases are discussed in Section II-E. Section Il highlight$ disturbance that is dependent only on the state or input
the fact that the reachability analysis can be carried oidt defined in a similar fashion and the notativW(z,u) =
using polyhedral algebra if the system is piecewise affing () and W(z,u) = W(u), respectively, will be used to
and the relevant sets are polygons. To validate the resulignote this. We define the “nominal/no disturbance” casewhe
Section IV presents a few simple numerical examples. Th§(z, ) = {0} for all (x,u). Note that the se¥V(z, u) does
main contributions of this paper are summarized in Section Mot directly depend on previous values of the disturbance.
Appendix | contains some results regarding continuity &f seHowever, constraints of this type (used, for example, to
valued maps and Appendix Il gives some new results théficode rate constraints on the disturbance or the distceban
allow one to compute the set difference of (possibly nomtynamics) can be included, in cases when it is possible to
convex) polygons. measure them, by appropriately extending the state todeclu
Note that some of the results given in this paper, namgbast disturbance values. A similar comment extends to the
for the case where the disturbance is independent of the siaput constraints.
and input, were originally reported in the thesis [32, Chgp. The state and input are required to satisfy a set of mixed
and the conference papers [33] and [34]. The conferencenstraints:
paper [35] and the thesis [36] significantly extended these (z,u) €Y C X x U, (8)
results to cover the more general case of state- and input-
dependent disturbances; the present paper follows a similthere X := IR" is the state space ard := IR™ is the input
line of development. The results in [32]-[34] are summatizespace. These constraints typically arise due to physicatdi
in Section II-E.3. tions, desired levels of performance or safety considamnati



Combining this constraint with the above constraint on thtbe state and control constraints (8) over the horizon-
disturbance, let 0,...,N — 1, and the terminal constraint

T :={(z,u,w) | (z,u) € Y andw € W(z,u)} (9) O(N;z,m,w) € X5. (15)

be the subset of the graph o#/(-) where the constraints In other words, the set of admissible policies is defined as
on the state and input are also satisfied. In order to have ) ,

well-defined problem, we have the standing assumption thag” (*) = {m | ($(is 2, m, W), pi( P33 2, 7, W) € I,

W(a:,u) 7é (Z) for all (JZ‘,U) S )7, hence 1= Oa 1; .. 'aN - 17 ¢(N;I,W,W) € va Vw € W(I77T)}

(16)
= Proj T). 10
Y rojxxu (Y) (10) The set Xy is the set of initial states for which an

The state-dependent set of admissible inputs can now dm@missible policy of lengthV exists (often also called the

defined as N-step controllable sé¢tand is defined as
x) = {1 . 11
The set of admissible states is then
X = {z | Ju such that(z,u) € ¥} = Projy () B. Reachability Analysis and Invariant Sets
={z |U)£0}. (12) Before proceeding to give our main result, we first recall a

few well-known results that link reachability analysis toet
If the state and input constraints are not coupled, then wemputation of invariant sets. Central to this discussothe
will use the notatiori{/(xz) = U or Y = X x U to denote this. so-calledpredecessor sdpr one-step sg¢tof a given set:
Remark 1:Note that for the case when a feedback control Definition 1 (Predecessor setfziven a set{) C X, the
law x : X — U is applied to the system (6), by consideringredecessor sePre((2) is the set of states for which there
zt = g(z,w) := f(x,k(z),w) with w € W(z) andz € exists an admissible input such that, for all allowable utist
X, whereW(z) := W(z,x(z)) and X = {x | (z,x(z)) € bances, the successor state i€lini.e.
YV}, the required reachability analysis follows the procedure
outlined in Section II-E. Pre($2) := { [3u € U(z) such that
Often part of the control objective is to guarantee robust f(z,u,w) € Q forall w e W(z,u)}. (18)
convergence to a given set, either in minimum time, someefinit An equivalent formulation of (18) is
time or asymptotically. LefX s denote this so-callethrget set
(also often callederminal cofnstraint s¢tand, without loss of Pre(2) := {z |3u € U(x) such that
generality, assume that [z, uW(z,u)) C Q}. (19)

X;C X (13) Wheref(x,.u,W(x,u)) ={f(z,u,w) | weW(z,u)}.
For any integet, let X; denote the-step predecessor sgt
One of the key aims of this paper is to present results that;, i.e. X; is the set of states that can be steered, by a time-

allow for the computation of the set of initial states for ati varying state feedback control law, to the target Eetin i
a time-varying state feedback control law exists such that tsteps, for all allowable disturbance sequences whilefgatis
constraints on the state and input (8) are robustly sati¢feed at all times, the constraintz, u) € Y. In other words,X; is
all allowable disturbances) over a finite horizon and that thyiven by (17) withN = 4. Following a standard procedure [4],
state is guaranteed to be Xy at the end of the horizon.  the sequence of sefsX;};cv may be calculated recursively

Let 7 = {wo("),u1(-),...,pun—-1(-)} denote a control as follows:
policy (sequence of contrdaws ie. u;, : X — U, i =
0,...,N — 1) over a horizon of lengthV and letw := Xo = Xg (20a)
{wo, w1, ..., wy_1} denote a sequence of disturbances. Also, X1 = Pre(X;). (20b)

let ¢(-; z, 7, w) denote the solution of (6) when the stateris . . )

at time 0 (since the system is time-invariant, we can always Re_caltl tt;atlfafgwen s C SX tlf] deflne_d tto beob;st contrc;:

take the current time to be zero), the control policyriand invariant [7] if for any = € S, there exists a € U(x) suc

the disturbance sequencevis that f(z,u,w) € S for all w € W(z,u). A robust control
For a given current state and policy, let W(z, ) be invariant setC,, € X is called maximalin X if all other

the set of admissible disturbance sequences of lehgthe. robust control myanant S.e.ts I’ are contalned_ o
We are now in a position to state some important, well-

Wz, ) :={w | w; € W(p(i;z,m,w), ;i ((i; 2, m,W))), known results that link the recursion in (20) to its use in the
i=0,1,...,N —1}. (14) computation of invariant sets. Since it is beyond the scdpe o
this paper to give a detailed literature review of this sabje
Clearly, if the disturbance is independent of the state apdti we refer the reader to the surveys [7] and [29] for a detailed
thenW(z,7) = WN =W x ... x W for all (x, 7). discussion. In this paper, we would like to highlight the
Next, letIIy(x) be the set of admissible policies of lengtHollowing results:
N, i.e. those policies that satisfy, for av € W(x, ), Proposition 1 (Results on set invariance):



i) There exists a unique robust control invariant@GetC X W — space (@, u, w) = space
() q Getc A=T\P=U;A;, i=1,...,4

) that. is maximal' int’, provided th.a'Coo. is npn-empty. . U= U, U, = Projy yAn i=1,...,4

(ii) A given set X; is robust control invariant if and only if
Xi - X,’+1 = PI‘G(X,L').

(i) X; is robust control invariant for al € IN if and only
if X is robust control invariant.

(iv) If Xy = &, thenX;; C X, for all i € IN and the
maximal robust control invariant s€t,, satisfiesC,, C
;e Xi- FurthermoreC,, = X; for a giveni € IN if
and Only ifXH_l = X;.

Remark 2:If the system has no input, i.e. if f(:) is a

As

function only of (z, w), then Proposition 1 still holds with the &
appropriate modifications to definitions, but with ‘robushe v, 2 Ly
trol invariant’ replaced with ‘robust positively invaritirf7]. Y

Remark 3:Without any additional assumptions on the sys- (z,u) — space
tem or sets, it is possible to find examples for whi¢h #
Niew Xi it X = & [6]. Fig. 1. Graphical illustration of Theorem 1

It is clear that results that enable one to compute the
predecessor set also allow one to compute each of the sets

in the sequence X;}icn. Furthermore, as will be shown Note that the set& and @ are also functions of the sét
below in Corollary 2, one can also employ the predecessgf evident from their definitions; however, in order to siifypl
operator via the recursion (20) to compute an arbitrarigsel notation in the sequel of this paper we simply wiiteand &
approximation to the maximal robust control invariant sj,t we bear in mind thaf = 2(Q) and® = &(Q).
Coo, provided some additional compactness and continuity\ye are now in a position to state our main result, originally
assumptions are satisfied. Finally, the computation of thgesented in the conference paper [35] and thesis [36]:
predecessor set plays a crucial role in allowing one to cé&pu Theorem 1 (Predecessor sefjre(1), the set of states that
optimal control laws for piecewise affine discrete-timetsyss  are robustly controllable t6 in one step, is given by
with disturbances [34], [37], [38].

Pre(Q) = Projx (X), (23)

C. Main Result whereX. is given by

As discussed in the introduction, the main aim of this paper Y=Y \Projx,uy (T\®). (24)
is to provide results that allow one to use computational Proof: A graphical interpretation of the proof is given
geometry packages for computing the predecessor set. Dudigure 1.
to the fact that existing computational geometry softwame d From the definition of the set difference,
not provide general tools for the direct elimination of the
universal quantifier in an expression, one first has to olatain TANe={(zuw) €T | flz,u,w) ¢ 2} (25)
equivalent expression for the predecessor set that onkaicen so that
the existential quantifier. The elimination of the exisiant ) )
quantifier can then be achieved by computing the projection Eroixxu(T\ @) = {(z,u) €Projx,y(T) | Jw € W(z,u)
an appropriately-defined set. Of course, any suitable dfieant such thatf(z,u,w) ¢ Q}.  (26)
glimination software may also .be used to com_pute the projﬁﬁollows that
tion. However, as mentioned in the Introduction, we are not
aware of quantifier elimination methods with a computationaProjx . (T) \ Projy (T \ @) =
complexity bound that is a polynomial function of the input{(x’u) € Projx, (Y1) | f(z,u,w) € Q
and output data, whereas computational geometry methods for all w € W(z,u)}. (27)
exist with polynomial complexity bounds. e
Before proceeding to state our main result, we define  The proof is completed by noting that

o= {(z,u) €YV | f(z,u,w) € Qforall we W(z,u)},  Projx(¥) = {z|3u such that(z,u) € ¥ and
(21) f(z,u,w) € Q for all w € W(z,u)} (28a)
the set of admissible state-input pairs for which the stdte o — {2 | 3u € U(z) such thatf(z,u, w) € Q

the system at the next sample instant is in a given{sé&br

all admissible disturbances, and for all w € W(z,u)} (28Db)
= Pre(Q2). (28c)
O = f7HQ) = {(z,u,w) | flz,u,w) €Q},  (22) .

the set of state-input-disturbance triplets for which ttegesof A conceptual algorithm for computing the sétse(2) and X
the system evolves to a given $etat the next time instant. is easily constructed from the above result. The requiregsst



are outlined by the following prototype algorithm, giverethany open sef C X such thaC,, C S, there exists ai* € IN

setsQ) and T such thatC,, C X; c S for all i > ¢*.
1) Compute the projection) — PrOjXXU (’r) Remark 4:Note that if Xf 35 X, then the requirement
2) Compute the inverse map:= f~1(Q). that A1 hold andY be compact is not sufficient faK., :=
3) Compute the set differenck := T \ ®. lim; .o X; (where the limit is appropriately defined and
4) Compute the projectiol := Projy . (A). assumed to exist) to be closed or compact. It is not diffiault t
5) Compute the set difference = )\ V. find examples wheré1l holds, Y is compact and(; # X', but
6) Compute the projectioRre(2) = Projy (). X is open. Clearly, it is also not difficult to find examples for

Note also that if the recursion (20) is to be implemented,vzﬂh'Ch X is not equal to the maximal robust control invariant

minor modification of the above prototype algorithm is ned-;deset oo

in this case there is no need to recompdite- Proj y ..y (1) bWe altgo rerréark ”th&.‘t |fr1 IS gozt comlp a(;:_t thﬁn tthe apove
after initialization. We also remark that the set recurgi20) observations (Corollaries 1 and 2) apply directly to anjkar

allows one to compute the sets of states that can be robué'fﬂf'ly large) compact subset of with obvious modifications.
steered inNV (IV € IN) steps to a given target set.

In order to implement the result, we clearly need softwafe. Special Cases
for computing inverse images, set differences and prajesti 1) Disturbance is dependent only on the state or input:
Section Il will show that, provided the systeyfi{-) is linear Consider first the simpler case when the disturbance camistra
or piecewise affine and the relevant sets are polygons, theft is a function of: only, i.e. the disturbance satisfiesw €

the computation of the predecessor Bet((2) is easily done )y (z). The definitions off andX in (9) and (21), respectively,
using standard software for polytope manipulation. and Pre(Q) become

T :={(z,u,w) | (z,u) €Y andw € W(z)}, (31)

Yi={(z,u) €Y | f(z,u,w) € Q for all w e W(z)},
(32)

D. Topological Properties of the Predecessor Set

The following assumption will be invoked where appropri-
ate:
Al. The function(z, u, w) — f(x,u,w) is continuous and the
set-valued magz, u) — W(z,u) is continuous and bounded  Pre(Q) := {x | Ju € U(z) such thatf(z,u,w) € Q

and

on bounded sets. . . for all w € W(z)}. (33)
We refer the reader to Appendix | for a review of some ) )
basic definitions and results on set-valued functions. Theorems 1 and 2 and Corollaries 1 and 2 remain true

Q and Y are closed, thert is closed. If, in addition) is disturbance constraint set is a function @fonly, i.e. the

compact, therPre(Q2) and ¥ are also compact. disturbancew satisfiesw € W(u). _
Proof: Let the set-valued map : R” — 2R" be defined ~ 2) System does not have an inpitext, consider the case
as follows: when f(-) is a function of (z,w) only, i.e. the system has

no inputw and z* = f(x,w). In this case, the constraint
F(z) = {f(z,w) |[w e W(2)}, =z:=(z,u). (29) (x,u) € Y is replaced byr € X ¢ X and the definitions of

By Proposition 2 in Appendix I, the set-valued functiéhis ¥, T and® in Theorem 1, andre(€2) are replaced by

continuous. The seXt, defined in (21), is given by T:={(z,w) |z € X andw € W(x)}, (34)
Y={ze)Y|F(z) CQ}. (30) Y={zeX | flz,w)eQforallwe W)}, (35)
Since I is continuous and is closed, it follows from ® = f71Q) = {(z,w) | f(z,w) € Q}, (36)

Proposition 3 in Appendix | that is closed (compact if, in
addition,) is compact). Sinc®re(2) = Proj (X), it follows

that Pre(Q2) is compact ifY is compact. [ | Pre(Q):={z € X | f(z,w) € Q for all w e W(z)}.
Corollary 1: SupposéAl holds. If Y and the target seX s 37)
are compact, then each s&t, i € IN, computed as in (20), In other words,Pre((2) is now the set of admissible states

is compact. such that the successor state liesirfor all w € W(z). In

It is very useful to note that {iy is compact, then the abovethis case, the conclusion of Theorem 1 becomes
result can be used to establish conditions under which the .
. ) . . o Pre(Q) =X =X\P T\ D).
maximal robust control invariant sél,, is the limit of the re(®) \ Projy (T @) (38)
sequence of setsX; },cw if Xy = X. The next result, which ~ As can be seen, this special case results in less com-
follows from Corollary 1 and [6, Prop. 4], makes this clainputational effort, since operations are performed in lewer

more precise: dimensional spaces and only one projection operation is
Corollary 2: SupposeéAl holds. If Y is compact, the maxi- needed.
mal robust control invariant sét. is non-empty and(; = X, Also, in this case where there is no control inpAd, is

thenC is compact and’., = (), Xi- Furthermore, given replaced by:



Al1: The function(z,w) — f(z,w) is continuous and the morphology [40], [41], where the Pontryagin differerfiee )V
set-valued mapr — W(z) is continuous and bounded onis often called theerosionof 2 by W.

bounded sets.

A prototype algorithm for computing the predecessor set is

Theorem 2 and Corollaries 1 and 2 remain true subjeeasily derived from Theorem 3:
to the above modifications, but with ‘maximal robust control 1) Compute the reflectior W.

invariant set’ in Corollary 2 replaced with ‘maximal robust 2) Compute the complemefit = X\ as a set difference.

positively invariant set'.

3) Additive, independent disturbancehe case when the
disturbance is additive and independent of the state and

3) Compute the Minkowski surfl := Q° @ (—W).
4) Compute the Pontryagin differen€ec W = X \ T as
a set difference.

input deserves a detailed discussion. In this case, The@rem 5y ComputeX = {(z,u) €Y | f(z,u) € QW]
still provides a method for computing the predecessor set.g) Compute the projectioRre(2) = Proj (X).

However, an alternative to Theorem 1 was originally presgnt

Clearly, appropriate software is needed for computing the

in the thesis [32] and the conference papers [33], [34]. Wgfiection, Minkowski sum, set difference, inverse image,

recall the result and its proof:

Theorem 3 (Additive, independent disturbancieg¢t the
disturbance be additive and independent of the state
input, i.e.W(z,u) =W and

T = f(x,u) +w. (39)
The predecessor set is then given by

Pre(Q) = Projx {(z,u) €Y | f(z,u) e QO W} (40a)

=Projx [YN [ (QeW)], (40Db)

where the Pontryagin differende © W is given by
Qow=[Q°@ (-W)]° (41a)
=X\ [(X\Q) & (W) (41b)

Proof: It follows easily from the definitions that
Pre(Q) = {z | Ju such that(z,u) € Y
and f(z,u) + w € Q for all w e W}
=Projy{(z,u) € Y| f(z,u) +w € N
for all w € W}, (42b)

(42a)

intersection and projection of sets. This can be done for a
large class of nonlinear systems by gridding the state space

by using computer algebra packages. However, as will be
pointed out in Section lll, one of the aims of this paper is to
highlight the fact that all these operations can be donegusin
standard polytope software, provided the system is linear o
piecewise affine and the constraint sets are polygons.

At this point, it is worth pointing out that it can be shown
(see for example [36], [38]) that

Qe W = [convh(Q) © W]\ [(convh(Q2)\ Q) & (-W)], (44)

where convh(f2) is the convex hull ofQ2; the Pontryagin
difference convh(Q2) © W is efficiently computed using the
algorithm in [39] if W is a polytope. It is also worth pointing
it out that the formula (44) is still valid ifonvh(Q?) is replaced
by any convex sef that containg? [36].

Obviously, any algorithm for computing the Pontryagin
difference that is derived from (41) or (44) will result in
exactly the same set. However, in practice the computdtiona
requirements depend very much on the specifics of the prob-
lem and the computational tools that are available. It may be

hence (40) is verified directly from the definition of thethat an algorithm derived directly from one equation isdast

Pontryagin difference. Recall that the Pontryagin diffeeeis
defined aN oW ={z€Q |z+weQforall we W},
hence the truth of (41) follows from

QoW={z | fweW, s +weQ} (43a)

s QoW ={z|IweW, s+weQ°} (43b)

={z |FceQuweW, x+w=c} (43c)

={c|TxeQuweW, c+tw==z} (43d)
={c|IzecQuwe(-W), s+w=c}

(43e)

(43f)

=Q°@ (-W).

Remark 5:1t is important to note that the majority of
well-known results in the control literature on computirng t
Pontryagin differencé) & W, such as those in [4], [5], [39],
only consider the case when is a convex polyhedron. The
above result allows for the computation of the Pontryagin

difference of non-convex polygons.

than an algorithm directly based on another equation. lisis a
not always easy to tell whether an algorithm for computing
the predecessor set is more efficient if it were based on
Theorem 1 or whether it were based on Theorem 3. A possible
direction for further research is to find results that allave ¢o
determinea priori the most efficient algorithms for computing
the predecessor set, based on sensible assumptions orighe da
Finally, we conclude this section by pointing out that all of
the results in this section are truefif-) is a function ofz only,
i.e.z™ = f(z)+w, provided the appropriate modifications to
definitions are made. In this case, no final projection oparat
is necessary, since

Pre(Q)={z e X | flz) eQoW}
—xnf i Qew).

(45a)
(45h)

IIl. LINEAR AND PIECEWISEAFFINE SYSTEMS WITH
POLYGONAL CONSTRAINT SETS

Up to now, we have deliberately not made any special

Remark 6:1t is interesting to note that though (41) doesssumptions on the structure ¢f-). The main aim of this
not appear to have been reported in the control literatussction is to point out that the computation of the predearess
it is a well-known identity in the field of mathematicalset is possible using existing computational geometrysot,



provided f(-) is linear or piecewise affine and the constraint  in [45]. The latter object is a polyhedral cover, where the
sets are polygons. members are closed polyhedra with non-empty interiors
The main reason for presenting the results in Sections [I-C and the interiors of the members are mutually disjoint.
and II-E in their current form, is because it is not possible « The definition of a polyhedral cover is weaker than that
to derive an algorithm for computing the predecessor set, of a so-calledcomplex as defined in [46]. A complex
which uses computational geometry software, directly from is a polyhedral cover, where the members are closed
the definition in (18). However, Theorems 1 and 3 allow polyhedra, the faces of each of the members of the cover
for the straightforward derivation of algorithms that cae b are also members of the cover and the intersection of any
implemented using readily-available software librariesthe two members of the cover is a face of each of them.
manipulation of polyhedra. o Our use of the termcover is stronger than the one
All the operations encountered in Sections [I-C and II-E, commonly used in topology, where aover of a setX
such as projection, set difference, piecewise affine mapgs an is a (possibly infinite) collection of non-empty sé®s:=
their inverse, Minkowski sums, intersections, etc., arsilga {P; | i € T} such that¥ C U,;czP;. In this paper, we
implemented using existing computational geometry softwa require equality (not the weaker condition of inclusion)
packages. The reader is referred to [31], [42]-[44] and the and that the collection of sets is finite.
large literature on computational geometry for details. Finally, a functionf : X — IR" is said to bepiecewise
Another reason for presenting the results as above, isdfiineon a polyhedral coveP := {P; | i €I} of apolygon
maintain a high degree of generality and to emphasize theC R™ if the restriction f|p, : P; — IR" is affine for all
structure of the results. When dealing with piecewise affinec 7.
systems or non-convex constraints, it is easy to exhaust the
reader with notational details. As a consequence of theethos
style of presentation, we are now in a better position tcestd8. Main Results
some basic definitions and present the main results, withouj, his section, we make the following assumption:

having to introduce too much additional notation. A2. T is a polygon (hence’ is also a polygon) and the system
A Definitions and Notation f}T — )j(r in .(6) ii piecewise affine on a polyhedral cover
_ _ _ o PT:={PT |ieI™} of the polygonY, i.e.

A polyhedronis the intersection of a finite number of closed
and/or open halfspaces, plytopeis a closed and boundedf (z, u, w) := A;z+Bu+Gwg;, ¥(x,u,w) € PF, i € T¥,
(equivalently, compact) polyhedron angbalygonis the union (46)
of a finite number of polyhedra (and is thus not necessariyhere for alli € Z¥, the matricesd; € R"**", B; € R™"*™,
convex). A family of setsP := {P; |ic€Z} is a(closed) @G; e R"™*” and vectorg; € IR".
polyhedral coverof a (closed) polygont’ C IR™ if the index ~ Remark 8:Note that existing results on reachability analy-
setZ is finite, eachP; is a non-empty (closed) polyhedronsis of discrete-time piecewise affine systems assume tihet ei
and X = U,z P;. Where it is useful P*, % and P;* will  there is no control input or there is no disturbance, i.etral

denote, respectively, a polyhedral cover of a polygbnits B, — 0 or all theG; = 0 [13]. The results in this paper allow

associated index set and i@ polyhedron in the cover. one to remove this restriction.
Remark 7:1t is important to discuss a few points regarding For convenience, we define the functiofis: P’ — X,
the above definitions: icI¥ as
« A polyhedron is often defined in the literature to be the
intersection of a finite number alosedhalfspaces. The filz,u,w) == Ajx + Biu + Giw + g;. 47

main reason for modifying the definition is because it
allows us to considerably simplify the presentation of the Remark 9:Clearly, if Z" has cardinalityl, then f(-) is
results in this paper, without sacrificing rigor. affine (linear if, additionally,g; = 0). Note also that, since

« A polyhedral cover of a polygon should not be confused(-) is assumed to be single-valued, it follows that i~ j
with the polygon itself. The former object is a family ofand P;" N PY # 0, then f;(x,u,w) = f;(z,u,w) for all
sets that can be used to conveniently describe the latteru, w) € P;" NPf.
object, which is a single set. A given polygon may have We now give the main result of this section, where we
any number of suitable polyhedral covers associated witheke the assumption that the system is piecewise affine and
it. This distinction between a polygon and its polyhedrall relevant sets are polygons. In this case, it is easy to
cover is important when interpreting the results in thispecialize the prototype algorithms in Sections II-C arH.B
paper and implementing them with existing algorithmand implement them using standard computational geometry
for polytope manipulation. For examplecksedpolygon software.
need not be described byctosedpolyhedral cover; any  Theorem 4 (Piecewise affine systemSypposeA2 holds.
number of members of the polyhedral cover are allowdfl €2 is a polygon, then the predecessor Bet(£2), as given
to be neither closed nor open, provided the union of dh (18) and (23), is a polygon. Furthermore the Beds given
the members is closed and equal to the polygon. in (21) is also a polygon.

« The definition of a polyhedral cover given here is weaker Proof: Recall the statement of Theorem 1. LBt :=
than that of a so-callegolyhedral partition as defined {PZQ | 1€ IQ} be a polyhedral cover of the polygénh First,



note that certain problem structure, use one of the results in thigpap
_ develop the algorithmic details and analyze its complexity

1 _ Q
@)= U {@uw)eT | flz,uw)eP} (482) \nen implemented with different computational geometry

1€z software libraries.
= U {(z,u,w) € P[] | Remark 10:Clearly, all the results in this section still hold
(4,j)ETXTY if the system is linear. Once again, there may be many com-
Ajz+ Bju+ Gjw+g; € 791_9}' (48b) putational and theoretical benefits in exploiting the Initya
] of the system, convexity of the sets or if the constraints are
Since each non-empty set decoupled. However, it is important to note that, even iftad!
{(%u’w) c P}f | Az + Bju+ Gyuw+gj € PZQ} sets are convex and the system is linear, there is no guarante

that Pre(€2) is convex if the disturbance is dependent on the
is a polyhedron, it follows that® := f~'(£2) is a polygon state and input. This claim is justified in Section IV-A via
with a easily-derived polyhedral cover. a numerical example. Note that this is in strong contrast to

Next, recall that the projection of the union of a finitehe well-known fact thaPre(Q2) is convex if all the sets are
number of sets is the union of the projections of the indisiduconvex and the disturbance is not dependent on the state and
sets, hence the projection of a polygon is also a polyganput.

i.e. if ¥ is a polygon with a polyhedral coveP* :=

{PF | i € 7%}, then{Projx P | i € I*} is a polyhedral V. EXAMPLES

cover of the polygorPre(Q2). Note also thaff" is a polygon,
hence its projection ontX x U is a polygon. Similarly, if
T\ @ is a polygon, then so too is its projection on¥ox U.

What remains to be shown is tHét ® andX are polygons.
This follows immediately from referring to Appendix I, wie
it is shown that the set difference between two polygonssis aIW(“))'

a polygon. [ ]

The proof of the following result follows similar argumentsA. Scalar System with State-dependent Disturbances
as in Theorem 2 and Corollary 1 by noting that the projection \ye consider the following scalar system:
of a closed polygon is a closed polygon:

Corollary 3: SupposeAl andA2 hold. If the target sek ¢ et =r4+utw (49)
is a (closed/compact) polygon (arifl is a closed/compact
polygon), then each seY;, i € IN, computed as in (20), is a
(closed/compact) polygon. X:={z | -5<x<20} and

The results above can be combined with the results pre- U=1{u|-2<u<?2}. (50)
sented in Section Il to develop and implement a number of
first-attempt’ algorithms for reachability analysis ofepe- The state-dependent disturbance satisfies:
wise affine systems, based on the prototype algorithms in o
Sections 1I-C and II-E.3. The set differences can be contpute wEW(@) & (7,w) € A= AU Ay, (51)
using the results in Appendix Il and the inverse maps avghere
obtained directly from (48); all other operations, such &% p
jection and Minkowski summation, are standard and relevant Ay = convh{(0,0.25), (0,-0.25), (2,1.25),
software is readily available [31], [42]-[44]. These aigums (2,—1.25), (20,2.25), (20,—2.25)}
can then be analyzed and used as a basis for proposing ang
comparing more efficient algorithms. an

It is important to note that, in practice, different computa A, = convh{(0,0.25), (0,—0.25), (—2,1.25),
tional geometry problems benefit greatly from modifying an 5 _ on
algorithm in subtle, but important ways. A practical algjom (=2,-1.25), (=20,2.25), (=20,-2.25)}-
with a meaningful complexity bound can only be obtained bhe setA is shown in Figure 2. The target setl§ = Q =
looking at the exact problem structure and choosing thet righz| — 0.6 < z < 0.6}, which was chosen to be robust control
subset of methods from one or more computational geomeinyariant.
software libraries. The sequence of-step controllable is computed by using

By considering a few special cases, we have providedttze results of Theorem 1 and some of the sets &re= {z |
number of results that allow for the derivation of different-0.7 < = < 0.7}, Xo = {z | —0.9 < z < 0.9}, X3 =
algorithms that exploit the system structure. Since theseich {z | —1.3 < z < 1.3}, X4 = {z | —2.0468 < = < 2.0468},

a large class of special cases and the various algorithms for, Xg = {x | —4.5793 < 2 < 4.5793}, Xg = {z | -5 <
polyhedra can be combined in any number of suitable waysgit< 5.1131}, X190 = {o | =5 < & < 5.6123}, ..., Xy9 =
is beyond the scope of this paper to propose a specific, détai{z | —5 < = < 12.2759}, X50 = {z | =5 < = < 12.3099}.
algorithm and to derive rigorous computational complexitfhe setX, of all states that can be steered to the target set,
results. An important research topic would be to assumewdile satisfying state and control constraints, for albathble

In order to illustrate our results we consider two simple
examples. In the first, the system is scalar and the distagban
state-dependentu( € W(x)); in the second, the system is
second-order and the disturbance control-dependente(

which is subject to the constrainfs, ) € X x U where
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Fig. 3. Setsy; fori=1,2,3,4 Fig. 5. Graph of\V (top) and the seE (bottom)

disturbance sequences, &, = {z | =5 < = < 12.7999}. invariant set isX; = {z | —3.75 < 2 < 2.5} U {z | 3.5455 <
The setsX; for ¢ = 1,2, 3,4 are also shown in Figure 3. x < 4}. The setsA andX are shown in Figure 5.

In order to illustrate the fact that thestep controllable
can be non-convex even &, U/, Q and the graph oiV(z) ) ]
are convex, consider the same example. This time the state-Second-order LTI Example with Control-dependent Distur

dependent disturbance satisfiesc W(z) < (z,w) € A bances

where: The discrete-time linear time-invariant system
A := convh{(=5,0), (0,-3),(5,0),(0,3)}.  (52) L [ 07969 —0.2247 } [ 0.1271 } Cw (53)
r = x u w
If the target set isXy = Q = {z | —2.5 < z < 2.5}, the one- 0.1798  0.9767 0.0132

step setisX; = {z | —3.75 <z < —0.8333}U{x | 0.8333 <
x < 3.75}. The setsA and X are shown in Figure 4. wit
Even if Q is a robust control invariant set, the convexity

of eachi-step set still cannot be guaranteed. This is easily X :={z | |z]lsc <10,[-1 1]z < 12} and
illustrated by considering the same example with= {z |
-5 <z < 4} andw € W(z) & (z,w) € A where
A = convh{(-5,0.5), (=5, -0.5), (3, =2.1),(4,0), (3,2.1)}  The control-dependent disturbance satisfies:

and the robust control invariant target s€p = 2 = {z |

—2.5 < z < 2.5}. In this case, the one-step robust control we W) < (u,w) € A=A UAy, (55)

is subject to the state and control constraifatsu) € X' x U

U={u ]| -3<u<3}. (54)
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Fig. 7. SetsX; fori=0,1,...,7

whereA; and A, are given by: . - . :
! 2are g y even if the system is linear, the respective constraint aets

[ —0.008 0 -1 0.01 convex and the target set is robust control invariant, caitwe
-1 0 0 0 of the i-step controllable sets cannot be guaranteed.
A =< (u,w) —-0.008 1 O { Z} } < | 0.01 , Future work could focus on using the results in this paper to
—-0.008 -1 0 0.01 develop efficient algorithms that exploit system structirer
—0.008 0 1 0.01 piecewise affine systems, the complexity of the descripbion
i (56) " the output of a reachability computation might, in genebal,
and worst-case exponential in terms of the size of the input.data
[ 0.008 0 1 0.01 Clearly, there is nothing that one could do about the inher-
1 0 0 0 ent complexity of a solution, except maybe through making
As =< (u,w) 0.008 —1 0 [ u ] < | 0.01 _suitable approximations during computation time. Howgver
0.008 1 0 w 0.01 as is common practice in computational geometry [30], [31],
0.008 0 —1 0.01 it may be more appropriate to analyze the complexity of a
) ( j reachability algorithm not only in terms of the size of the
The target set is input data, but also in terms of the size of the output data. In

computational geometry, an algorithm is said to be traeté#bl

Xo = convh{(~0.2035,0.0482), (0.2035, ~0.0482), it has a computational complexity that is a polynomial fimrt
(—0.2035, —0.0148), (—0.1405,0.0482), of the size of the inpuind output data. This notion could
(0.2035,0.0148), (0.1405, —0.0482)}, also be applied to the rigorous analysis of the complexity of

) . ) _ reachability algorithms for piecewise affine systems.
which was chosen to be robust control invariant. The projec-

tions of the setA onto two-dimensional subspaces are shown APPENDIX |
in Figure 6. Some of the-step controllable sets, computed RESULTS ONSET-VALUED FUNCTIONS

using Theorem 1, are shown in Figure 7. The definitions of inner and outer semi-continuity employed

below are due to Rockafellar and Wets [47]; for Definitions

1-4 and Theorem 5, see [48]; Polak also provided the proof
The main result of this paper (Theorem 1) showed how owé Proposition 2 (private communication). In what follows,

can obtairPre(2), the set of states that can be robustly steerd8i(z, p) := {z | ||z|| < p} andd(a, A) := infpeca ||a —b|.

to €, via the computation of a sequence of set differences andDefinition 2: A set-valued mapF : R" — 2%" is outer

projections. It was then shown in Theorem 4 tha®ifind the semi-continuous (o.s.c.) &tif F(2) is closed and, for every

relevant constraint sets are polygons (i.e. they are giwen dompact setS such thatF(2) NS = 0, there exists @ > 0

the unions of finite sets of convex polyhedra) and the systesuch thatF(z)N.S = @ for all z € B(Z, p). A set-valued map

is linear or piecewise affine, thePre() is also a polygon F :R" — 2R" is o.s.c. if it is 0.s.c. at every € IR".

and can be computed using standard computational geometripefinition 3: A set-valued mapF : R" — 2%" is inner

software. In particular, new results were given in Apperitlix semi-continuous (i.s.c.) at if F'(2) is closed and, for every

which allow one to compute the set difference for (possiblgpen setS such thatF(2) NS # (), there exists g > 0

non-convex) polygons by solving a finite number of LPssuch thatF'(z)N.S # 0 for all z € B(2, p). A set-valued map

Finally, some simple examples were given which show thaf, : R"” — 2®" is i.s.c. if it is i.s.c. at every € IR".

V. CONCLUSIONS
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Definition 4: A set-valued magF : R” — 2&" is continu- APPENDIXII
ous if it is both o.s.c. and i.s.c. SET DIFFERENCEBETWEEN POLYGONS

Definition 5: A point & is a limit point of the infinite
sequence of set$A;} if d(a,4;) — 0. A point a is a Since we were unable to find any specific details in the
cluster point if there exists a subsequerdce N such that literature on computing the set difference and/or complgme
d(a,A;) — 0 asi — oo, i € I. The setlimsup A; is the of polygons, we include some basic results in this section
set of cluster points of 4;} andliminf A; is the set of limit that are easily implemented using standard computational
points of { A;}, i.e. limsup A; is the set of cluster points of geometry software libraries. Further research could beded
sequencesa; } such thata; € A; for all i € IN andliminf A; on deriving more efficient algorithms that exploit any stue
is the set of limits of sequencds:;} such thata; € A; for in the problem.
all i € IN. The setsA; converge to the setl (A; — A or Before proceeding, lelN,, := {1,2,...,n} and recall that
lim A; = A) if limsup A; = liminf A4; = A. the complement oft in IR is A° := IR™\ A and thatB\ A =

The following result appears as Theorem 5.3.7 in [48]: BN A°. In other words, the set difference operation also allows

Theorem 5:(i) A function F : R" — 2R" is o.s.c. at Us to compute the complement of a set in a given space. For
% if and only if for any sequencdz;} such thatz; — 2, the definitions of a polyhedron, polygon and polyhedral cove
limsup F(z) € F(2). Also, F is o.s.c. if and only if it graph see Section lIl.

G :={(z,y) |y € F(2)} is closed. The first result, which is due to [45], allows one to compute
(ii) A function F : IR"” — 2R" is i.s.c. at? if and only if for the set difference between two polyhedra:

any sequencg¢z;} such thatz; — Z, liminf F'(z;) 2 F(2). Proposition 4: Let A ¢ IR™ be a polyhedron and let
(iii) SupposeF : R" — 2" is such thatF(z) is compactfor B := {z e R" |z <d;,i=1,...,r} be a non-empty

all z € IR" and bounded on bounded sets. THers o.s.c. at polyhedron, where all the; € IR" andd; € R. If

Z if and only if, for every open sef such thatF'(z) C S,

there exists @ > 0 such thatF'(z) C S for all z € B(z, p). Sy={zecA|da>d}, (58a)
Proposition 2: Suppose thatf : R" x R” — R" is ¢ ._ cAlde>d. dx<d VielN,

continuous and thatyV : R? — 2R is continuous and '’ {e | ciw > diy o <dj, J i1}

bounded on bounded sets. Then the set-valued fundfion i=2...,r, (58D)

R" — 2R" defined byF(z) := {f(z,w) | w € W(2)} is

continuous. then the set differenced \ B = (J,_, S; is a polygon.

Proof: (i) (¥ is 0.5.c.). Let{z;} be any infinite sequence Furthermore, the polyhedral covers; # 0 | i € N, } is a

such thatz; — 2 and let{f;} be any infinite sequence suchPartition of A\ B.

that f; € F(z) for all i € IN and f; — f. Then, for alli, Remark 11:Note that in order to simplify notatiofs was

fi = f(zi,w;) with w; € W(z). Since{z} lies in a compact assumed to be closed, whereas no similar assumptichuas

set andW : IR? — 2" is bounded on bounded sets, ther8een made. Clearly Proposition 4 is without loss of gengrali

exists a subsequence §fy;} such thatw; — @ asi — oo, Since the result is trivially extended (at the expense of an

i € I C IN. SinceW is continuousg € W(2). Hence increase in notational complexity) for the case whgiis not
closed.
f=1lim f(z,w;) = f(3,0) € F(3). In practice, computation time can be reduced by checking
= whether A N B is empty or whethetd C B before actually

N . computing A \ B; if AnB = (, then A\ B = A and
Th'? |mpl.|es. that#” is 0.5.c. o if A C B, tr}enA \ B = (. Using an e><tended version
(i) (f? isi.s.c) Let{z;} be any |nf|r_1|te.squuence such thaps Farkas’ Lemma [7, Lem. 4.1], checking whether one
z — z and letf be an arbitrary point inF'(2). Then f = yo\yhedron is contained in another amounts to solving aeing
f(2,@) for somew € W(z). SinceV is continuous, there | p” ajternatively, one can solve a finite number of smallesLP
exists an infinite sequencfw;} such thatw; € W(zi) and 4 test for set inclusion [32, Prop. 3.4].
w; — . Then f; := f(zi, w;) € F() for all i € IN and OnceA \ B has been computed, the memory requirements
. can be reduced by removing all empty and removing any

}HEO fi= }H?O fGiswi) = f(2,0) = [ € F(2) redundant inequalities describing the non-emgtyChecking
whether a polyhedron is non-empty can be done by solving a
This implies thatF' is i.s.c. m single linear program (LP). Removing redundant inequeiti
Proposition 3: SupposeF : IR" — 2R is continuous and can be done by solving a finite number of LPs [30]. As a
that2 C IR” is closed. Then the (outer) inverse $&t((2) := general rule, it is usually a good idea to determine first twhiet
{z | F(z) C Q} is closed. a polyhedron is non-empty or not before removing redundant

Proof: Suppose{z;} is an arbitrary infinite sequence ininéqualities.
FT(Q) (F(z) C Q for all i € IN) such thatz; — 2. Since The second result allows one to compute the set difference
F is continuouslim;_., F(z;) = F(2). Becausd is closed, between a polygon and a polyhedron:
F(z) C Qforalli € IN implies F(2) C Q. Hencez € FT(Q) Proposition 5: Let {P{ | j € IN, } be a polyhedral cover
so thatF'f () is closed. m of the polygonC'. If A is a non-empty polyhedron, then each
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non-emptijC\A,j € IN,, is a polygon and the set difference [3] M. C. Delfour and S. K. Mitter, “Reachability of perturdesystems

C\A= O(Pf\A)

Jj=1

(59)

is also a polygon.
Proof: This follows trivially fromC\ A = ( - ch) N
Ac = s, (PF N A°). [
Note that if the polyhedral cove{PJC |je ]Np} is a

partition of C and C' \ A is non-empty, then it is easy to

(4]
(5]

(6]

(7]

compute a polyhedral cover @ \ A that is also a partition [g]
of C'\ A, provided Proposition 4 were used to compute the

polyhedral cover of eacVPjC \ 4, j €N,

The last result allows one to compute the set differencgy

between two polygons:

Proposition 6: Let {P{ | j € N, } and{P | k € N, }
be polyhedral covers of the polygos and D, respectively.
If

Ey:=0C, (60a)
Ey:=E,_1\ PP, VkeIN, (60b)
then the set differenc€ \ D = E, is a polygon.
Proof: The result follows from noting that
C\D=CnD* (61a)
=Cn (UL PY) =Cn (N (PD))  (61b)
=CN(PP)N(PY)N---N(PP)° (61c)
=(Cn PPN (P N---n(P)  (61d)
=(C\PP)N(PY) NN (PY)° (61e)
= (C\POI\PY)N--n(PY)* (61f)
= (- ((C\POINPN - )\ P, (619)

Letting Ey := C and By, := Ej,_1 \ PP, Vk € IN,, yields the
claim. ]
Clearly, polyhedral covers for all the polygod 1 \ PP,

(10]

(11]

(12]

(13]

(14]

[15]

(16]

[17]

k € IN,, can be computed using Proposition 5. Note ald&8l

that if the polyhedral covef P{ | j € IN, } is a partition

of C andC'\ D is non-empty, then it is easy to compute g

polyhedral cover off, that is also a partition o€ \ D by

using Propositions 4 and 5 to compute polyhedral covers for

allthe E,, k € qu.
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